
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18271  | https://doi.org/10.1038/s41598-023-45566-6

www.nature.com/scientificreports

New gene signature 
from the dominant infiltration 
immune cell type in osteosarcoma 
predicts overall survival
Liping Gong 1, Xifeng Sun 2 & Ming Jia 3*

The immune microenvironment of osteosarcoma (OS) has been reported to play an important role in 
disease progression and prognosis. However, owing to tumor heterogeneity, it is not ideal to predict 
OS prognosis by examining only infiltrating immune cells. This work aimed to build a prognostic gene 
signature based on similarities in the immune microenvironments of OS patients. Public datasets 
were used to examine the correlated genes, and the most consistent dominant infiltrating immune 
cell type was identified. The LASSO Cox regression model was used to establish a multiple-gene risk 
prediction signature. A nine-gene prognostic signature was generated from the correlated genes 
for M0 macrophages and then proven to be effective and reliable in validation cohorts. Signature 
comparison indicated the priority of the signature. Multivariate Cox regression models indicated that 
the signature risk score is an independent prognostic factor for OS patients regardless of the Huvos 
grade in all datasets. In addition, the results of the association between the signature risk score and 
chemotherapy sensitivity also showed that there was no significant difference in the sensitivity of 
any drugs between the low- and high-risk groups. A GSEA of GO and KEGG pathways found that 
antigen processing- and presentation-related biological functions and olfactory transduction receptor 
signaling pathways have important roles in signature functioning. Our findings showed that M0 
macrophages were the dominant infiltrating immune cell type in OS and that the new gene signature 
is a promising prognostic model for OS patients.

Abbreviations
OS	� Osteosarcoma
ROC	� Receiver operating characteristic curve
I/D AUC​	� Incident/dynamic area under the curve
Cor	� Correlation coefficient
HR	� Hazard ratio
CI	� Confidence interval

Osteosarcoma (OS) is the most common primary malignant tumor in children and adolescents. However, its 
incidence rate is quite low, with approximately 3610 new cases diagnosed annually worldwide1,2. Although 
the mortality rate of OS has dramatically decreased due to neoadjuvant multiagent systemic chemotherapy, 
advanced surgical techniques, and precision radiotherapy, the survival rate is still not satisfactory, especially for 
those patients with tumor metastasis and recurrence3,4. It has been challenging to improve the prognosis of OS.

Numerous scientists have studied the gene mechanisms and treatments of OS. The development of human-
ized in vitro and humanized mouse models with similar tumor microenvironments has greatly facilitated related 
research5,6. In vitro 3D tumor models showed that MAPK, TGFβ/SMAD, PI3K/AKT, JAK/STAT, Notch and 
Hedgehog signaling transition molecules exhibit significantly increased expression7. Nigris et al. also reported 
that OS cells cultured in scaffolds showed a dramatic increase in angiogenic factors such as PDGFB, TGFB1, 

OPEN

1Department of Academic Research, The Secondary Hospital, Cheeloo College of Medicine, Shandong 
University, Jinan  250033, China. 2Department of Clinical Laboratory, The Second Hospital, Cheeloo College of 
Medicine, Shandong University, Jinan  250033, China. 3Department of Cancer Center, The Secondary Hospital, 
Cheeloo College of Medicine, Shandong University, Jinan  250033, China. *email: 14111230007@fudan.edu.cn; 
laomao285535@163.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-45566-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18271  | https://doi.org/10.1038/s41598-023-45566-6

www.nature.com/scientificreports/

VEGFA and VEGFB8. HER2, CXCR4 and HIF2α were found to be typical biomarkers involved in tumor growth 
and the homing of cancer cells to distant sites9. Humanized in vitro models of osteosarcoma also showed 
improved drug resistance to doxorubicin compared with scaffold-free spheroids10. Regarding treatment, Dimas 
et al. found that targeting the farnesylation of Ras by self-assembling nanoparticles encapsulating zoledronic 
acid simultaneously inhibited the Ras/ERK1/2/HIF-1α and Ras/Akt/mTOR axes, leading to reduced growth 
and increased intratumour necro-apoptosis and T-cell infiltration of chemo-immune-resistant osteosarcomas11. 
Targeting mitochondrial complex I prevented HIF1-MIF activation, leading to TAM accumulation and vascular 
architecture remodeling and ultimately resulting in the inhibition of osteosarcomas grown in the humanized 
model12. Immunotherapy drugs such as nivolumab have also been investigated in a humanized mouse model by 
Zheng et al., and the results showed that the nivolumab-treated group exhibited a similar primary tumor volume 
and growth rate but a significantly lower lung metastasis rate than the control group. Further analysis showed 
that CD4 + and CD8 + lymphocytes were more frequently observed in the lungs of the nivolumab-treated group 
than in the lungs of the control group, but no statistically significant differences were observed in the primary 
tumors from both groups13. All these results indicated that immunotherapy targeting the tumor microenviron-
ment may be a promising strategy for osteosarcoma treatment.

