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Carbon price prediction based 
on decomposition technique 
and extreme gradient boosting 
optimized by the grey wolf 
optimizer algorithm
Mengdan Feng 1*, Yonghui Duan 1, Xiang Wang 2, Jingyi Zhang 1 & Lanlan Ma 1

It is essential to predict carbon prices precisely in order to reduce CO2 emissions and mitigate global 
warming. As a solution to the limitations of a single machine learning model that has insufficient 
forecasting capability in the carbon price prediction problem, a carbon price prediction model (GWO–
XGBOOST–CEEMDAN) based on the combination of grey wolf optimizer (GWO), extreme gradient 
boosting (XGBOOST), and complete ensemble empirical mode decomposition with adaptive noise 
(CEEMDAN) is put forward in this paper. First, a random forest (RF) method is employed to screen 
the primary carbon price indicators and determine the main influencing factors. Second, the GWO–
XGBOOST model is established, and the GWO algorithm is utilized to optimize the XGBOOST model 
parameters. Finally, the residual series of the GWO–XGBOOST model are decomposed and corrected 
using the CEEMDAN method to produce the GWO–XGBOOST–CEEMDAN model. Three carbon 
emission trading markets, Guangdong, Hubei, and Fujian, were experimentally predicted to verify 
the model’s validity. Based on the experimental results, it has been demonstrated that the proposed 
hybrid model has enhanced prediction precision compared to the comparison model, providing an 
effective experimental method for the prediction of future carbon prices.

Climate change has evolved into a formidable menace to the survival of humanity in the twenty-first century. 
Greenhouse gases are considered a major factor contributing to global warming1. To cope with the global warm-
ing crisis, the international community has actively reduced carbon emissions by formulating climate policies 
and other measures. Among them, the European Emissions Trading System (EU-ETS) was implemented in 2005, 
reducing carbon emissions and energy consumption2. Furthermore, China plays a significant role in international 
climate protection as one of the top carbon emitters worldwide. China has implemented eight carbon trading 
pilots in various regions, namely Beijing (2013), Shanghai (2013), Guangdong (2013), Tianjin (2013), Shenzhen 
(2013), Chongqing (2014), Hubei (2014), and Fujian (2016), in order to reduce global emissions3.

Carbon trading has emerged as an emerging financial industry. A carbon price reflects fluctuations in supply 
and demand for carbon energy within the carbon emissions market, where carbon energy can be traded as a 
commodity4. Because of the uncertainty of the internal mechanism and external factors, carbon prices demon-
strate nonlinear and non-stationary features5,6. The risks associated with carbon trading are greater than those 
associated with traditional financial products. Accurate carbon price forecasting not only helps governments 
grasp the changes in market conditions and make reliable decisions, but also helps enterprises and investors 
grasp the characteristics of carbon prices. This will make sensible resource allocations and realize the value-
added of carbon assets. As a result, it is crucial to establish a system that is stable and effective for the research 
of carbon prices.

In accordance with the previous literature review, carbon price research can be categorized into two classifica-
tions: models based on historical data7–9 and models based on influencing factors10–13.
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Grounded on historical data, carbon price forecasting methods can be classified into three categories: statisti-
cal and econometric methods, artificial intelligence (AI), and integration methods.

In the past, statistical and econometric methods were extensively employed for forecasting carbon prices as 
classical time series forecasting methods. Main statistical methods are the autoregressive integrated moving aver-
age model (ARIMA)14, generalized autoregressive conditional heteroskedasticity model (GARCH)15, gray model 
(GM)16, etc. For instance, Carolina et al. (2013) employed an ARIMA model in order to forecast carbon prices, 
ultimately achieving more accurate predictive outcomes17. According to Dutta (2018), an exponential GARCH 
model was used for forecasting carbon price volatility, and outliers were processed to improve accuracy18. Under 
the assumption of linearity, the statistical and econometric methods perform well for short-term forecasting, 
but when forecasting nonlinear, non-stationary time series of carbon prices, the prediction accuracy is not 
satisfactory19.

As a result, AI that does not require linear assumptions is broadly utilized across different sectors. For exam-
ple, credit risk prediction20, disease treatment21, and traffic congestion22,23. For carbon price prediction, least 
squares support vector machines (LSSVM) and artificial neural networks (ANN) are commonly used. Using 
1074 daily carbon price results, Atsalakis (2016) developed a neural network (NN) model to predict time series. 
ANN was found to be the most effective method for predicting carbon prices based on the final results24. Zhu 
et al. (2016) introduced an adaptive multiscale integrated learning approach grounded in LSSVM to effectively 
capture the non-stationary and non-linear attributes of carbon prices. The findings demonstrated that their 
proposed model surpassed the performance of the ARIMA and GARCH models25. Despite the fact that AI 
exceeds traditional statistical models in forecasting non-linear and non-stationary data, a single AI model fails 
to possess sufficient forecasting stability and does not meet researchers’ expectations for accurate carbon price 
predictions across different markets26.

