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Therapeutic antibody discovery often relies on in‑vitro display methods to identify lead candidates. 
Assessing selected output diversity traditionally involves random colony picking and Sanger 
sequencing, which has limitations. Next‑generation sequencing (NGS) offers a cost‑effective 
solution with increased read depth, allowing a comprehensive understanding of diversity. Our study 
establishes NGS guidelines for antibody drug discovery, demonstrating its advantages in expanding 
the number of unique HCDR3 clusters, broadening the number of high affinity antibodies, expanding 
the total number of antibodies recognizing different epitopes, and improving lead prioritization. 
Surprisingly, our investigation into the correlation between NGS‑derived frequencies of CDRs and 
affinity revealed a lack of association, although this limitation could be moderately mitigated by 
leveraging NGS clustering, enrichment and/or relative abundance across different regions to enhance 
lead prioritization. This study highlights NGS benefits, offering insights, recommendations, and the 
most effective approach to leverage NGS in therapeutic antibody discovery.

In the therapeutic antibody field, in-vitro display is one of the commonest technologies used to generate antibody 
leads. Selective pressure (e.g., target concentration) is applied during a selection campaigns, using appropriate 
antibody libraries, to select antibodies with favorable properties. We recently showed that a carefully crafted 
antibody  library1 coupled with sequential in-vitro phage and yeast  display2 is able to directly identify drug-like 
leads with favorable developability  properties1,3, strong binding affinities, and in vitro efficacy by picking and 
testing random clones. We were able to isolate 31 anti-SARS-CoV-2 antibodies from this library in less than a 
month, some of which demonstrated potent live virus neutralization, high affinities, and excellent biophysical 
 properties3, comparable to the best SARS-CoV-2 antibodies  described4.

One limitation of random colony screening in selection pipelines is the sampling. While colony picking 
is effective at identifying therapeutic antibody candidates in a short  timeframe3, this approach introduces an 
inherent bias towards the more abundant clones in a selection output. Even high throughput picking cam-
paigns (≥ 10,000 clones) do no more than scratch the surface of the full available diversity in a selection output, 
particularly when there is clonal dominance. We have found the nonlinear relationship between diversity and 
sequencing depth is best revealed by next-generation sequencing (NGS), which shows that marginal diversity 
gains in selection campaigns require substantially more sequencing reads in accordance with a power function. 
However, questions remain as to the degree this increased diversity is real, or a consequence of PCR amplification 
and sequencing errors, and whether computational tools, NGS heuristics and machine learning can be used to 
distinguish functional clones from artifactual ones. Early NGS platforms were limited to short reads allowing 
analysis of single domains or CDRs, but without full VH/VL pairing, a problem resolved by long-read sequenc-
ing platforms such as the PacBio Sequel II  system5.

Machine learning (ML) has been applied to several applications in antibody discovery and molecular engi-
neering, including prediction of antigen binders from in silico  libraries6,7, identification of molecular descrip-
tors to predict developability  properties8, and learning important functional representations of B-cell receptors 
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(BCRs)9. ML is usually divided into supervised (e.g. classification, regression) and unsupervised (e.g. clustering) 
 approaches10. An example of classification and regression in the context of antibody discovery would be to parse 
out binders from non-binders or to predict affinity measurements, respectively. In these cases, the aim of the ML 
algorithm is to minimize the objective (loss) function so that predicted labels or values accurately capture the 
“ground truth” of experimental data. If no feedback information is available to classify populations (e.g., sequence 
data without a label defining the associated experimental epitope bin population), unsupervised ML-based clus-
tering can be applied using metrics such a sequence-based similarity to assign antibodies to different clusters.

In this study, we set out to understand how heuristics and ML methods applied to NGS datasets derived from 
in vitro discovery campaigns can assist lead prioritization efforts. Using a large SARS-CoV-2 selection campaign 
as a dataset, our aim was to address the most important questions related to the use of NGS in discovery cam-
paigns (Fig. 1a). Although all these questions were addressed within the context of this SARS-CoV-2 study, the 
ultimate objective was to identify broad principles generally applicable to all selection campaigns.

Results
Selection campaign
We carried out three selection campaigns using our scFv Gen3 semi-synthetic library  platform1 against the origi-
nal SARS-CoV-2 spike trimer protein, its monomer S1, and the receptor binding domain (RBD). The campaign 

Figure 1.  NGS-guided strategy. (a) Key questions relevant to any NGS-guided selection campaign (b) Final 
flow plots of yeast displayed selection outputs against RBD, S1 and trimer. (c) NGS-guided selection strategy and 
median differences among different sequences in cluster population. (d) Diversity accumulation by read count 
by given region or clustering method.
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was conducted similarly to our previously reported  efforts3. Biotinylated proteins were used to select antibod-
ies using two rounds of phage scFv panning followed by yeast  display3. A clear binding population against all 
three targets was observed (Fig. 1b). Sorting at progressively lower target antigen concentrations (10 and 1 nM) 
yielded polyclonal populations that were prepared for NGS sequencing using 5′and 3′ in-line NGS barcodes 
(Supplementary Table 1). A total of six populations (two antigen concentrations for three target antigens) were 
processed. Additionally, random colonies from the 1 nM sorted populations for each of the three targets were 
also sequenced by Sanger sequencing.

NGS‑guided strategy
Our NGS-guided strategy was aimed at exploring the functionality of a broad range of antibodies across the 
entire NGS frequency, enrichment, and sequence space (Fig. 1c). Typical selection campaigns tend to push for 
high affinity binders, while we set out to test antibodies addressing the questions in Fig. 1a. VH and VL sequences 
for 200 non-redundant antibodies were synthesized, cloned into mammalian IgG expression vectors, expressed 
and purified as full length IgG. Of these 200 tested antibodies, 169 (84.5%) bound the RBD, S1 or trimer with 
affinities < 1 µM, (see “Supplementary Information 3”), mirroring our previously described (74–92%) scFv to 
IgG conversion  rates1. The 200 non-redundant antibody sequences were chosen from 57 highly distinct clusters 
(derived as described below) found at the intersection of all three target populations (41), only in the S1 (1) or 
RBD (1) populations, or 14 clusters derived from the trimer NGS population, regardless of whether they inter-
sected with S1 or RBD and based on the most abundant representative per cluster.