The immune microenvironment of OS has been investigated since the accidental discovery of tumor responses 
following bacterial toxin treatment. Its functions are diverse and complex and have not been fully understood 
until now14,15. Previous results showed that osteosarcomas are infiltrated mainly by macrophages and T cells16–18. 
Studies have shown that high infiltration levels of macrophages and CD8 + T cells are associated with reduced 
metastasis and improved survival in OS19–21. In contrast, high infiltration levels of antigen-presenting cells have 
been reported to lead to unfavorable outcomes22. In recent years, several studies have focused on the detailed 
molecular mechanisms; for example, Wang et al. found that OS tumor cells could release PD-L1 to promote the 
metastatic process by inhibiting the immune response23. Troyer et al. reported that indoleamine dioxygenase 
could inhibit dendritic cells from producing neoantigens, thus indirectly leading to immune escape24. A previ-
ous study also reported that all-trans retinoic acid could inhibit M2 polarization of macrophages to repress 
the OS lung metastatic process25. In addition, the VEGF, IL-10A, TGF-β, and STAT3 pathways have also been 
found to facilitate the immunosuppressive microenvironment by influencing bone marrow-derived suppressor 
cells, macrophages and stromal fibroblasts15. Together, these data highlight the important role of the immune 
microenvironment in patients with OS. However, the mechanism by which infiltrating immune cells regulate 
the pathogenesis and development of OS remains largely unknown. In addition, it is not ideal to predict the 
prognosis and therapeutic response solely using infiltrating immune cells of OS patients. With the appearance 
of high-dimensional datasets and advanced bioinformatics algorithms26–28, it is now possible to analyze the 
comprehensive interactions between biological phenotypes and the tumor immune microenvironment, thus 
facilitating research on the molecular characteristics affecting immune cell infiltration, the response to immu-
notherapy, and the prognosis of OS patients.

In our study, we gained a deeper understanding of the OS immune microenvironment by utilizing OS cohorts 
from four public databases, which showed that M0 macrophages were the most consistently infiltrating immune 
cell type. We then screened for genes correlated with M0 macrophages in the Therapeutically Applicable Research 
to Generate Effective Treatments (TARGET) and GSE21257 datasets under the supposition that dominant 
immune cells have more vital effects on OS prognosis. A prognostic immune signature was built by the least 
absolute shrinkage and selection operator (LASSO) Cox model using the abovementioned M0 macrophage-
correlated genes from the TARGET training cohort. The predictive values of this model were further validated 
in two other independent testing cohorts and verified by comparing them to previous prognostic models. Then, 
we attempted to identify the related signaling pathways, intrinsic molecular subtypes, hot immune-targeted gene 
expression, and distributions of immune cells between each risk score subtype. Furthermore, the relationship 
between the risk score and predicted chemotherapy sensitivity was also assessed.

Methods
Data collection
Gene chip expression data and the clinical information of OS patients from the TARGET database were obtained 
from the website https://​ocg.​cancer.​gov/​progr​ams/​target/​data-​matrix on May 1, 2022. Osteosarcoma was used 
as the only key word to select suitable datasets published up to May 2022 for our study on the Gene Expression 
Omnibus (GEO) datasets website (https://​www.​ncbi.​nlm.​nih.​gov/​gds/). Then, the datasets were searched by the 
following inclusion criteria: (1) the diagnoses were pathologically confirmed; (2) the dataset had Homo sapi-
ens samples; (3) the platform contained whole-genome information; (4) the dataset included patient survival 
data; and (5) the sample size of the datasets was more than 30. After that, only the GSE21257, GSE16091, and 
GSE39055 datasets were included in our study. Therefore, the normalized mRNA expression data and survival 
data of the above datasets were downloaded from GEO (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​
GSE21​257, https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE16​091, https://​www.​ncbi.​nlm.​nih.​gov/​
geo/​query/​acc.​cgi?​acc=​GSE39​055).

If the same patient provided two or more tumor samples to those datasets, only the data corresponding to 
the primary lesion were selected according to the sample numbers. All patients were included in our study. 
Gene symbols were extracted from the provided documents from those dataset websites. We conducted signal 
intensity normalization across the arrays of the above datasets using the normalizeBetweenArrays function from 
the limma package in R software.

https://ocg.cancer.gov/programs/target/data-matrix
https://www.ncbi.nlm.nih.gov/gds/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21257
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21257
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16091
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39055
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39055
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Tumor immune cell infiltration calculation
The infiltration levels of 22 immune cells in the TARGET, GSE21257, GSE16091, and GSE39055 datasets were 
quantified by the “CIBERSORT” R package using the 1,000 permutations method. The reference immune cell 
signatures were downloaded from the Supplementary Information on the article’s website (https://​www.​nature.​
com/​artic​les/​nmeth.​3337#​MOESM​207)29–31. The ESTIMATE score, stromal score, and immune score of each 
patient were assessed by the “ESTIMATE” R package using the gene expression data from each patient sample32. 
All parameters in the R equation throughout the calculation process were set to default.

M0 macrophage correlated gene screening
This section attempts to select genes associated with M0 macrophages. Pearson’s correlation analysis was used 
to search for M0 macrophage-correlated genes with cutoffs of |correlation coefficient|> 0.3 and P value < 0.05 in 
the TARGET and GSE21257 datasets, which have a relatively large sample size. Next, we merged those correlated 
genes from the two datasets to obtain a full correlated gene list.

Gene signature construction and validation
Gene signatures were generated by inputting M0 macrophage-correlated genes into the LASSO Cox regression 
model using the TARGET dataset. The “glmnet” package in R was used to complete the regression process. After 
the genes were selected, a multivariate Cox analysis was used to calculate the corresponding coefficients. The 
signature risk score was calculated by the sum of the products of each gene and its corresponding coefficients as 
follows: score = (CPE*0.7021) + (FHL5*− 0.9794) + (GBP1*− 0.4718) + (GNLY*0.9393) + (GPR82*− 1.8384) + (IL
18RAP*− 1.9630) + (LILRA2*0.4310) + (NDRG4*− 0.7661) + (PLB1*− 0.6822). Moreover, the risk scores for the 
GSE21257 and GSE39055 datasets were also calculated using the same method with the coefficients derived from 
the TCGA dataset for validation. OS patients from each dataset were divided into two groups (low- and high-risk 
groups) according to the median value of the risk score to maximize the statistical power and provide the most 
reliable results based on a fixed sample size in those databases33. An overall survival analysis between the two 
groups was conducted using Kaplan–Meier curves with Wilcoxon log-rank tests. Multivariate Cox regression 
models were applied to test the independent predictive value of our signature. The prognostic accuracy of the 
risk score in different datasets was determined using the time-dependent receiver operating characteristic curve 
(ROC) and incident/dynamic (I/D) area under the curve (AUC) through the “timeROC” and “risksetROC” 
packages in R separately34.

