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Proteomic characterization 
of aging‑driven changes 
in the mouse brain 
by co‑expression network analysis
Kazuya Tsumagari 1,2,3,4*, Yoshiaki Sato 5, Hirofumi Aoyagi 5, Hideyuki Okano 6 & 
Junro Kuromitsu 5*

Brain aging causes a progressive decline in functional capacity and is a strong risk factor for dementias 
such as Alzheimer’s disease. To characterize age-related proteomic changes in the brain, we used 
quantitative proteomics to examine brain tissues, cortex and hippocampus, of mice at three 
age points (3, 15, and 24 months old), and quantified more than 7000 proteins in total with high 
reproducibility. We found that many of the proteins upregulated with age were extracellular proteins, 
such as extracellular matrix proteins and secreted proteins, associated with glial cells. On the other 
hand, many of the significantly downregulated proteins were associated with synapses, particularly 
postsynaptic density, specifically in the cortex but not in the hippocampus. Our datasets will be helpful 
as resources for understanding the molecular basis of brain aging.

Aging is a time-dependent functional decline caused by the accumulation of cellular damage, that results in 
a progressive loss of physiological integrity, reduced function, and increased susceptibility to death1. Brain 
aging causes a progressive decline in functional capabilities, resulting in impairments in learning and memory, 
attention, decision-making speed, sensory perception, and motor coordination2. Examination of the brain at 
the cellular level has revealed various hallmarks of aging, including mitochondrial dysfunction, intracellular 
accumulation of oxidatively damaged proteins, dysregulated energy metabolism, loss of proteostasis, impaired 
adaptive stress response signaling, compromised DNA repair, aberrant neuronal network activity, dysregulated 
neuronal Ca2+ handling, and inflammation1,2. These age-associated changes in the brain are a strong risk factor 
for dementias such as Alzheimer’s disease3, and thus a deeper understanding of the molecular basis of brain 
aging is a crucial task for elucidating the mechanisms of these diseases.

To date, several proteomics studies have addressed brain aging by analyzing model organisms. Walther and 
Mann analyzed mouse brain tissues using stable isotope labeling with amino acids in cell culture (SILAC). They 
accurately quantified more than 4000 proteins, and demonstrated that proteome changes in brain aging are very 
small, at least at the bulk proteome level, and the proteome is robustly maintained to a relatively old age4. Similar 
results have been obtained in studies by other groups. Ori et al. performed integrated transcriptome and proteome 
analyses and found that age-specific variations of the transcriptome and proteome are much less pronounced than 
tissue-specific differences5. Yu et al. investigated nine mouse organs by targeted and non-targeted proteomics 
using isobaric tag quantitation and found that white adipose tissue is most affected by aging, while other tis-
sues, especially brain, show very small proteomic changes6. However, despite their small magnitude, changes in 
protein expression are likely to be closely associated with age-related cognitive decline7, and importantly, these 
previous studies did not establish which function-related proteins change with aging in the brain. To this end, 
an approach is needed that can capture and interpret minute changes.
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In this study, in order to generate large-scale proteomic datasets of mouse brain tissues with aging, we used 
a workflow involving tandem mass tag (TMT) quantitation, which is one of the most reproducible methods in 
quantitative proteomics, coupled with pre-fractionation and high-resolution mass spectrometry. We applied 
weighted gene co-expression network analysis (WGCNA)8 to the dataset and detected co-expression modules 
associated with aging.

Materials and methods
Mice
Animal husbandry was outsourced to Axcelead Drug Discovery Partners Inc. (Kanagawa, Japan). All animal 
care and experimental procedures were approved by the local animal care and use committees at both Tsukuba 
Research Laboratories, Eisai Co., Ltd. and Axcelead Drug Discovery Partners Inc, which are accredited by 
the Health Science Center for Accreditation of Laboratory Animal Care and Use of the Japan Health Sciences 
Foundation and the Association for Assessment and Accreditation of Laboratory Animal Care International 
(AAALAC), respectively. All experiments were performed in accordance with relevant guidelines and regula-
tions. This study was in compliance with the ARRIVE guidelines.