Thousands of unique sequences across individual or concatenated CDRs were captured by NGS (Supple-
mentary Table 2), but this reported diversity may be artificially inflated by sequencing and PCR artifacts. To 
investigate this we used three different bioinformatic clustering approaches, which provides a more realistic 
picture of the underlying diversity. Clustering methods were defined as 100% identity, traditional  clonotyping11 
or unsupervised clustering (descriptions in methods). A distinct diversity plateau is achieved at ~ 4.0 ×  105 reads 
using unsupervised clustering of the HCDR3 (AbScan; see methods), while 100% identity (turquoise) or tra-
ditional clonotyping (blue) methods continue to accumulate diversity, suggesting a greater level of artificial 
diversity in the dataset (Fig. 1d). Although a mixed pool of germline scaffolds was used in the  campaign1, most 
of the selected diversity belonged to the IGHV1-24::IGKV1-12 germline, with a modest representation from 
other VH/VL pairs, highlighting a potential target-driven preference for specific  scaffolds12 (Fig. 2a). A similar 
distribution (Fig. 2b) is observed in the 200 characterized antibodies. For those recognizing the RBD, affinities 

Figure 2.  NGS-guided diversity and neutralization. (a) Scaffold distribution from selection output condensed 
on the total unique clonal diversity in the NGS population. (b) Scaffold distribution from selection output 
condensed on the total unique clonal diversity in the characterized population. (c) Isoaffinity plot of unique 
antibodies binding to RBD (all dots are the same color, although overlapping dots appear darker as these are 
antibodies with similar kinetic profiles). (d) IC50’s of selected antibodies (Sp2.x) against different strains, 
compared to some published and emergency use authorized antibodies.
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were determined by surface plasmon resonance (Fig. 2c) and, for a subset, neutralization data on different SARS-
CoV-2 variants were measured and compared with previously described antibodies (Fig. 2d)13–15.

Correlation of random clone picking and sanger to NGS frequencies
As expected, all Sanger clone sequences could be found within the NGS dataset (Fig. 3a), and clones that appeared 
distinct across the three independent selection arms (trimer, S1 and RBD) by Sanger sequencing (Fig. 3b) were 
predominantly found across all three populations by NGS (Fig. 3c), due to the increased sampling. To assess 
how well NGS statistics (e.g., relative abundance) can assist in the ranking of Sanger clones or be used in lieu of 
Sanger, we plotted the rank order by cumulative frequency gathered by NGS (Fig. 3d–f). The most clonally abun-
dant antibodies from Sanger sequencing were also identified by NGS (dark red in Fig. 2d–f and Supplementary 
Table 3) with the Sanger clone rank order corresponding directly to NGS abundance, and deviating only at low 
abundance. The most dominant clone in each cluster is found at 39.0, 51.7 and 65.9% (of the total population) 
for the RBD, S1 and trimer populations, respectively. The cumulative abundances from the 1 nM sort rounds 
from RBD, S1, and trimer of the top 10 HCDR3 sequences are 90.5, 97.1 and 97.9%, respectively. All abundant 
clones (≥ 0.1% full-length abundance) were binders (affinities ≤ 1 µM) to one of the three targets, as were some 
that were found significantly below the 0.001% threshold (Figs. 3d–f).

To understand how many random clones needed to be picked to capture a particular level of diversity, D, we 
calculated the diversity (D; x-axis) using a randomly sampled number of reads (f(D); y-axis), then fit the data 
to a power function of the form:

where C and k are constants derived from non-linear fit. The results for both clusters and sequences are shown 
in Figs. 3g-i for each target. The power factors (k) are quite similar for each of the three targets (1.96–2.22 for 
HCDR3 sequences and 1.92–2.87 for clusters).

Correlation of NGS statistics to kinetics
While diversity provides a comprehensive overview of the number of clones within a given selection output, 
it does not provide clear information on binding activity. Over 500 distinct (AbScan) antibody clusters were 
identified at ≥ 0.001% relative abundances (Fig. 4a), and strong binding affinities were measured for many of the 
synthetized 200 clones (Fig. 2c). Dividing the antibodies into distinct affinity groups using monomeric binding 
affinities (Supplementary Fig. 1a) revealed that 64% of the antibodies selected from the RBD or S1 populations 
exhibited sub-nanomolar affinities (≤ 1 nM), and ≥ 75% below 10 nM. 19% of the antibodies exhibited affinities 
≥ 1 µM, which we classify as non-binders.

Using a stacked bar plot, we plotted affinity ranges for NGS relative abundance (Fig. 4b, top panel) and fold 
enrichment (Fig. 4c, top panel) distributions, respectively. The percentage of binders was directly proportional 
to relative NGS abundance at the 1 nM antigen sort concentration (Fig. 4b, top panel) as well as across increas-
ing enrichment from 10 to 1 nM (Fig. 4c, top panel), with many, and often most, binders in all abundance and 
enrichment groups exhibiting sub-nanomolar affinities. The numbers of non-functional (≥ 1 µM) binders was 
improved across the different relative frequency and enrichment bins by selecting the top representative per 
cluster (Fig. 4b–c, bottom panel). Only at very low abundance (< 0.001%) or fold enrichment (< 0.01x) were 
substantial non-binding populations (27–30%) found. Nonetheless, antibodies with sub-nanomolar affinities were 
also found in these depleted or low frequency populations. The % binders by abundance and fold-enrichment 
is impacted by the target (Supplementary Figs. 1b–d–2a–c).

The isoaffinity plots for relative abundance (Fig. 4d–f) or enrichment (Fig. 4g–i), reveal that binned frequen-
cies across concatenated CDRs are somewhat randomly distributed, with no clear trends across the kinetic profile 
to suggest correlation of affinity to NGS metrics. Within the RBD population, we identified 30 antibodies with 
≤ 100 pM affinities. The number of ≤ 100 pM binders against RBD were 3/30 (10%) below 0.001% abundance, 
11/30 (37%) below 0.01%, 17/30 (57%) below 0.1%, 27/30 (90%) below < 1.0%, and 3/30 (10%) above 1.0%, 
reflecting the apparent lack of correlation between abundance and affinity. The total number of clones depleted 
in the 1 nM population relative to the 10 nM population was 11/30 (37%), with one binding clone 1/30 (3.3%) 
depleted < 0.01x, while the number enriched was 19/30 (63%), with 5/30 (17%) clones enriched more than 
tenfold.