Gene signature comparison
We screened the studies using the keyword “gene signature prognosis osteosarcoma” on PubMed. In addition, 
the inclusion criteria were as follows: (1) the journal impact factor was more than 5 and had a good reputation; 
(2) the online publication date range was from March 01, 2020, to March 01, 2022; and (3) the gene signature was 
constructed by messenger RNA to be easily validated in other datasets. After the studies were selected, the gene 
signatures were recalculated by a multivariate Cox proportional hazards model using data in a training cohort. 
Kaplan–Meier curves, time-dependent ROCs and I/D AUCs of the gene signatures using validation cohorts were 
chosen to compare the prognostic accuracy.

Gene set enrichment analysis (GSEA)
GSEA was launched to study the biological functions of our gene signature in the TARGET, GSE21257, and 
GSE39055 datasets using the “clusterProfiler” R package based on the GO and KEGG analyses individually. The 
GO functions and KEGG pathways with P values less than 0.05 in each dataset were merged. Finally, the biologi-
cal functions with consistent positive or negative values of enrichmentScore were reserved to find the real differ-
ence of GO functions and KEGG pathways between low- and high-risk groups discriminated by our signatures.

Correlation between signature risk score and chemotherapy sensitivity
The IC50 values of chemotherapy drugs (bleomycin, cisplatin, doxorubicin, etoposide, and methotrexate) in each 
osteosarcoma sample in the TARGET, GSE21257, and GSE39055 datasets were accessed through the “pRRo-
phetic” package in R35, which was built based on the Genomics of Drug Sensitivity in Cancer database (www.​
cance​rRxge​ne.​org)36. Then, the samples were classified into low- or high-risk groups by the median of our gene 
signature risk score. Finally, the IC50 values of chemotherapy drugs between different groups were analyzed by 
the Mann‒Whitney rank test. A P value < 0.05 was defined as statistically significant.

Statistical analysis
We conducted all statistical analyses with R version 4.0.5 (R Foundation for Statistical Computing, Vienna, 
Austria) and GraphPad Prism 6.01 (GraphPad Software, Inc., San Diego, CA, USA). OS patients were divided 
into two groups by the median of our signature risk score in the TARGET, GSE21257, and GSE39055 datasets. 
Violin plots were performed in Hiplot (https://​hiplot.​com.​cn), a comprehensive web platform for scientific data 
visualization. The comparison of 22 immune cells, immunotherapy-targeted genes, ESTIMATE scores, stromal 
scores, and immune scores between low- and high-risk groups were analyzed using a Mann‒Whitney rank test. 
Unless otherwise specified, a P value < 0.05 was defined as statistically significant.

Ethics approval
Our study is based on open-source data (TRGET and GEO). Ethical review and approval were not required for 
the study on human participants in accordance with the local legislation and institutional requirements. 

https://www.nature.com/articles/nmeth.3337#MOESM207
https://www.nature.com/articles/nmeth.3337#MOESM207
http://www.cancerRxgene.org
http://www.cancerRxgene.org
https://hiplot.com.cn
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Consent to participate
All methods were carried out in accordance with the relevant guidelines and regulations.

Results
Clinical characteristics of the studied datasets
Figure 1 shows the flowchart of this study. The clinical characteristics of OS patients in the TARGET, GSE21257, 
GSE16091, and GSE39055 datasets are shown in Table 1. In the TARGET and GSE21257 datasets, the age, 
sex, tumor location, and metastatic status at diagnosis were similar. The GSE21257 dataset contained the most 
detailed clinical information except for radiotherapy treatment and had a similar Huvos grade distribution as 
the GSE39055 dataset. GSEGSE16091 only included survival information. The median overall time and survival 
curves (Supplemental Figure 1) were close to each other in all datasets.

Estimation of tumor immune cell infiltration in osteosarcoma
To obtain the landscape of tumor immune cell infiltration, we applied the CIBERSORT algorithm to the selected 
datasets. As shown in Fig. 2, the major immune cells in the TARGET and GSE16091 datasets were CD8 + T cells 
and M0 and M2 macrophages, while the major immune cells in the GSE21257 dataset were M0 and M2 mac-
rophages. For the GSE39055 dataset, M0 macrophages were the most dominant infiltrating immune cells. Other 
immune cell infiltration levels were quite low in all datasets. In general, M0 macrophages were the dominant 
immune cells across all datasets. As shown in Supplemental Figure 1, the survival difference between each dataset 
was not significant, and we believe that M0 macrophages are influential on the overall survival of osteosarcoma. 
Therefore, the M0 macrophage-associated genes were screened by the methods described in the “Methods and 
Materials”, and the selected genes are shown in Supplemental Table 1.