C57BL/6J Jcl male mice (CLEA Japan, Inc., Tokyo, Japan) were used in this study. The mice did not participate 
in any other experiment. They were housed in a temperature and humidity-controlled room with artificial light-
ing of 12 h light, 12 h dark and provided with pellet food and tap water ad libitum. Mice were deeply anesthetized 
using a combination of anesthetics (1 mg/ml of medetomidine hydrochloride, 5.0 mg/kg of midazolam, and 5.0 
mg/kg of butorphanol tartrate). Subsequently, they were sacrificed and perfused with phosphate-buffered saline. 
The cortices and hippocampi were then collected. The hemispheres of the tissues were immediately frozen in 
liquid nitrogen and stored at − 80 °C. The right half of each tissue was utilized in this study.

Experimental design
Mice were sacrificed at 3, 15, and 24 months old (N = 6 in each case), and their cortices and hippocampi were 
investigated; thus, each tissue group consisted of 18 samples, and the total number of investigated tissue samples 
was 36 in this study. For proteome quantification, TMT-11 plex labeling was employed. The TMT channels for 
each sample are summarized in Table S1. Each tissue was measured using two batches of TMT-11 plexes. For 
each tissue, portions of each extracted protein (18 samples) were pooled, digested, labeled with TMT-126 or 
TMT-131C, and spiked as internal references; the intensities of TMT-126 were utilized for bridging the two 
batches of TMT-11-plexes, and the intensities of TMT-131C were utilized to account for technical variations of 
quantification. Bridging of batches was done within each tissue.

Sample preparation
Sample preparation was performed as described previously9. Brain tissues were freeze-crushed using a multi-
beads shocker (Yasui Kikai, Osaka, Japan). Proteins were extracted with a lysis buffer consisting of 4% sodium 
dodecyl sulfate (SDS), 100 mM Tris–HCl (pH 8.5), 10 mM tris(2-carboxyethyl)phosphine, 40 mM 2-chloro-
acetamide, and HALT protease/phosphatase inhibitor cocktail (Thermo Fisher Scientific). Then, the proteins 
were purified by acetone precipitation and digested with LysC (FUJIFILM Wako, Osaka, Japan) and trypsin 
(Promega, Madison, WI). The resulting peptides were desalted on InertSep RP-C18 columns (GL Sciences, Tokyo, 
Japan) and TMT-labeled. The labeled peptides were fractionated by high-pH reversed-phase chromatography 
into 24 fractions.

Nanoscale liquid chromatography/tandem mass spectrometry
NanoLC/MS/MS analysis was performed as described previously9. The system consisted of an UltiMate 
3000RSLCnano pump (Thermo Fisher Scientific) and an Orbitrap Fusion Lumos tribrid mass spectrometer 
(Thermo Fisher Scientific) equipped with a Dream spray electrospray ionization source (AMR Inc., Tokyo, 
Japan). Peptides were injected by an HTC-PAL autosampler (CTC Analytics, Zwingen, Switzerland), loaded on 
a 15 cm fused-silica emitter packed with 3 µm C18 beads (Nikkyo Technos), and separated by a linear gradient 
(5% solvent B for 1 min, 5−15% solvent B in 4 min, 15−40% solvent B in 100 min, 40−99% solvent B in 5 min, 
and 99% solvent B for 10 min; solvent A was 0.1% formic acid, and solvent B was 0.1% formic acid in 80% ACN) 
at the flow rate of 300 nL/min. All MS1 spectra were acquired over the range of 375–1500 m/z in the Orbitrap 
analyzer (resolution = 120,000, maximum injection time = 50 ms, automatic gain control = standard). For the 
subsequent MS/MS analysis, precursor ions were selected and isolated in top-speed mode (cycle time = 3 s, isola-
tion window = 0.7 m/z), activated by collision-induced dissociation (CID; normalized collision energy = 35), and 
detected in the ion trap analyzer (turbo mode, maximum injection time = auto, automatic gain control = stand-
ard). The top 10 most intense fragment ions were subjected to TMT-reporter ion quantification by SPS-MS3 
(HCD normalized collision energy = 65)10.