Using unsupervised machine learning to efficiently explore sequence diversity
Sequence-based CDR clustering reduces the complexity of the NGS output, minimizing redundancy and maxi-
mizing the exploration of paratopic diversity. We used AbScan, an unsupervised machine learning algorithm 
based on OPTICS (see methods), to cluster antibody CDRs. The AbScan clustering typically results in a larger 
number of non-redundant VH + VL, concatenated HCDR3 + LCDR3 and HCDR3 sequences per AbScan cluster 
relative to other traditional clonotyping (see methods) approaches (Fig. 5a).

An essential concept behind clustering is that antibodies belonging to the same cluster (HCDR3 and/or 
LCDR3) bind the same epitope. As shown in Fig. 5b, we quantified the number of clusters using either AbScan 
(dark blue) (Supplementary Tables 6–7), or traditional clonotyping methods (gray). All antibodies using 
HCDR3 + LCDR3 clusters showed similar experimental bin profiles—i.e. they bound the same epitope within 
the constraints of SPR binning (Fig. 5b, left). Antibodies belonging to very distinct HCDR3 clusters exhibit broad 
binding kinetics (Supplementary Fig. 3a–c). In this dataset, 22/23 (96%) of the traditional clonotypes and 21/22 
(95%) of the AbScan clusters bind to the same epitope as defined by SPR binning (Fig. 5b, middle). This contrasts 
with the LCDR3 population where 14/17 (82%) and 14/17 (82%) of the LCDR3 AbScan clusters and traditional 

(1)f (D) = C ∗ Dk
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Figure 3.  Advantages of deeper read depth. (a) Venn diagram showing that all Sanger HCDR3s are identified 
within the NGS population. (b) Extent of overlap using 96-well colony picking across different selection arms 
using Sanger only or (c) within context of same set of clones in context of NGS. (d–f) Cumulative abundance 
by the most abundant full-length clone representative in each cluster for populations selected against RBD, S1 
and trimer—1 nM concentrations. Colors indicate uncharacterized NGS populations (light blue), characterized 
clones identified by NGS but not in random colony screen (dark blue), clones identified in NGS and Sanger in 
consistent rank ordered identified by NGS (dark red) and clones found in random colony screen that begin to 
deviate from the consecutive rank order identified by NGS (orange). (g–i)  Logx-Logy plot of diversity plotted 
against the total number of reads for the different targets, based random shuffling and sampling per read 
number and fit to equation above the plot. The color indicates if population is HCDR3 AbScan cluster (dark red) 
or HCDR3 sequence (black).
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clonotypes bind to the same epitope, respectively (Fig. 5b, right). In conclusion, antibodies in the same HCDR3 
cluster almost always bin together (Fig. 5b, middle, Supplementary Fig. 6), antibodies in different HCDR3 clusters 
may or may not bin separately (Supplementary Figs. 3d–f–4–5), while antibodies in the same LCDR3 cluster 
frequently bin together, but less consistently than HCDR3 clusters (Fig. 5b, right). Furthermore, with NGS we 
were able to expand the paratope coverage and identify a total of five SPR bins comprising four RBD/S1 bins 
(Supplementary Fig. 7) and one additional specific for the trimer (Supplementary Fig. 8a–c), compared to only 
two bins identified by picking clones.

One additional advantage of clustering sequences is the ability to identify additional antibodies within a 
cluster with reduced numbers of sequence-based liabilities (see Table 1 from Teixeira et al.1), relative to the 
most abundant clone in cluster (Supplementary Fig. 9a–b). We identified seven clusters containing additional 
sequences with reduced numbers of sequence liabilities (Supplementary Fig. 9b; blue) relative to the most 

Figure 4.  Functionality by relative abundance. (a) # of unique HCDR3s, traditional clonotypes or clusters 
(y-axis) at increasing concatenated CDRs relative abundance cutoffs (x-axis) (b, top panel) Relative abundance 
in 1 nM sort plotted by % of total diversity of all antibodies in the population, with numbers atop plot indicating 
the total number of antibodies in each bin. (b, bottom panel) Relative abundance in 1 nM sort plotted by % 
of total diversity of most abundant antibodies per AbScan cluster, with numbers atop plot indicating the total 
number of antibodies in each bin (c, top panel) Fold enrichment from 10 to 1 nM sorted populations for all 
antibodies in population. (c, bottom panel) Fold enrichment from 10 to 1 nM sorted populations of the most 
enriched antibodies found in each AbScan cluster. The numbers above the stacked barplot indicate the number 
of full-length representatives in each plot bin. d-f) Isoaffinity plots with each point representative of an antibody 
and the color indicative of the measured relative abundance in NGS across different targets of (d) RBD, (e) S1 
and (f) trimer. (g–i) Isoaffinity plots with each point representative of an antibody and the color indicative of the 
measured 10 to 1 nM fold enrichment in NGS across different targets of (g) RBD, (h) S1 and (i) trimer. The size 
of the point in all isoaffinity plots indicates the number of unique HCDR3 + LCDR3 sequences in each cluster.
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abundant sequence within the cluster (Supplementary Fig. 9b; dark red), some of which also exhibited improved, 
similar or worse affinities.

Correlation of NGS metrics to kinetics
One promise of NGS has been the idea that simple NGS heuristics (relative abundance or enrichment) can be 
used to rank antibody populations or clones for binding activity. We plotted relative abundance and enrichment 
versus affinity for HCDR3, HCDR3 + LCDR3, concatenated CDRs, and the most abundant VH + VL sequence 
in each AbScan cluster. Figure 6a–h show that the abundance of the top representative in each AbScan cluster 
population (Fig. 6a) gave the best correlation (r-square = 0.31, Pearson = − 0.55, Spearman = − 0.60) to affinity, 
off-rate and on-rate (Supplementary Figs. 10−12), with a dramatic reduction in correlation coefficients to affinity 
as more CDR regions are included when calculating relative abundance (Fig. 6b–d; Supplementary Figs. 10–12). 
The 10 nM to 1 nM enrichment ratio was not correlated across any region of interest (ROI; e.g., HCDR3, 
HCDR3 + LCDR3, concatenated CDRs) (Fig. 6e–h). No antibody ROI abundance or enrichment parameters 
could be well correlated to kinetics of antibodies selected against the trimer (Supplementary Figs. 10q–x, 11q–x 
and 12q–x), reflecting the important role avidity and epitope play in multimeric targets.