Construction and validation of prognostic gene signature for osteosarcoma
The above selected genes were used to build a prognostic signature in OS patients through LASSO Cox regression 
analysis by the TARGET dataset with 86 patients as the discovery cohort (Fig. 3A). An optimal 9-gene prognostic 
signature was made (Fig. 3B,C)). The biological functions and the coefficients of signature genes are shown in 
Table 2. The signature risk scores are equal to the sum of the product of the expression value and coefficient of 
each gene. We chose only the GSE21257 and GSE39055 datasets as the validation cohort to measure the prognos-
tic value of the signature-based risk score, and the GSE16091 dataset was excluded owing to the absence of gene 
expression data for GPR82 and PLB1. We used the log-rank test to study the association of the risk score with 
survival in the TARGET dataset. As expected, high-risk patients had significantly shorter survival than low-risk 
patients (log-rank test, P < 0.0001) (Fig. 3D). The same tendency was confirmed in the GSE21257 and GSE39055 

Figure 1.   A schematic diagram of dataset analysis.
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datasets (log-rank test, P = 0.034 and P = 0.031) (Fig. 4A,B). In addition, the AUCs of the time-dependent ROCs 
including the signature risk score and selected clinical factors (age, sex, and Huvos grade) reached 0.793, 0.885, 
and 0.839 for 1-, 3-, and 5-year OS in the TARGET dataset, respectively, which were higher than the AUCs of 
the time-dependent ROCs including only clinical factors (Fig. 5A, B, C). Similar results were also observed in 
the GSE21257 and GSE39055 datasets (Fig. 5E,F,G,I,J,K).

We compared the C index of I/D AUC to assess the discriminative accuracy of the prediction model with and 
without the signature risk score. The results showed that the C index increased to 0.831 (95% CI, 0.750–0.868 

Table 1.   Characteristics of OS patients in the TARGET, GSE21257, GSE16091 and GSE39055 datasets.

Variables

TARGET GSE21257 GSE16091 GSE39055

Num Percent (%) Num Percent (%) Num Percent (%) Num Percent (%)

All 89 100.0 53 100.0 34 100.0 37 100.0

Age

   ≤ 15 48 53.9 21 39.6 29 78.4

   > 15 41 46.1 32 60.4 8 21.6

 Unknown 0 0.0 0 0.0 34 100.0 0 0.0

Sex

 Male 51 57.3 34 64.2 20 54.1

 Female 38 42.7 19 35.8 17 45.9

 Unknown 0 0.0 0 0.0 34 100.0 0 0.0

Tumor location

 Femur 41 46.1 27 50.9

 Fibula 8 9.0 2 3.8

 Humerus 4 4.5 8 15.1

 Tibia 22 24.7 15 28.3

 Others 14 15.7 0 0.0

 Unknown 0 0.0 1 1.9 34 100.0 37 100.0

Histological subtype

 Chondroblastic 6 11.3

 Fibroblastic 5 9.4

 Osteoblastic 32 60.4

 Others 10 18.9

 Unknown 89 100.0 0 0.0 34 100.0 37 100.0

Status at diagnosis

 Nonmetastatic 66 74.2 39 73.6

 Metastatic 23 25.8 14 26.4

 Unknown 0 0.0 0 0.0 34 100.0 37 100.0

Huvos grade

 I–II 19 21.3 29 54.7 24 64.9

 III–IV 17 19.1 18 34.0 13 35.1

 Unknown 53 59.6 6 11.3 34 100.0 0 0.0

Definitive surgery

 Yes 46 51.7

 No 0 0.0

 Unknown 43 48.3 53 100.0 34 100.0 37 100.0

Status

 Death 30 33.7 23 43.4 15 44.1 10 27.0

 Censored 57 64.0 30 56.6 19 55.9 27 73.0

 Unknown 2 2.2 0 0.0 0 0.0 0 0.0
59

Survival time (months)

 Known 86 96.6 53 100.0 34 100.0 36 97.3

 Unknown 3 3.4 0 0.0 0 0.0 1 2.7

 Median 128.7 189 125.1 151.0

Follow-up time (months)

 Median 61.5 91 96.8 59

 Range 2.5–194.7 4.0–246.0 0.8–161.2 2.7–200.9
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P < 0.0001), 0.690 (95% CI, 0.527–0.754; P < 0.0001), and 0.775 (95% CI, 0.584–0.840; P < 0.0001) when the 
signature risk score was added to the prognostic model in the TARGET, GSE21257, and GSE39055 datasets 
(Fig. 5D,H,L). Figure 3E and Fig. 4C,D show the distribution of signature gene expression profiles and survival 
statuses in different risk score groups for OS in all datasets. Figure 3F and Fig. 4E,F show that the high-risk score 
was significantly associated with a risk of increased mortality in OS patients in the multivariate Cox regres-
sion models after adjusting for age, sex, and Huvos grade in all datasets (HR = 51.871, 3.204 and 6.663, 95% 
CI = 6.898–391.183, 1.066–9.637 and 1.227–36.171, P < 0.001, = 0.038 and = 0.028, respectively), which indicates 
that the signature risk score is an independent prognostic factor for OS patients.

Investigation into the differences in immune cells, immunotherapy‑targeted genes, and 
immune scores between high‑ and low‑risk groups
As the signature risk score reflects the tumor immune activity of OS, we further investigated the differences 
in immune cells, immunotherapy-targeted genes, and immune scores between different risk groups from all 
datasets. The immune cell infiltration results were inconsistent between the three datasets (Supplemental Fig-
ure 2). M0 macrophages were found to be higher in high-risk groups than in low-risk groups in the TARGET 
and GSE21257 datasets (Fig. 6A, B). Activated dendritic cells were found to be lower in the high-risk groups 
than in the low-risk groups in the GSE21257 and GSE35099 datasets (Fig. 6B, C). For the results of six hot 
immunotherapy-targeted genes and immune scores, no significant differences were found in the GSE35099 

Figure 2.   Estimation of tumor immune cell infiltration in osteosarcoma by the CIBERSORT algorithm. The 
percentage of infiltration of 22 immune cell types in the TARGET (A), GSE21257 (B), GSE16091 (C), and 
GSE39055 (D) datasets showed that M0 macrophages were the dominant immune cell type.
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datasets (6F, I), which may be due to its relatively small sample size. TIM-3, LAG-3 and all immune scores were 
all found to be lower in the high-risk groups than in the low-risk groups in the TARGET and GSE21257 data-
sets (Fig. 6D,E,G,H). In summary, our signature risk score may reflect the immune activity of osteosarcoma. In 
addition, LAG3 may be the most effective immunotherapy target because its expression was relatively high in 
all datasets (Fig. 6D,E,F). Owing to the low incidence rate of OS, the OS datasets did not contain large sample 
sizes. Therefore, adjustments for multiple testing were not made to reserve important clues.