Raw LC/MS/MS data processing
LC/MS/MS raw data were processed using MaxQuant (v.1.6.17.0)11. Database search was implemented against 
the UniProt mouse reference proteome database (May 2019) including isoform sequences (62,656 entries). The 
following parameters were applied: precursor mass tolerance of 4.5 ppm, fragment ion mass tolerance of 20 ppm, 
and up to two missed cleavages. TMT-126 was set to the reference channel, and the match-between-run func-
tion was enabled12. Cysteine carbamidomethylation was set as a fixed modification, while methionine oxidation 
and acetylation on the protein N-terminus were allowed as variable modifications. False discovery rates were 
estimated by searching against a reversed decoy database and filtered for < 1% at the peptide-spectrum match 
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and protein levels. Correction for isotope impurities was done based on the manufacturer’s product data sheet 
of TMT reagents.

TMT‑reporter intensity normalization
TMT-reporter intensity normalization among six of the 11-plexes was performed according to the internal 
reference scaling method13 by scaling the intensity of the reference channel (TMT-126) to the respective protein 
intensities. Then, the intensities were quantile-normalized, and batch effects were corrected, using the limma 
package (v.3.42.2) in the R framework.

Construction of weighted protein co‑expression network
A weighted protein co-expression network analysis was performed using the WGCNA package (v.1.70-3)8 in 
the R framework, as previously described9. Expression similarities (adjacencies) were computed by the adja-
cency() function with the soft thresholding power of 26. The network type was set to “signed”. The adjacencies 
were transformed into a topological overlap matrix (TOM) by the TOMsimilarity() function, and a hierarchical 
clustering of proteins was performed by the flashClust() function (method = "average") in the flashClust package 
(v.1.01-2), based on the corresponding TOM dissimilarity (1-TOM). Modules were detected by the cutreeDy-
namic() function using the hybrid tree cut method (deep split = 1, minimum module size = 50). Pearson correla-
tions between each protein and each module eigenprotein, based on module memberships (kMEs) calculated 
by the moduleEigengenes() function, were calculated, and proteins without a significant correlation with the 
eigenproteins (p-value < 0.05) based on the Pearson correlation were excluded from the module. Then, module 
eigenproteins were re-calculated and used for the downstream analyses.

Statistics and bioinformatics analyses
Welch’s t-test and following permutation-based FDR calculation were performed using Perseus14. Module-age 
correlations were calculated as Pearson correlations between the module eigenproteins and age, and q-values 
were calculated by the Benjamini–Hochberg method. GO term enrichment analysis and subsequent calculation 
of q-values by the Benjamini–Hochberg method were performed using R with the anRichment package. For cell-
type-specific marker protein enrichment analysis, proteins that were at least eightfold more highly expressed in 
a certain cell type than in other cell types in the dataset by Sharma et al.15 were used as cell-type-specific marker 
proteins. Human UniProt accessions were converted to mouse accessions of the corresponding orthologs based 
on the HGNC comparison of orthology predictions (HCOP; https://​www.​genen​ames.​org/​tools/​hcop/). Enrich-
ment analyses for cell-type-specific marker proteins and cognitive stability-associated proteins were performed 
by means of the hypergeometric test, and q-values were calculated by the Benjamini–Hochberg method in 
the R framework. Protein–protein interaction analysis was performed using STRING (v.11.0)16 (interaction 
sources = “Experiments” and “Databases”, minimum score = “medium confidence (0.400)”) and visualized using 
Cytoscape (v.3.8.0)17.

Results
Deep and reproducible proteome profiling of the aging mouse brain tissues
We investigated proteomes of cortex and hippocampus dissected from mice at 3, 15, and 24 months old. In order 
to achieve large-scale and reproducible protein quantification, we employed a shotgun proteomics workflow 
consisting of TMT-labeling, fractionation by high-pH reversed-phase chromatography, and nanoLC/MS/MS 
(Fig. 1A). For each tissue, portions of each extracted protein were pooled, digested, labeled with TMT-126 or 
TMT-131C, and spiked as internal references for bridging two TMT-11-plexes and accounting for technical 
variation, respectively. In total, 6,821 and 6,910 proteins were quantified in at least three biological replicates in 
cortex and hippocampus, respectively, affording a total of 7,168 proteins (Fig. 1B, Tables S2, S3). Reproducibility 
in protein quantification was good, with Pearson correlation coefficients > 0.99 (Fig. 1C). Moreover, the median 
values of relative standard deviation (RSD) of protein quantification in the groups were less than 1% (Fig. 1D). 
Given the depth of the proteome and the inter-measurement or sample-to-sample reproducibility, we consider 
that our datasets are suitable for quantitative analysis of proteome alteration with aging.