While selecting the top representatives of each cluster provides reasonable correlations for affinity, this was 
not the case for less abundant clones belonging to the same AbScan cluster: 70% of clones with lower NGS 
abundance relative to the top clone in the cluster have similar  (KD within twofold) or worse affinities, while 30% 
exhibited affinities at least two-fold better than the top clone in the cluster (Fig. 6i), and 17% had affinities at 
least five-fold better than the top clone in the cluster (Fig. 6j). Applying a similar analysis to the 10 nM to 1 nM 
enrichment values, 66% of those clones which were less enriched than the top clone in a cluster had similar or 
twofold worse affinities, while 34% exhibited at least two-fold improved affinities (Fig. 6k), and 22% had five-fold 
improved affinities (Fig. 6l). Antibodies within HCDR3 clusters can have broad affinity ranges when paired with 
different LCDR3 clusters (Fig. 6m).

Discriminating and ranking antibodies with XGBoost
While the data above suggests selecting the most abundant full-length sequence within each different cluster 
performs well at correlating affinity to a single feature of NGS relative abundance (Fig. 6a), this correlation to 
affinity is ablated using the relative abundance of concatenated CDRs (Fig. 6d). When we combine features 
from different regions of interest, e.g., plotting the fold enrichment against relative abundance across different 
ROIs, we start to see differential patterns discriminating the binders (< 1 µM) from the non-binders (≥ 1 µM) 
(Fig. 7a–c). We hypothesized that the use of a well performing shallow learning method (XGBoost), with deci-
sion tree capabilities, with a broad set of features (Supplementary Tables 8–9) as input, would not only be able 
to discriminate binders from non-binders but also perform well by showing stronger correlations of predicted 
affinities to experimental affinities. This would allow one to use this predicted affinity to rank order full-length 
antibodies across the entire population (including within clusters) as opposed to just selecting the most abundant 
clone across distinct clusters (Fig. 7a).

The XGBoost model trained on an expanded feature set (Supplementary Tables 8–9) performed moderately 
well for both binary classficiation (discrimination of binders from non-binders) and regression (correlation 
of predicted affinities to measured affinities) setting. Owing to the limited size of the dataset, we implemented 
an equal train/test partition (Supplementary Fig. 13a) for conducting bootstrap resampling (Supplementary 
Fig. 13b–c), which facilitated a more accurate evaluation of the model variability within the training set and 
enabled hyperparameter optimization (Supplementary Table 10). The confusion matrix (Fig. 7d) provides an 
overview of the classification of binders and non-binders in the final test set of non-redundant antibodies, 
achieving precision and recall values of 0.86 and 0.98, respectively. The model exhibited AUC (area under the 
curve) of 0.81 (Fig. 7e). Due to the highly unbalanced nature of the dataset, we used AUPRC (area under pre-
cision recall curve) which exhibited a value of 0.93 (Fig. 7f). From the model, we extracted the top five most 

Figure 5.  AbXtract clustering relevance to experimental binning data. (a) The number of non-redundant 
full-length (left), HCDR3 + LCDR3 (middle), and HCDR3 (right) sequences by cluster type. (b) The percent of 
correctly assigned experimental bins with at least two non-redundant sequences (VH + VL) per cluster, using 
different criteria: 100% identity for HCDR3 + LCDR3 (left), HCDR3 (middle), or LCDR3 (right).
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Figure 6.  Correlation of NGS to Affinity. Scatterplot of relative abundance versus affinity for (a) top representative 
in given cluster, (b) all unique HCDR3, (c) all unique concatenated HCDR3 + LCDR3, and (d) concatenated CDRs. 
Scatterplot of fold enrichment (10 nM to 1 nM) versus affinity for (e) top representative in given cluster, (f) all unique 
HCDR3, (g) all unique concatenated HCDR3 + LCDR3, and (h) concatenated CDRs. The number of additional clones 
in each cluster with lower relative abundance for the full-length sequence with improved, similar or worse affinities 
using (i) twofold and (j) fivefold threshold. The number of additional clones in each cluster with lower fold enrichment 
for the full-length sequence with improved, similar or worse affinities using (k) twofold and (l) fivefold threshold. (m) 
Paired sequence profile of the HCDR3 clusters (x-axis) versus the LCDR3 clusters (y-axis). All selected antibodies are 
color-coded according to their corresponding bin group, except gray which are the non-selected NGS clones. The size 
of dot is reflective of number of additional full-length sequences within a given cluster. Two additional boxplots show 
the affinity range across each respective cluster with top boxplot showing same HCDR3 clusters paired with different 
LCDR3 clusters. Right boxplot shows same LCDR3 cluster paired to many different HCDR3 clusters. Boxplot are color 
coded to show the number of unique HCDR3 and LCDR3 in the cluster population.
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important predictors (Fig. 7g), with the relative abundance of paired CDR3 (HCDR3 + LCDR3) at 1 nM sort 
concentrations ranked as the most important feature for binder versus non-binder prediction. The XGBoost 
model under regression showed moderate correlations of predicted affinities to experimental affinities when 
using the expanded feature set as input with Pearson and Spearman coefficients of 0.58 (p = 2.3 ×  10–6) and 0.58 
(p = 1.3 ×  10–6), respectively (Fig. 7h).

Discussion
The traditional approach used to generate antibody leads in an in vitro discovery campaign has been to carry out 
selections, and pick random clones for testing. Although it is generally assumed that NGS expands the number 
of possible leads, few in depth studies have explored this. In Fig. 1a, we have listed questions we wished to tackle 
within the context of this study, and addressed below.

 (1) How does NGS-identified clone abundance correlate to that seen with random screening? Since we 
have an upper limit of diversity based on the total number of sorted events in FACS (10,000 events per 
concentration per target in this study), any diversity exceeding this represents errors introduced during 
sorting, (PCR) sample preparation and/or sequencing. As selection outputs are generally distributed 
according to a power law (a few clones are highly represented in the population, and most are extremely 

Figure 7.  ML Classification, Regression & Key Descriptors. Relative abundance (x-axis) is plotted against 
the 10 nM to 1 nM fold enrichment using values obtained from regions of interest of the (a) HCDR3, (b) 
HCDR + LCDR3 and (c) concatenated CDRs. (d) Confusion matrix from the XGBoost binary classification 
using no sequence information (NGS stats only) prediction of binders versus non-binders. Performance 
is shown via (e) area under the ROC curve (AUC = 0.921) and (f) area under the precision/recall curve 
(AUPRC = 0.966). (g) Top 5 non-sequence descriptors contributing to the model. (h) Regression analysis from 
XGBoost predicted outputs with experimental data using only NGS population features (e.g., relative abundance 
across different ROIs), and no sequence-based features (e.g., biophysical properties or one-hot encoding). 
Performance is evaluated using Pearson or Spearman (top of plot).
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rare), the likelihood of obtaining 10,000 unique clones by clone picking is beyond most capabilities. If 
NGS-derived frequency is taken as the ground truth, statistically the Sanger clones from a 96-well plate 
should appear at the upper frequency thresholds in the NGS population. This is what we find in Fig. 3d–f 
and Supplementary Table 3, where there is 100% correspondence between the most abundant 4–9 of the 
non-redundant Sanger HCDR3 sequences and the top NGS HCDR3s. Only at the lower (NGS derived) 
frequency values do we observe NGS clones not sampled in the 96-well format, indicating that NGS clone 
abundance correlates relatively well with random screening.