Comparison of gene signatures
Thirteen previously reported studies were included in the comparison after the selection process, which are 
shown in Table 3. Kaplan–Meier curves (Fig. 7) and univariate Cox models (Table 4) showed that only the dif-
ference in overall survival for the nine-gene signature model was significant in the training and testing cohorts. 
Additionally, the AUCs of the time-dependent ROCs of the signature risk score were also found to be greater 

Figure 3.   Construction of a prognostic gene signature. (A) Venn diagram of the M0 macrophage-associated 
genes in the TARGET and GSE21257 datasets. The numbers in each area represent the gene numbers in each 
group. (B) Cross-validation for tuning parameter screening upon LASSO regression analysis. (C) Screening 
of the optimal parameter (lambda) at which the vertical lines were drawn. (D) Kaplan‒Meier overall survival 
analysis of the gene signature risk score in OS of the TARGET dataset. (E) Distribution of signature gene 
expression profiles along with survival status in different signature risk score groups in TARGET datasets. (F) 
Forest plot showing the results of multiple factors in the Cox regression analysis of the gene signature risk score 
with other clinical characteristics in OS of the TARGET dataset.

Table 2.   Prognostic genes obtained from the LASSO Cox regression model.

Gene symbol Description Risk coefficient

CPE Carboxypeptidase E 0.7021

FHL5 Four and a half LIM domains 5  − 0.9794

GBP1 Guanylate binding protein 1  − 0.4718

GNLY Granulysin 0.9393

GPR82 G protein-coupled receptor 82  − 1.8384

IL18RAP Interleukin 18 receptor accessory protein  − 1.963

LILRA2 Leukocyte immunoglobulin like receptor A2 0.431

NDRG4 NDRG family member 4  − 0.7661

PLB1 Phospholipase B1  − 0.6822
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than the AUCs of the time-dependent ROCs of previous signatures in the TARGET and GSE39055 datasets 
(Fig. 8). The results showed that our nine-gene prognostic signature is more robust than previously reported 
gene signatures.

Identification of signature‑associated biological functions and pathways in OS
The tumor sample tissues of the three datasets were dichotomized into high- and low-risk groups according to 
the median of the nine-gene signature risk score. A GSEA was performed to identify the signature-associated 
biological functions and signaling pathways, and then the results from all datasets were merged to attain reliable 
results. We found that the olfactory transduction receptor signaling pathway and its related biological func-
tions were downregulated in high-risk groups compared to low-risk groups (Fig. 9). Antigen processing- and 

Figure 4.   Validation of the nine-gene prognostic signature. Kaplan‒Meier overall survival analysis of the 
gene signature risk score in OS from the GSE21257 (A) and GSE39055 (B) datasets. Distribution of signature 
gene expression profiles along with survival status in different signature risk score groups in the GSE21257 (C) 
and GSE39055 (D) datasets. Forest plot shows the results of multiple factors in the Cox regression analysis of 
the gene signature risk score with other clinical characteristics in overall survival from the GSE21257 (E) and 
GSE39055 (F) datasets.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18271  | https://doi.org/10.1038/s41598-023-45566-6

www.nature.com/scientificreports/

presentation-related biological functions were also found to be upregulated in high-risk groups compared with 
low-risk groups. However, none of the related signaling pathways were found to be significantly correlated with 
different risk groups. These results indicate that the olfactory transduction receptor signaling pathway may play 
a role in the difference between signature-predicted outcomes.

Figure 5.   Prognostic values of the signature risk score in the training and validation cohorts. Time-dependent 
ROCs at 1 (A), 3 (B), and 5 (C) years and I/D AUC (D) for OS in the TARGET dataset. Time-dependent 
ROCs at 1 (E), 3 (F), and 5 (G) years and I/D AUC (H) for OS in the GSE21257 dataset. Time-dependent 
ROCs at 1 (I), 3 (J), and 5 (K) years and I/D AUC (L) for OS in the GSE39055 dataset. ROC, receiver operating 
characteristic curve; I/D AUC, incident/dynamic area under the curve.



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18271  | https://doi.org/10.1038/s41598-023-45566-6

www.nature.com/scientificreports/

Signature risk scores and chemotherapy sensitivity
To investigate whether the immune-correlated gene signature is an independent prognostic factor of OS patients, 
we need to adjust it based on previously reported important prognostic factors, including histologic response to 
chemotherapy and presence of metastases. Supplemental Figure 3 shows the results and indicates that our signa-
ture is an independent OS prognostic factor. However, not all target patients received neoadjuvant chemotherapy; 
thus, this group of patients lacked Huvos grade information. To validate the independence of our signature, 
we explored the relationship between the risk score and chemotherapy sensitivity. IC50 was calculated using 
the “pRRophetic” R package to predict the treatment response to chemotherapy drugs (bleomycin, cisplatin, 
doxorubicin, etoposide, and methotrexate). As we anticipated, there was no significant difference in the sensitiv-
ity of all drugs in the low- and high-risk groups (Fig. 10). The results are consistent with the multivariate Cox 
analysis. GSEA also did not reveal any biological functions or pathways responsible for chemotherapy resistance. 
Therefore, the overall survival difference predicted by our signature is probably due to the various backgrounds 
of the immune microenvironment of OS.