Extracellular proteins are upregulated, and synaptic function‑related proteins are downregu‑
lated during aging specifically in cortex
We created volcano plots with a truncation at a FDR of 0.05 (Figs. 2A,B, S1). In the comparison between 3 and 
24 months old, 133 and 52 proteins were significantly up- and downregulated in the cortex, while 150 and 93 
proteins were significantly up- and downregulated in the hippocampus, respectively (Table S4). These proteins 
accounted for only 2.7% and 3.5% of the total quantified proteins in the cortex and hippocampus, confirming that 
the change in the brain proteome driven by aging is very small5,6. In the two tissues, 47 proteins, including signal 
transducer and activator of transcription 1 (STAT1), myelin basic protein (MBP), glial fibrillary acidic protein 
(GFAP), and complement proteins C1qa, C1qb, and C4b, were commonly upregulated (Fig. 2C). Likewise, 11 
proteins, including tenascin (TNC) and histone 1.5 (HIST1H1B), were commonly downregulated (Fig. 2D). The 
proteome changes between 3 and 15 months old and between 15 and 24 months old were smaller than the change 
between 3 and 24 months old (Fig. S1, Table S4). In the cortex, C4b and serine protease HTRA1 were found to 
be significantly upregulated both between 3 and 15 months old and between 15 and 24 months old, indicating 
that these proteins are progressively upregulated during aging. No such proteins were found in the hippocampus 
or in the downregulated proteins in the cortex. For the characterization of these significantly altered proteins, 
gene ontology (GO) term enrichment analysis was performed (Fig. 2E,F, Table S5). The significantly upregulated 
proteins abundantly included extracellular proteins such as extracellular matrix proteins and secreted proteins. 

https://www.genenames.org/tools/hcop/


4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18191  | https://doi.org/10.1038/s41598-023-45570-w

www.nature.com/scientificreports/

Among the downregulated proteins, significantly enriched terms were obtained only in the cortex, and these 
were related to synaptic functions.

Co‑expression network analysis reveals age‑associated protein modules
Co-expression network analyses, namely WGCNA, is a powerful and sensitive approach for the proteomic 
analysis of complex samples, such as brain tissues derived from patients with Alzheimer’s disease18,19 or disease 
models9,20. Such a sensitive analytical method is expected to be effective also for the interpretation of the changes 
in the brain proteome with aging. We applied the WGCNA algorithm to the cortex dataset and detected nine 
modules spanning diverse biological processes and cellular components based on GO terms (Fig. 3A,B, Tables S6, 
S7). To find modules related to aging, we calculated the Pearson correlation coefficients between age and each 
module eigenprotein (Fig. S2), which is defined as the first principal component of a given module and serves as 
a representative (Figs. 3C, S2). The M1 synaptic module and M6 extracellular region module showed significant 
negative and positive correlations with aging, respectively, which again confirmed that synaptic proteins are 
downregulated, and extracellular proteins are upregulated during aging in the cortex. Notably, these modules 
abundantly included the significantly regulated proteins defined in the volcano plots. In the M1 synaptic module 
particularly, postsynaptic density proteins, such as HOMER1, DLGAP2 and 3, GRIN1 and 2B, and GRIA2, were 
abundantly included (Fig. S3). Moreover, consistently with this result, an enrichment analysis for cell-type-
specific marker proteins (Fig. 3D)15 revealed that the M1 synaptic module was specifically enriched with neu-
ronal marker proteins. In contrast, the M6 extracellular region module was enriched with glial proteins. Indeed, 
the M6 extracellular region module included many cell-marker proteins, such as GFAP (astrocytes) and MBP 
(oligodendrocytes). Consistent with the result of GO term enrichment analysis for the significantly upregulated 
proteins in the cortex (Fig. 2E), the M6 extracellular module also included ECM proteins such as collagen (type 
VI α-1, 3, and type XII α-1) and laminin (subunits α-1, 2, 5, β-2, and γ-1) proteins and secreted proteins such 
as complement proteins. Wingo et al. previously analyzed the dorsolateral prefrontal cortex (DPLFC) of human 
cohorts to investigate proteins that highly correlate with the cognitive trajectory and nominated 350 proteins 
that had increased abundance in cognitive stability (proteins with higher abundance in cognitive stability) and 
229 proteins that had decreased abundance in cognitive stability (proteins with lower abundance in cognitive 
stability)7. We asked how these proteins are regulated in the mouse cortex with aging (Fig. 3E). Interestingly, the 
proteins with lower abundance in cognitive stability showed highly significant enrichment in the M6 extracellular 
region module. For instance, GFAP, C4b, MBP, tight junction protein ZO-2, and N-Myc downstream regulated 
1 (NDRG1) were included. The proteins with higher abundance in cognitive stability did not show significant 
enrichment for any of the modules. To address whether the detected co-expression networks were preserved in 
the hippocampus, we utilized module preservation statistics (Fig. 3F). Six modules detected in the cortex were 
significantly preserved with a Zsummary score > 2. On particular, the M4 and M9 modules were highly preserved 