 (2) Can better leads be identified by NGS than picking random colonies? In a previous  work16, antibodies 
selected by random picking exhibited very high affinities, but they do not compare to those found here. 
When NGS was incorporated into the discovery campaign we were able to isolate over 30 antibodies with 
affinities below 100 pM (Fig. 2c). Furthermore, while all the picked  antibodies16 appeared to recognize 
the same epitope, there was greater epitope diversity among those identified by NGS, demonstrating the 
value of NGS to expand antibody properties in discovery campaigns, in terms of both affinity and epitope 
diversity.

 (3) What is a sufficient read depth to cover underlying diversity? Apart from fully exploring diversity for 
screening purposes, a minimum diversity is often required for bioinformatic purposes, such as machine 
learning. Using the data outlined in Fig. 3g–i, we obtained a rough estimate of the underlying number of 
reads required to obtain a particular level of desired antibody diversity. For example, if we wanted 1,000 
unique HCDR3s upon repeat selection against these three targets at 10 nM and 1 nM, 215 K to 402 K 
sequence reads per target population would be required. If the total number of desired clones (or desired 
clusters) remains small, random colony picking is usually more than sufficient, providing dominance is 
taken into account (where NGS can provide a clearer picture). Further, these campaigns show that a linear 
increase in the number of unique sequences or clusters desired, requires the number of picked clones to 
be approximately squared (e.g. if 10 unique clones/clusters are found by picking 50 clones, ~ 2500 clones 
 (502) need to be picked to obtain 100 unique clones/clusters). It goes without saying that NGS cannot 
conjure up functional diversity that does not exist in a selection output. In Fig. 1d the number of identi-
fied AbScan identified clusters comes to a plateau, reflecting the maximum number of potential binders.

 (4) Is it possible to classify binders and non-binders using simple heuristics? Essential to any NGS selection 
campaign is understanding how rare a given clone can be before the bulk of sequences exhibit declines 
in functionality. We were rather surprised to find subnanomolar binders at very low NGS frequencies 
(< 0.001%) (Figs. 3d–f and 4b). While the data suggest relative abundance and fold enrichment could 
be used to discriminate antibodies into binders and non-binders, the level of discrimination was highly 
dependent on the target (Supplementary Figs. 1b–d and 2a–c). For example, most trimer-selected clones 
with ≤ 0.01% relative frequency were non-binders, whereas most clones across all frequency distributions 
were binders for the RBD and S1. This may be due to the integrity and folding of the larger trimer complex, 
or its trimeric nature, although this will need to be further explored. Notwithstanding different results 
obtained with different targets, empirically we set an abundance threshold of 0.005% of the concatenated 
CDRs to generally distinguish binders from non-binders in our selection campaigns, understanding that 
high affinity antibodies can still be found at lower abundances, recommending deeper NGS diversity 
exploration when more antibodies are required.

 (5) Do NGS frequencies (relative abundance or enrichment) correlate to affinity or binding proper-
ties? And if so, how? One interesting finding from our study was the weak to moderate correlation 
between affinity and abundance and/or enrichment for most of the regions of interest when antibodies 
were assessed following a single 10 to 1 nM selective step (Fig. 6b–d, 6e–h). This has been previously 
 reported17–20, with good correlations between enrichment ratios and binding activity, but not between 
enrichment ratios and antibody affinities. While it is possible that the high affinities (< 1 nM) of many of 
the binding antibodies in our RBD population would prevent a selective advantage under our experi-
mental conditions, we also found that when different affinity bands (< 100 pM; 100–1000 pM; 1–10 nM; 
10–100 nM and > 100 nM—Supplementary Fig. 14) were examined individually, there was no enrichment 
of antibodies in the 1–10 nM affinity range, which would have been expected. Selection from in vitro 
libraries is clearly highly effective, given that high affinity binders can be isolated after a number of 
selection rounds from naïve libraries with >  1010 diversity. However, enrichment over a single selection 
step, particularly relatively late in the selection process (going from 10 to 1 nM in yeast display) appears 
insufficient to demonstrate statistical significance. It is possible significant enrichment more correlated 
to affinity may occur earlier in the selection process, or over a number of rounds. These are possibilities 
we are further investigating separately.

 (6) How do NGS correlations differ when considering different regions of interest (e.g. HCDR3, HCDR3 
and LCDR3, concatenated CDRs)? One question that leads to uncertainty is which region of interest cor-
relates best to affinities. Naturally, the full-length sequence of antibodies presents the most straightforward 
path from NGS-to-clone, yet when we use full-length sequence metrics of relative abundance (Fig. 6d) 
and fold enrichment (Fig. 6h) we show the worst correlations to affinities. Since decent correlations were 
obtained by selecting the top representative between clusters (Fig. 6a), this approach presents a simple 
strategy to select antibodies in the population. It is rather peculiar that the top most relative abundance 
does not provide the most straightforward path to clone selection. We hypothesize that greater selective 
pressure (lowering antigen concentration) with the corresponding reduction in diversity results in a heav-
ily skewed population with few antibodies dominating the output. This may result in an elevated number 
of sequences per cluster that are not derived from the “true” sorted population but PCR or sequencing 
artifacts. By selecting the top clone per cluster, we are better able to not only segregate binders based on 
paratope diversity, but also, reduce the number of aberrant sequences that may or may not be impacted by 
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selective pressures and round-to-round enrichment during yeast sorting. If additional leads with improved 
affinities are desired, particularly within a particular cluster, additional antibodies can be synthesized and 
tested, with the expectation that (at least in this dataset) ≤ 30% (17%) of additional clones will exhibit 
twofold (fivefold) improved affinities (Fig. 6i–j), but the majority will not.