Discussion
Although OS is the most common primary bone cancer in children and young adults, it is a very rare cancer, 
with approximately 400 new cases diagnosed annually in the USA37. The incidence peaks in adolescence and in 
old age38. The most common early symptom is ostalgia, which is easily confused with growing pain. The most 
common location of OS is in the metaphysis around the knee joint, followed by the proximal tibia and humerus. 

Figure 6.   Association between immune cell infiltration levels, immunotherapy-targeted gene expression, 
ESTIMATE immune scores, and signature risk score of OS. The immune cell infiltration types found to be 
significantly associated with the signature risk score of OS in the TARGET (A), GSE21257 (B), and GSE39055 
(C) datasets. Association between immunotherapy-targeted gene expression and the signature risk score of OS 
in the TARGET (D), GSE21257 (E), and GSE39055 (F) datasets. Association between ESTIMATE immune 
scores and signature risk scores of OS in the TARGET (G), GSE21257 (H), and GSE39055 (I) datasets.



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18271  | https://doi.org/10.1038/s41598-023-45566-6

www.nature.com/scientificreports/

The majority of patients are therefore diagnosed with localized disease. Among the patients in the progression 
stage, the lungs and other bones are the most common metastatic locations39. The prognostic factors include 
tumor site, tumor size, tumor resectability, histologic response to chemotherapy, and presence of metastases40–42. 
Chemotherapy consisting of high-dose methotrexate and other drugs before and after definitive surgery has 
been used as the standard treatment strategy for localized osteosarcoma over the past decades43–46. In patients 
with relapsed and/or metastatic osteosarcoma, surgery and chemotherapy have some effect3,47–49. However, the 
prognosis of those patients was a median event-free survival of less than 4 months, which is unsatisfactory50. An 
increased understanding of the disease from well-annotated tissue banks through newly developed technolo-
gies has revealed its heterogeneity and molecular aberrations, which offer new insight into targeted therapy and 
immunotherapy.

Recently, immunotherapy has facilitated a revolution in many kinds of solid malignant tumor treatments. 
Although its efficiency is not so high, it can lead to considerable survival benefits among responders51. Osteo-
sarcoma humanized in vitro and humanized mouse models with similar tumor microenvironments in several 
previous studies have indicated that immunotherapy targeting the tumor microenvironment may be a promis-
ing strategy for osteosarcoma treatment11–13. Studies aiming at finding the precise immune response population 
have also suggested that the tumor immune microenvironment is the critical factor52. Therefore, it is essential to 
better understand and characterize the immune status of OS for the precise prediction of the immune response 
and the development of immunotherapy. The OS immune microenvironment consists of a network of immune 
cells that function as ideal grounds for tumor proliferation and progression15,53.

Our study first found that M0 macrophages were the dominant immune cells in the TARGET and GEO 
databases using the CIBERSORT algorithm. However, the direct association between M0 macrophage infiltra-
tion and the overall survival of OS patients was not consistent in different independent datasets (Supplemental 
Figure 4). Based on the hypothesis that the dominant immune cells play the most important role in the OS 
microenvironment, we screened for genes associated with M0 macrophages and built a new nine-gene signature 
for OS prognosis using clinical information from the TARGET dataset. In addition, the prognostic signature was 
proven to be effective and reliable in validation cohorts consisting of two independent GEO datasets. Previously 
published prognostic gene signatures were compared with the newly discovered gene signature using publicly 
available datasets. The results showed that no signatures besides ours offer a precise prediction value of OS 
survival in all datasets, indicating the priority of the nine-gene signature. Multivariate Cox regression models 
indicate that the signature risk score is an independent prognostic factor for OS patients regardless of age, sex, 
or Huvos grade in all datasets. Furthermore, the association between the signature risk score and chemotherapy 
sensitivity also showed that there was no significant difference in the sensitivity of all drugs between the low- and 
high-risk groups. Therefore, the different outcomes predicted by our signature are probably due to the various 
immune microenvironments of OS. To our knowledge, this is the first time a study has been conducted on the 
dominant infiltrating immune cell profiles in several datasets to find similarities between OS tumor immune 
microenvironments. As we expected, a robust gene signature was generated based on the discovered similarities.

M0 macrophages are slightly elongated unstimulated macrophages, which are considered to be theoreti-
cally inactivated54. Previous studies have suggested that M0 macrophages are associated with poor prognosis 
and metastatic disease in lung adenocarcinoma55,56, hepatocellular carcinoma57, osteosarcoma53, pancreatic 
adenocarcinoma58, melanoma59, colorectal cancer60, gastric cancer61, and glioblastoma62. Recent studies have 
shown that new tumor-infiltrated M0 macrophages induce pancreatic cancer cell death via TNF-α secretion, 
while M1, M2, and tumor-associated macrophages do not harbor antitumorigenic activities63. However, mes-
enchymal stem cells could activate STAT6 and induce M2 polarization through disease progression, leading to 
anti-inflammatory functions64, which may explain the relationship between high M0 macrophage infiltration 
and poor prognosis.

Table 3.   Candidate research for comparison to our signature.