Figure 1.   Deep and precise proteome profiling of mouse brain tissues with aging. (A) Proteins were extracted 
using sodium dodecyl sulfate (SDS), purified by acetone precipitation, and digested with LysC and trypsin. Six 
biological replicates were analyzed by six TMT-11-plexes for each of cortex and hippocampus. The digests were 
multiplexed by TMT, fractionated by high-pH reversed-phased chromatography (high pH RP), and analyzed 
by nanoLC/MS/MS. (B) Numbers of quantified proteins. N≧3, the number of proteins quantified in at least 
three replicates. N = 6, the number of proteins quantified in all (six) replicates. Hipp, hippocampus. Cx, cortex. 
(C) Reproducibility of protein quantification between two measurements. Pearson correlation coefficients of 
the pooled samples (TMT-131C) are shown for cortex and hippocampus, respectively. (D) Reproducibility of 
biological replicates. Relative standard deviation (RSD) of each protein at the respective ages are shown for 
cortex and hippocampus.



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18191  | https://doi.org/10.1038/s41598-023-45570-w

www.nature.com/scientificreports/

with a Zsummary score > 10. On the other hand, three modules, including the M1 module, which was negatively 
correlated with aging, were not significantly preserved.

Discussion
Here, we generated protein expression datasets of the cortex and hippocampus in mice across three age points 
using a workflow consisting of sample multiplexing by TMT, pre-fractionation by high-pH reversed-phase 
chromatography, and high-resolution mass spectrometry. The quality of the datasets was validated by the high 
reproducibility of the measurements and the low RSD values. First, we identified significantly altered proteins 
using volcano plots. Then, we constructed a co-expression network based on the WGCNA algorithm and discov-
ered two age-related modules. These two analyses consistently showed that many of the significantly upregulated 
proteins were extracellular proteins, while the significantly downregulated proteins, which were specifically 
observed in the cortex, were associated with synaptic functions.

The upregulated extracellular proteins, including ECM proteins such as collagens and laminins, were associ-
ated with glial cells, as indicated by WGCNA. One of the important roles of laminin proteins in the brain is the 
organization of the blood–brain barrier (BBB)21, and astrocyte-derived laminin is particularly important for the 
maintenance of BBB integrity22. It is known that prolonged vascular flow on the basement membrane eventually 
leads to basement membrane thickening23. Given this fact, the upregulation of laminin proteins may contribute to 
the thickening of the basement membrane at the neurovascular units. In addition, collagen type IV accumulates 
in the basal lamina of human cerebral microvessels with age24. Taken together, these changes in ECM proteins 
with aging may promote alteration of the neurovascular system. Upregulated proteins incorporated in the M6 
module included proteins with lower abundance in cognitive stability, and this is consistent with the fact that 
brain aging is a one of the risk factors of neurodegenerative diseases causing cognitive decline. Upregulation 