 (7) Can supervised ML aid in classifying antibodies as binders, assigning them to affinity groups or 
predicting affinities? When using ML, selection outputs can be analyzed without any prior binding 
information, or within a context in which initial binding information has been gathered across select 
sample populations. To be successful without specific binding information, generalizable statistics, such 
as relative abundance of given regions of interest, or enrichment across multiple concentration rounds, 
should provide insights into ranking. We acknowledge that the present study is limited by the total number 
of observations (N = 200) and interrelated targets. Nonetheless, these data reveal a decent model perfor-
mance can still be obtained under both the binary classification and regression settings. Using features 
restricted to the NGS stats and framework regions (Supplementary Tables 8–9), we were able to classify 
antibodies as binders or non-binders (AUC ≥ 0.81; AUPRC ≥ 0.93—Fig. 7e–f) and improve correlations 
to affinities (Pearson = 0.58; Spearman = 0.58—Fig. 7h). However, since these are interrelated targets, the 
generalizability of this model to different antigen classes remains to be determined.

 (8) Do antibodies in the same sequence cluster bin together? Do antibodies with the same HCDR3 clus-
ters paired to different VL bin together? And vice versa? Traditional clonotyping uses a % identity 
threshold (80–100%), the same HCDR3 length and V/J  call11. This is less practical in selection analysis, 
as there may be too little/much collapsing of edit distance if threshold is set too low/high, respectively. 
We developed AbScan within our AbXtract module to take an unbiased clustering approach that relies on 
amino acid chemical properties (Supplementary Table 5) over identity as well as the population densities 
of the sequenced populations. This provides AbScan with several advantages over traditional clonotyping 
strategies: (1) no hard edit distance cutoffs are required (unbiased), (2) population densities are utilized, 
and (3) physicochemical reduction reduces complexity. This allows the underlying data structure and 
diversity distribution to drive the most optimal cluster cutoffs with reduced bias. In all these instances we 
observed that antibodies belonging to the same cluster almost always (95%) engaged the same epitope, 
including some highly dissimilar HCDR3 sequences (58–60% identity) (Supplementary Figs. 4–5). A big 
weakness of this study was the fact that the binning space was severely limited relative to the total number 
of clusters identified. Nevertheless, LCDR3s clustered similarly behaved differently, with only 82% of 
antibodies in an LCDR3 cluster binning together, indicating HCDR3 clusters are far better at predicting 
similar epitope binning. Although this reflects the greater importance of the HCDR3, compared to the 
LCDR3, in target  binding21, additional targets, particularly with many distinct epitopes, will be needed 
to validate this concept more thoroughly.

 (9) Do antibodies in different HCDR3 clusters bind different epitopes? One outcome from this study, was 
the observation that antibodies in many distinct HCDR3 clusters show similar binning profiles as deter-
mined by experimental SPR, confirming that antibodies in different clusters can bind similar epitopes. 
While such binning is rather crude in its ability to identify subtleties in epitope space, this mirrors data 
obtained from X-ray crystallography of complexes between antibodies from Covid patients and the RBD, 
in which antibodies with quite different HCDR3 sequences, but similar germlines, can bind the same 
epitope almost  identically22. We were able to identify five different epitope bins by SPR, 4 against the 
RBD (Supplementary Fig. 7) and one additional against the trimer (Supplementary Fig. 8), in the NGS 
identified antibody population, some of which are known to be  neutralizing16. In this study antibodies 
binning differently came from different HCDR3 clusters in all but one case, allowing us to conclude that 
while antibodies from different HCDR3 clusters may bind the same epitope, antibodies binding different 
epitopes are generally derived from different HCDR3 clusters. The one exception recalls previous data 
indicating that the HCDR3 is necessary, but insufficient for specific  binding23. The antibody binding 
modes for any SPR-defined bin can vary significantly and are best revealed using detailed epitope analysis 
techniques, such as alanine scanning, deep mutational  scanning24–26, or deep mutational  learning27. The 
literature describing different SARS-CoV-2 spike epitopes is  complex4,28,29, with six main antigenic sites 
and 16 epitopes, 50% of which are found in the RBD. Whether the five bins we identify by SPR correspond 
to any of these 16 epitopes awaits further study.

 (10) Can NGS be used to identify antibodies similar to a lead, with reduced sequence liabilities? Working 
under the assumption that antibodies in the same cluster exhibit similar specificities (epitope) and are 
similarly functional (improved or minimal deviation from top representative) then NGS offers the means 
to select additional sequences that can potentially have reduced number of sequence-based liabilities. In 
Supplementary Fig. 9a, we revealed the extent to which non-redundant sequences with reduced numbers 
of sequence liabilities can be selected if using NGS. To showcase this point, we plotted antibodies with 
fewer liabilities relative to most abundant sequence in a given cluster by their RBD binding affinities, 
Supplementary Fig. 9b, revealing that additional sequences can be selected that not only have reduced 
sequence-based liabilities but also similar or improved affinities.

   Finally, and perhaps most importantly, is:
 (11) What is the best way to use NGS data within the context of a selection campaign? We find NGS to 

be particularly useful in assigning selected antibodies into HCDR3 clusters. This provides additional 
paratopic and epitopic diversity over and above the more restricted diversity found by random pick-
ing, particularly when there is strong clonal dominance. In general, applying a threshold abundance of 
0.005% using the concatenated CDRs as a basic heuristic allows good discrimination between binders 
and non-binders, although many antibodies with lower abundances are often binders if greater diversity 
is required. Within any cluster our top choice for testing is the most abundant full-length sequence, which 
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most often binds the target. In the present study, we noted that populations that were heavily skewed (clon-
ally dominant; Fig. 3f) resulted in a significantly poorer binding performance for less abundant clones 
(e.g., trimer; Supplementary Fig. 1d), though we are currently exploring how important this skewedness 
is to binding prediction from one antigen population. Lastly, in campaigns where selective pressure is 
applied with decreasing antigen concentrations, training data on NGS statistics across multiple regions 
of interest (HCDR3, HCDR3 + LCDR3, concatenated CDRs) collectively combined with shallow learning 
model like XGBoost can assist in lead ranking on affinity and classify antibodies from NGS as binders or 
non-binders.

Although we acknowledge this study was limited to the selection of antibodies against SARS-CoV-2 as well 
as the lack of independent replicates from each of the populations, we believe the NGS analyses described will 
provide a valuable resource in other campaigns, whether in vitro or in vivo.