Studies Published online date PMID Gene signature composition

Fu1 et al 2021 Mar 18 33,816,483 DCN, P4HA1

Wang et al 2021 Jul 16 34,336,848 FPR1, FCER1G

Li et al 2021 Jul 14 34,261,456 MMP9, CD74, SPP1, CXCL12, TYROBP, FCER1G, HCLS1, ARHGDIB, LAPTM5, 
IGF1R

Liu et al 2021 Aug 92 34,342,651 PSMC4, CXCL13, GBP2, CCL2, PPARG, CD79A, BCL10, FPR1, BMP8B, CORT, 
JAG2, STC2, MTNR1B, TNFRSF21

Zhang et al 2021 Aug 26 34,513,835 AMBRA1, MYC, VEGFA

Fan et al 2021 Sep 06 34,552,929 ZFP90, UHRF2, SELPLG, PLD3, PLCB4, IFNGR1, DLEU2, ATP6V1E1, ANXA5

Lei et al 2021 Sep 21 34,506,683 ALOX15B, ATG7, CBS, DPP4, EGLN1, G6PD, MUC1, MYC, PEBP1, PGD, 
SLC39A8, SOCS1

Xiao et al 2021 Oct 18 34,733,853 DLL1, EOMES, ERCC2, FOLR1, MEF2C, PSMA5, PTN, SPI1

Fu2 et al 2021 Dec 09 34,916,821 MYC, CLEC5A

Shi et al 2021 Dec 11 34,894,177 MYC, COL13A1, UHRF2, MT1A, ACTB, GBP1

Wu et al 2022 Jan 05 35,071,320 EGFR, CAVIN1, MXI1, SDC3,TES

Feng et al 2022 Jan 20 35,127,816 WAS, IFNGR1, PILRA, TMEM86A, CXCL16, CTNNBIP1, APOL6

Chen et al 2022 May 14 35,568,866 CSTF2, ADAR, WTAP
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Our prognostic signature consisted of nine genes (Table 2): CPE, FHL5, GBP1, GNLY, GPR82, IL18RAP, 
LILRA2, NDRG4, and PLB1. In our research, CPE was determined to be an unfavorable biomarker for OS prog-
nosis, while PLB1 exhibited protective effects in OS (Supplemental Figure 5). CPE encodes carboxypeptidase E, 
which belongs to the carboxypeptidase family and is reported to be involved in the biosynthesis of hormone and 
neurotransmitter peptides and to play nonenzymatic roles in the endocrine and nervous systems65. However, 
previous studies have also proven that CPE plays various roles in various cancers66. Its N-terminal truncated 
protein has been found to be expressed in multiple cancers, regulate metastatic gene expression, and encompass 
different signaling pathways67. CPE has been reported to reduce aerobic glycolysis and migration in glioblas-
toma cells68. In addition, CPE may promote migration and invasiveness in various other cancers, such as lung 

Figure 7.   Comparisons of the gene signature with previously published gene signatures in the TARGET, 
GSE21257, and GSE39055 datasets using the Kaplan–Meier estimator. The results are in bold and considered 
significant if the P value < 0.05.
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cancer69, pancreatic cancer70, and cervical cancer71. In osteosarcoma, Fan et al. found that CPE-variant proteins 
increase invasiveness and promote epithelial-mesenchymal transition through the activation of the Wnt pathway 
in OS cells72. CPE also modulates immunity. Bar et al. found that it regulates immune homeostasis and inhibits 
inflammation73. Sanjay also reported that it enhances the innate immunity of the male reproductive tract74. 
Therefore, whether CPE plays a role in cancer immunity needs to be discussed further. PLB1 has seldom been 
studied in cancer. Its rearrangement with ALK has been found in lung cancer75, which indicates a sensitivity to 
targeted therapy76. Lin et al. reported that overexpressed PLB1 antigens cause high infiltration of immune cells 
and a favorable prognosis in glioblastoma patients77. PLB1 is commonly discussed in yeast and was found to be 
essential for the survival and virulence of Cryptococcus78 and Candida albicans79.

Recently, with the appearance of advanced bioinformatics algorithms, numerous gene signatures have been 
built from public online datasets. However, the universalism of those signatures was largely undetected or only 
detected in one independent cohort. Regarding the limitations of previous findings, the nine-gene signatures 
were summarized from the generality of several datasets. To determine the priority of our hypothesis, we included 
previous potential survival-related OS signatures from recent studies published in journals with a high influence 
and good reputation for comparison80–92. As we expected, after validating them in the training and validation 
cohorts, the nine-gene signature was the only signature showing a consistent predictive value for OS survival. 
Among the previous studies, the signatures by Fan et al. and Feng et al. could accurately predict the prognosis 
of OS in the TARGET and GSE21257 datasets. However, in the GSE39055 dataset, the lines of different groups 
predicted by Feng’s signature in the K‒M plot were very close, while the survival difference of groups predicted 
by Fan’s signature showed a reverse tendency compared with other datasets.

A GSEA of GO and KEGG pathways found that antigen processing- and presentation-related biological 
functions and olfactory transduction receptor signaling pathways play important roles in signature functioning. 
Numerous studies have proven that antigen processing- and presentation-related biological functions are key 
functions in the cancer immune response process and are mainly carried out by dendritic cells, macrophages and 
B cells93–95. These results indicate the important role of the three antigen-presenting cells and cancer immunity 
in the prognosis of OS, which is consistent with our hypothesis. Regarding the olfactory transduction recep-
tor signaling pathway, a previous study reported that olfactory receptors provide innate and adaptive immune 
responses during the virus entry process96. Orecchioni et al. recently found that immune cells, such as vascular 
macrophages, express olfactory receptors, which induce interleukin-1β secretion, leading to inflammation97. 
Nevertheless, there have not been any studies that have reported any association between the olfactory transduc-
tion receptor signaling pathway and cancer immunity thus far.