Figure 2.   Comparison of protein expression at 3 months old and 24 months old. (A, B) Volcano plots 
comparing protein expression at 3 months old and 24 months old in cortex and hippocampus, respectively. 
Welch’s t-tests were performed to identify significantly changed proteins (N = 6). The proteins with q-value < 0.05 
are highlighted with color. Volcano plots comparing 3 months old and 15 months old, and 15 months old and 
24 months old are shown in Figure S1. (C, D) Overlaps of significantly upregulated (C) and downregulated 
proteins (D) between cortex and hippocampus, among the commonly identified proteins in these tissues. (E, 
F) GO term (“molecular function” and “biological process”) enrichment analysis for significantly upregulated 
(blue) and downregulated proteins (orange) in cortex (E) and hippocampus (F). The top 5 terms are shown. No 
terms were significantly enriched for the downregulated proteins in hippocampus.
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of complement proteins is tightly associated with neuroinflammatory events. Notably, GFAP, a marker protein 
of activated astrocytes25, and complement protein C4b were included in the M6 extracellular region module. 
These observations presumably reflect age-dependent activation of neuroinflammation26. Excessively activated 
neuroinflammation causes synapse loss27, leading to cognitive decline, and has been observed in various neuro-
degenerative diseases, including Alzheimer’s disease and related disease models9,28,29. We also found that myelin 
sheath proteins, including MBP, were significantly enriched in the M6 module. Oligodendrocytes remain active 
during aging, and it has been established that there is a substantial increase in the number of oligodendrocytes 
over the life span of monkeys30. Furthermore, deletion of the MBP gene led to a significant reduction in cerebral 
β-amyloid levels in an Alzheimer’s disease model, Tg-3xFAD mice31. Thus, the increase of MBP may one of the 
reasons why aging increases susceptibility to Alzheimer’s disease. In summary, much of the aging-related protein 
upregulation in the brain appears to be a composite result of the changes in different glial cells, and presents 
features observed in neurodegenerative diseases and associated with cognitive decline.

We found that synaptic proteins, specifically postsynaptic density proteins, were downregulated by aging in 
the cortex. Most of the postsynaptic density proteins in the M1 synaptic module were not identified as signifi-
cantly downregulated proteins in the volcano plot analysis, highlighting the sensitivity of our approach. Intrigu-
ingly, the M1 synaptic module was not significantly conserved in the hippocampal proteome. Proteomics changes 
in the levels of postsynaptic density proteins were also observed in a tauopathy mouse model9. Assuming that 
the hippocampus is relatively resistant to the downregulation of synaptic proteins, elucidation of the underlying 
mechanisms could lead to the development of treatments for neurodegenerative diseases.

In conclusion, our deep and precise proteomic analysis allowed us to characterize age-related changes in 
the brain proteome. We believe that our dataset, together with the co-expression network, provide a basis for 
further studies to unravel the underlying mechanisms of brain aging, as well as age-related diseases such as 
Alzheimer’s disease.

Data availability
The raw data and analysis files have been deposited to the ProteomeXchange Consortium via the jPOST partner 
repository32 with the data set identifier PXD041485 (JPST001514).

Figure 3.   Weighted protein co-expression network analysis in aging cortex. (A) Module clustering 
dendrogram. Clustering was performed based on the eigenprotein values. (B) The most significantly enriched 
GO terms (“cellular component” or “biological process”). (C) Pearson correlation coefficients between each 
module eigenprotein value (Fig. S2) and age. The q-values are shown in parentheses. (D) Enrichment analysis 
for cell-type-specific marker proteins by hypergeometric test. (E) Enrichment analysis for cognitive stability-
associated proteins by hypergeometric test. (F) Module preservation analysis examining whether the protein 
co-expression networks detected in the cortex proteomes were preserved in the hippocampus proteome. The 
dashed blue line indicates a Zsummary score of 2, above which module preservation was considered significant, 
and the dashed red line indicates a Zsummary score of 10, above which module preservation was considered 
highly significant.
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