Materials and methods
Antibodies selection
scFv were selected against SARS-CoV-2-RBD (SPD-C52H3, ACROBiosystem), SARS-CoV-2-S1 (SIN-C82E8, 
ACROBiosystem) and SARS-CoV-2-Trimer (SPN-C82E9, ACROBiosystem), using a strategy that combines 
phage and yeast display as decribed in Ferrara et al.16 Details on the semi-synthetic library that we used in the 
study has been detailed  previously1. Briefly, we embedded CDRs derived from natural deep sequenced pools of 
human donors into a diverse panel of developable clinical antibody scaffolds. Because the HCDR3 diversity is well 
above the capacity of oligonucleotide array-based synthesis, these were generated directly from CD19 + B-cells 
from donor LeukoPaks. All remaining CDRs were derived from replicated natural diversity post-analysis of NGS 
sequencing of a previously published library comprised of 40  donors30.

Pseudovirus neutralization assay
The neutralization assays with pseudoviruses expressing the different variants of SARS-CoV-2 were peformed 
as previously  described16.

NGS preparation and barcoding
ScFvs from miniprepped samples were amplified with primers annealing to the 5′ and 3′ of VL and VH, respec-
tively (the scFv format is VL-linker-VH). Primers contain in-line barcodes enabling demultiplexing of popula-
tions according to Supplementary Table 1. After amplification, samples were purified using Zymo HT at the 
correct size associated with the scFv nucleotide sequence, including flanking regions (~ 850 bp). Purified products 
were outsourced 2 separate PacBio Sequel II (Brigham Young University) sequencing performed on Pool A and 
B consisting of over 2.1 M reads. Consensus building was conducted at the sequencing facility and FASTQ files 
were generated. Similarly, individual colonies were picked from round 3 for each of the selections carried out 
against the individual targets (equivalent of RBD-3, S1-3 and trimer-3 in NGS), miniprepped and processed for 
Sanger sequencing at Genewiz, Inc.

NGS sequence processing and annotation
We built a streamlined set of bioinformatics workflows in the cloud called AbXtract™ (eyesopen.com/orion/
abxtract), which are end-to-end solutions for antibody discovery using in vitro display. The workflows were 
built on the Orion® platform (eyesopen.com/orion) in collaboration with OpenEye, Cadence Molecular Sci-
ences. The processing is done as a series of steps from demultiplexing, FASTQ filtering, annotation, clustering, 
enrichment, and liability quantification. Briefly, FASTQ sequences were processed through our quality filter tool 
ensuring 100% sequences must retained a Phred value of ≥ 40 (P = −  log10(Q)). Next the sequences are annotated 
and demultiplexed with our IgMatcher tool to identify the scaffold (germline) assignment and to annotate using 
IMGT® annotation for LCDR1, LCDR3 and HCDR1-3 and KABAT for LCDR2. Demultiplexing uses the barcode 
table outlined in Supplementary Table 1, with a % identity of ≥ 70% (maximum of 2 out of 8 mismatches for 8mer 
barcode) for both 5’ and 3’ barcodes. In Orion, each workflow produces reports with relevant visual summaries 
and statistics, as well as datasets that are easily analyzed and can be used to sub select, and/or carried through 
subsequent workflows, or exported to human readable formats, when necessary, e.g. when needing to send final 
sequences to vendors for production of the selected antibodies.

Clustering of antibody sequences
Select regions of interest (e.g., HCDR3) are clustered using an internal unsupervised machine learning approach 
based upon sequence-based properties, NGS statistics (e.g., relative abundance and round-to-round enrichment) 
based on different regions of interest (HCDR3, HCDR3 + LCDR3, concatenated CDRs) and algorithms (Elbow 
 method31,32; Ordering Points to Identify the Clustering Structure (OPTICS)33, physicochemical reduction of the 
amino acid space, traditional clonotyping and Levenshtein distance (LD). The combination of all these features 
is our clustering method we call AbScan. All annotated CDRs at the amino acid level into eleven representa-
tive physicochemical pseudo-sequences (Supplementary Table 5). Next, using the LD of this reduced space, we 
generated matrices of pairwise LD across all defined CDR regions of interest, which were subject to the OPTICS 
algorithm (sklearn.cluster.OPTICS) to identify core samples of high density, which takes two hyperparameters of 
min_pts and max_eps. While OPTICS does not require the max_eps parameter (default t = np.inf), which would 
effectively identify clusters across all scales, we restrict the max_eps to 10 × the optimal epsilon value, determined 
using the Elbow method on a k-nearest neighbor distances in a matrix of points. The basic premise is to determine 
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the average distances of every point to the k-nearest neighbor (set to min_pts = 2). Plotting k-distances in ascend-
ing order, the “knee” of the plot indicates the optimal eps parameter, which is the sharp change that occurs along 
the k-distance curve. Clusters are then extracted using the ‘xi’ parameter, which determines the minimum steep-
ness on the reachability plot, with a default value of 0.01. Due to inherent biases of population distributions from 
different selection campaigns and target concentrations, we also incorporate varying iterations of the relative 
abundance frequency to optimize clustering of populations based on both physicochemical properties and the 
Levenshtein distance. To this end, we perform multiple iterations of clustering based on decreasing the percent 
relative frequency of the region of interest, whereby seed rounds of clustered sequence require an abundance 
of ≥ 0.005% followed by subsequent drop in frequency for each iteration. To ensure that highly dominant, yet 
distinct sequences are not rejected by OPTICS (− 1 assignment), we institute additional requirements, whereby 
a given CDR must exhibit minimum count within its respective population (e.g., reduced space representation 
of AA for the HCDR3 region with count ≥ 2) or within a pre-defined threshold (e.g., traditional clonotyping 
defined by same length and ≥ 90% identity), which is then assigned its own unique cluster ID. Any sequence not 
fulfilling these additional requirements are considered “True” noise points and discarded. All CDRs are assigned 
a cluster ID according to Supplementary Table 4 for the specified region(s), with HCDR3 the region of interest 
used in much of the paper for clustering unless specified otherwise.

XGBoost classification and regression
We determined the NGS-based statistic for all SPR (LSA) characterized antibodies within our dataset. Due to the 
small size of the dataset and need to validate model through a bootstrap method, the dataset were partitioned 
into 100/100 train/test split using 200 characterized antibodies within the dataset (Supplementary Fig. 13). To 
get a better sense of model variability in the training set we employed a bootstrap resampling of the training 
dataset (Supplementary Fig. 13a) with AUC and PRAUC reported in (Supplementary Fig. 13b–c) under binary 
classification and regression settings.