Given the constraints of conventional statistical approaches in handling non-stationary feature data and the 
shortcomings of a single AI model, experts have started to focus on researching integrated methods to boost data 
analysis and forecasting precision. A number of decomposition methods have been proposed based on different 
theoretical foundations, including the wavelet transform (WT)27, variational mode decomposition (VMD)28, and 
ensemble empirical mode decomposition (EEMD)29. E et al. (2019) realized that carbon valence has nonlinear 
and nonstationary properties. To address this issue, they combined VMD with a gated recurrent unit (GRU) to 
predict carbon prices’ future trends. Experimental results confirmed its validity and reliability30. Jinpei Liu et al. 
(2019) employed empirical mode decomposition (EMD) and a reconstruction algorithm to transform the original 
data into three subseries of varying frequencies. Subsequently, they individually analyzed these three types of data 
using ARIMA, partial least squares (PLS), and NN methods. The findings demonstrated the superior predictive 
performance of the model31. Using EEMD to preprocess the data, Zhou et al. (2018) constructed different com-
binations of models to identify different frequencies. The existing hybrid models, although they enhance carbon 
price prediction accuracy, have drawbacks32. For example, existing hybrid models usually have model subseries 
obtained from decomposition without considering noise. This can reduce prediction accuracy and efficiency29.

Carbon prices are impacted by a combination of historical data and external factors. The existing literature 
primarily utilizes carbon price time series data for the modeling process. However, the dynamics of carbon 
trading prices are influenced by various factors, including energy factors, macroeconomic factors, and industry 
structures11. In general, since external factors can be analyzed, carbon price forecasting built upon multiple influ-
encing factors is important for carbon market research. Therefore, carbon price prediction models for influencing 
factors are favored by scholars. Using oil, coal, and natural gas prices as the basis, Tsai and Kuo (2013) devised an 
ant-based radial basis function network (ARBFN) model for carbon price prediction. The inclusion of multiple 
influencing factors in carbon price forecasting models can indeed pose challenges due to the potential for error 
accumulation. When considering multiple factors, the complexity of the model increases, and uncertainties 
associated with each factor can accumulate throughout the forecasting process33.

Reviewing previous studies, we identify potential research gaps in the prediction of carbon prices. One is 
that most carbon price forecasting models rely only on past carbon price data series. They ignore the impact 
of external factors on the carbon market. This limitation may result in models that do not adequately take into 
account the full range of market conditions when forecasting carbon prices. Second, most current carbon price 
forecasting models fail to fully explore and utilize other useful information. Useful information means that 
after the model prediction, there are still a large number of nonlinear residual sequences, which are not random 
walks34 and still contain carbon price information. Ignoring the residual series leads to the potential problem 
of incomplete information in predicting carbon prices. To this end, it is of particular importance that the above 
issues are addressed and a new perspective on carbon price forecasting is proposed.

In order to bridge these gaps, this study first established the index system of influencing factors of carbon price 
and selected indicators by the random forest method to find out the main factors affecting carbon price, so as to 
improve the prediction accuracy of the model. Secondly, XGBOOST is used to establish the carbon price predic-
tion model. Meanwhile, with the objective of avoiding the prediction error caused by the parameter setting of the 
XGBOOST model, GWO is used to find the optimization of the model parameters. To increase the precision of 
model predictions, the residual series of XGBOOST predictions is corrected using the CEEMDAN method, and 
a combined GWO–XGBOOST–CEEMDAN model is derived. The contributions can be summarized as follows:

(1)	 In the majority of prior studies, carbon price forecasts relied on historical time series data on carbon prices. 
This ignores the effects of multiple factors when predicting carbon prices, so there are limits to the informa-
tion that can be provided and the extent to which carbon markets can be managed. In this study, multiple 
influencing factors are considered in conducting carbon price forecasts with the aim of addressing the 
problem of carbon price forecasting. In order to develop a richer indicator system that is more appropriate 
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to China’s national conditions, the carbon price time series data as well as the various influencing factors 
are treated as candidate input features for carbon price modeling.

(2)	 In this study, Partial Autocorrelation Function (PACF) and Random Forest (RF) are introduced as feature 
selection methods to build carbon price prediction models in accordance with numerous influencing fac-
tors and reduce the influence of redundant information between features. A significant improvement has 
been made in the model’s prediction performance.

(3)	 Most previous hybrid models first decompose the data and then perform carbon price prediction studies. 
However, this study adopts a different approach by first predicting carbon prices and then decomposing 
the residual series. After the carbon price information is predicted by the strong master model, the useful 
information of the residual sequence is difficult to obtain, so the CEEMDAN algorithm is used to further 
process the residual information and decompose it into modal information that is easy to extract and a 
sequence that is more difficult to extract. This is to dig deeper into residual effective information. Accord-
ing to the experiment, carbon price prediction is more accurate and practical than most previous studies. 
The method of prediction and then decomposition offers innovative thought for carbon price prediction 
research, and it will serve as a strong reference in the future.