Our analysis also showed the homogeneity and heterogeneity of the osteosarcoma immune microenviron-
ment. M0 macrophages were the dominant infiltrating immune cell type in all datasets. In addition, the infiltra-
tion of M2 macrophages, which have been reported to play an immune repressive role in cancer98, was similar to 
that of M0 macrophages in the three datasets, except for the GSE39055 dataset. There were also several infiltrated 
CD8 + T cells in the TARGET and GSE16091 datasets. Other immune cell infiltration levels were quite low. The 
above results may partly explain the unsatisfactory response to current immunotherapy in osteosarcoma. Most 
of the immune microenvironment of osteosarcoma tissues consists of immune repressive M2 macrophages or 
nonfunctional M0 macrophages. Patients with tumor tissues infiltrated with several CD8 + T cells may receive 
survival benefits from immunotherapy. Given the large proportion of M0 and M2 macrophages in osteosarcoma 
immune cells, inducing M0 or M2 macrophages toward the M1 phenotype to promote the antitumor immune 
response may be a promising treatment strategy for OS patients.

Table 4.   Comparison of the nine-gene signature with previous published models in a univariate Cox analysis. 
CI confidence interval, HR hazard ratio, P P value of Cox regression model. The results were in bold if P < 0.05.

Variables

TARGET-OS GSE21257 GSE39055

HR Lower 95% CI
Upper 95% 
CI P HR

Lower 95% 
CI

Upper 95% 
CI P HR

Lower 95% 
CI

Upper 95% 
CI P

Our study 51.711 6.991 382.500 1.112E-04 2.631 1.068 6.481 3.550E-02 5.340 1.093 26.102 3.852E-02

Fu1 et al 3.131 1.377 7.119 6.475E-03 1.582 0.690 3.627 2.786E-01 1.336 0.207 2.706 6.589E-01

Wang et al 2.932 1.291 6.661 1.018E-02 2.104 0.904 4.895 8.433E-02 0.581 0.163 2.074 4.033E-01

Li et al 3.027 1.331 6.884 8.222E-03 1.669 0.723 3.853 2.301E-01 3.028 0.778 11.787 1.101E-01

Liu et al 11.642 3.506 38.652 6.095E-05 0.897 0.395 2.036 7.947E-01 0.973 0.279 3.399 9.664E-01

Zhang et al 3.940 1.671 9.290 1.734E-03 1.763 0.768 4.050 1.812E-01 0.763 0.373 4.608 6.730E-01

Fan et al 8.338 2.884 24.104 9.021E-05 3.794 1.506 9.557 4.680E-03 2.058 0.124 1.911 3.015E-01

Lei et al 5.524 2.099 14.541 5.377E-04 1.083 0.476 2.462 8.492E-01 1.270 0.361 4.469 7.096E-01

Xiao et al 6.976 2.638 18.446 9.020E-05 1.828 0.789 4.236 1.594E-01 1.953 0.142 1.848 3.068E-01

Fu2 et al 4.772 1.931 11.789 7.084E-04 2.245 0.963 5.232 6.111E-02 1.296 0.368 4.560 6.860E-01

Shi et al 9.765 3.368 28.314 2.722E-05 1.842 0.797 4.257 1.532E-01 1.278 0.217 2.823 7.081E-01

Wu et al 13.190 3.968 43.839 2.562E-05 1.087 0.478 2.472 8.429E-01 0.520 0.133 2.037 3.476E-01

Feng et al 4.073 1.722 9.633 1.388E-03 3.136 1.313 7.488 1.007E-02 0.929 0.232 3.718 9.169E-01

Chen et al 1.728 0.815 3.662 1.538E-01 0.588 0.255 1.355 2.126E-01 1.173 0.333 4.138 8.037E-01



14

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18271  | https://doi.org/10.1038/s41598-023-45566-6

www.nature.com/scientificreports/

There are several limitations in the present study. First, the prognostic signature was constructed from public 
online retrospective data with relatively small sample sizes. It may be improved by future OS studies with larger 
sample sizes. Second, the predictive value of the signature needs to be confirmed by future prospective stud-
ies. Third, the mechanism and function of a high infiltration of M0 macrophages in the OS microenvironment 
is still unclear and needs to be clarified in the future. Fourth, many prognostic factors were unavailable in the 
datasets used, and as such, the independence of the signature could not be fully determined. In addition, there 
are no wet-lab experimental data supporting the roles of signature genes and the olfactory transduction receptor 

Figure 8.   Comparisons of the gene signature with previously published gene signatures in the TARGET, 
GSE21257, and GSE39055 datasets using time-dependent ROC curves.
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signaling pathway in immune infiltration and other biological processes. Therefore, further research is needed 
to investigate the mechanisms.

Conclusions
In the present study, we built a new and robust nine-gene signature based on the hypothesis that the dominant 
infiltrated immune cells play the most important role in OS progression. The newly defined gene signature was 
found to be significantly associated with OS prognosis in all datasets. In addition, we proved the advantage of 
the signature by comparing it to previously published signatures. Antigen processing- and presentation-related 
biological functions and the olfactory transduction receptor signaling pathway were found to be associated 
with the signature risk score. The potential role and mechanism of the olfactory transduction receptor signaling 
pathway and M0 macrophages in OS should be evaluated in the future.

Figure 9.   Gene set enrichment analysis of GO and KEGG pathways in OS between different signature risk 
score groups in the training and validation cohorts. The results of GO functions between different signature risk 
score groups in the TARGET (A), GSE21257 (B), and GSE39055 (C) datasets. The results of KEGG pathway 
analysis between different signature risk score groups in the TARGET (D), GSE21257 (E), and GSE39055 (F) 
datasets.
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Data availability
All datasets analyzed in the present study are open access. These data can be found on the following websites: 
TARGET-OS (https://​ocg.​cancer.​gov/​progr​ams/​target/​proje​cts/​osteo​sarco​ma) and GEO database (https://​www.​
ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE21​257; https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​
GSE16​091; https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE39​055).
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