The descriptors used in the supervised XGBoost model include (1) non-sequence-based NGS descriptors 
by the region of interest (Supplementary Table 8), (2) relatively constant sequence-based features using one-hot 
encoding of the framework regions (Supplementary Table 9). For binary classification, antibodies were con-
sidered binders if an antibody exhibited < 1 µM affinity against any one of the RBD, S1 or trimer antigen. For 
regression prediction, the response labels for each characterized clone used the LSA-derived affinity against the 
monomeric target of RBD or S1.

Enrichment and % region of interest calculation (ROI)
With the annotated records, we used the read count and different ROIs (e.g., HCDR3, HCDR3 + LCDR3, 
LCDR1-3/HCDR1-3) across separate barcode populations to calculate the relative frequency and enrichment. 
Using HCDR3 ROI as an example: for each unique HCDR3 belonging to a distinct barcode group (RBD, S1, 
trimer) and concentration (1 nM or 10 nM), though distinct in other regions of the antibody, we calculated the 
relative frequency by condensing all identical (100% identity) HCDR3s and summing the counts that belonged 
to each unique full-length (VH + VL) sequence in the population. We then used the simple frequency equation 
to tabulate the relative frequency of the ith unique ROI by barcode group and concentration:

where ROIcounti is the sum of all the read counts that share the same ROI in given barcode group and 
SUM(ROIcount) is the sum of all counts in the corresponding barcode group. The ROI relative frequencies 
from the late round population (1 nM) were then compared to early round populations (10 nM) to obtain a 
relative enrichment. Again, using HCDR3 ROI as an example: matching HCDR3 from the 1 nM round that share 
identical (100% identity) HCDR3 in 10 nM ROI had enrichment calculated as follows:

where  relative_frequency1nM_i is the relative_frequency tabulated using a given ROI by barcode group (RBD, 
S1, trimer) at the 1 nM concentration while  relative_frequency10nM_i is the relative_frequency tabulated using a 
given ROI by barcode group (RBD, S1, trimer) at the 10 nM concentration. We apply a correction factor to ROIs 
that appear in one population (e.g., 1 nM) but not the other (e.g. 10 nM) by taking the minimum ROI count from 
population it does not appear and dividing by this penalty. For instance, if clone appears in the late round (10 nM) 
but not the early round (1 nM) then the minimum ROI count from early round is divided by a correction factor:

whereby the minimum count of a given population and concentration to which it is absent is divided by a cor-
rection factor before calculation of the relative frequency. For instance, if a given ROI is present in 1 nM but not 
10 nM sort, then the minimum value from 10 nM population is obtained (e.g., count = 1). If the ROI is absent 
in 10 nM sort but not the 1 nM sort, we use a correction of 2. If the ROI is absent in 1 nM but present in 10 nM 
then we apply a correction factor of 10. In this way we penalize depletion more heavily than the benefit for 
enrichment more significant enrichment.

Relative frequencyi =
ROIcounti

SUM(ROIcount)
× 100

Enrichmenti =
Relative frequency1nMi

Relative frequency10nMi

× 100

Corrected frequencyabsent_i =

(

min
(

ROIcounti
)

/

Correction_factor

)

SUM(ROIcount)
× 100
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IgG reformatting expression and purification
The variable fragments corresponding to the heavy and light chain of the antibodies identified during the Sanger 
sequencing screening where subclined into a 2-vector system (one for the heavy chain and one for the light chain, 
expressed and purified as described in Leal et al. (manuscript under revision). For remaining antibodies, we 
outsourced at Genscript who supplied antibodies at 100 µg/mL concentration.

LSA kinetics
The kinetics were carried out using an HC200M sensor chip (Carterra #4297), which was activated with 33 mM 
N-hydroxysulfoccinimide (S-NHS, sigma #56,485), 133 mM N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide 
hydrochloride (EDC, sigma #E7750) diluted in 0.1 M MES, pH 5.5 for 5 min. The capture antibody, an anti-
human Fc (Southern Biotecch, #2048–01) was diluted to 50 µg/ml in 10 mM acetate, pH 4.33, and immobilized 
on chip for 20 min. The chip surface was deactivated using 1 M ethanolamine solution, pH 8.5, to prevent any 
additional primary amine coupling. Individual antibody clnoes were diluted to 10 µg/mL in 1xHBSTE (Carterra 
#3630) printed onto the chip for 12 min. The rbd (acro biosystems #SPD-C52H3), s1 (acro biosystems #S1N-
C82E8), or trimer (acro biosystems #SPD-C52H9), was prepared across a 7-point dilution series from 100 nM 
to 137 pM (Trimer) or 300 nM to 411 pM (RBD, S1). All data was fit using the Kinetics software suite (Carterra) 
using a one-site model.

LSA binning
For each kinetics experiment an HC30M sensor ship (Carterra #4279) was activated with 33 mM N-hydroxysul-
foccinimide (S-NHS, sigma #56,485), 133 mM N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride 
(EDC, sigma #E7750) diluted in 0.1 M MES, pH 5.5 for 5 min. All ligand antibodies (panel of antibodies to be 
tested) were diluted in 10 mM NaAcetate, pH 4.33 with 0.01% tween. All antibodies were coupled at 10 µg/mL 
in a 96-well plate, with the S-NHS/EDC occurring over a 5 min period with coupling to ligand mAbs at 10 min. 
Hydrolysis to unused S-NHS esters back to original form was performed with 50 mM borate buffer for 15 min 
followed by a 1 M ethanolamine wash or 2 × 30 s to block any potential non-hydrolyzed sites from 50 mM Borate 
wash. From prior studies we determine that use of glycine, pH 2.8 with 1 M NaCl was optimal for regeneration. 
Different antigen concentrations were used, typically at 20 × the  KD of the antibodies used in the panel to ensure 
saturation. Analyte mAbs at 30 µg/mL were diluted in running buffer (1xHBSTE + 0.5 mg/mL BSA. Injections 
were to occur every 12 cycles with a panel of ~ 200 antibodies tested within each of the runs. Injection times 
were set to 1 min baseline, 4 min antigen injection, 4 min for mAb analyte and 1 min of dissociation. 2 × 20 s 
regeneration cycles were run to regenerate the chip surface.

Data availability
Any additional information, datasets used and/or analyzed during the current study, are available from the cor-
responding author on reasonable request. The datasets generated and/or analyzed during the study are available 
at GenBank https:// www. ncbi. nlm. nih. gov/ genba nk/ with accession numbers provided in supplementary file 
called “GenBank_FlatFile.txt” from range OR488140—OR488539.
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