Algorithm introduction
Feature election
Random forest
After the initial selection of 11 metrics, feature screening is performed next. It can enhance the model’s ability 
to generalize, reduce the risk of overfitting, reduce the computational complexity of the model, etc. Common 
feature selection methods are Gray correlation, Pearson correlation coefficient, and random forests (RF). Gray 
correlation and Pearson correlation coefficient are both linear relationship-based methods, while RF can handle 
more complex nonlinear relationships. This means RF can select features in a wide range of situations. As a result, 
in this paper, the RF method is used for screening carbon price primary indicator systems.

Based on the results of the RF method, the primary features are ranked in terms of importance and 
then selected. Consider a sample size of A and a feature dimension of m . Provide a set of training samples {
(x1, y1), · · · , (xN , yN )

}
 and create a self-help sample set Ct of size A ; Kt is obtained by classification and regres-

sion tree (CART) on Ct ; Taking a random sample of mtry =
√
m features from each tree and selecting the most 

significant mtry features for node splitting; Analyzing whether t  satisfies t ≤ ntree until the loop is not exited, 
and then generating G = Uniform({Kt}).

In the calculation of feature importance, the Gini Index is used as a segmentation function to calculate "Gini 
Importance" as the degree of importance of a feature. This can be expressed as follows:

C represents the sample set;Fi represents the probability of belonging to the ith class in the sample set C ; There 
are a number of sample classes in E . The Gini index of the sample set C is defined when feature G is known.

H represents the number of features G values, i.e., C is divided into H subsets according to the feature G values {
C1,C2, ...CH

}
 , and the samples within each subset are of the same feature G value. G feature that has the smallest 

Gini index after division is considered to be the optimal feature in the selection process.

Partial auto‑correlation function
PACF is a statistical tool for time series analysis that helps determine the relationship between each observation 
in a time series and its lag values. Its function is to recognize the order of the AR (Autoregressive) model in a 
time series, i.e., how many lags need to be considered in that model. The PACF model actually adjusts the auto-
correlation function (ACF) by eliminating the part already explained by the previous lags so that the remaining 
part more accurately reflects the relationship between the observations and the lags at the current moment. 
(Xt ,Xt+v|Xt+1|, · · ·,X(t+v−1) represents the conditional correlation between Xt and Xt+v after removing the 
effects of the intervening variables Xt+1, · · ·,X(t+v−1) , i.e., the partial autocorrelation between Xt and Xt+v.

CEEMDAN model
Empirical mode decomposition (EMD) is to decompose the nonlinear and non-stationary raw data into inher-
ent mode functions (IMFS) with various fluctuation scales. However, due to the intermission of the raw data, 
mode confusion is easy to occur. This will affect the decomposition effect. Wu35 proposed an ensemble empirical 
mode decomposition (EEMD) method by adding a certain degree of Gaussian white noise to the original data for 
repeated decomposition. Although the mode overlap phenomenon can be effectively solved, residual white noise 
still exists in the component of the eigenmode function derived by this method, resulting in low reconstruction 
accuracy. Building upon this, Torres36 moved to the complete ensemble empirical mode decomposition with 
adaptive noise (CEEMDAN) method, which addresses the issue of significant reconstruction errors in the EEMD 
method by introducing adaptive white noise at each stage. Therefore, in this essay, the CEEMDAN method is 
used to forecast each component of the eigenmode function and the trend term separately.

CEEMDAN can be broken down as follows:

(1)Gini(C) = 1−
∑|E|

i=1
[Fi]

2

(2)Giniindex(C,G) =
∑H

H=1

∣∣CH
∣∣

C
Gini(CH )



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18447  | https://doi.org/10.1038/s41598-023-45524-2

www.nature.com/scientificreports/

Step 1 As a result of adding a Gaussian white noise sequence to the residual sequence, an updated sequence 
with noise is obtained:

where y(t) is the residual sequence, and yi(t) is the new sequence with the addition of Gaussian white noise; ni(t) 
denotes the white noise added to the residual data; σ is the adaptive coefficient.

Step 2 EMD decomposition is performed on the new sequence with white noise added to obtain N modal 
components, and the first modal component of CEEMDAN is obtained by the overall averaging of the N modal 
components as follows:

At this point, R1(t) is the residual component.

Step 3 The adaptive white noise sequence σni(t) is added to R1(t) to form a new sequence R1(t)+ σE1(ni(t)) 
with noise, where Ej(·) is the jth eigenmodal component obtained after EMD decomposition. At this point, the 
EMD decomposition is performed on the new sequence and averaged to obtain the second modal component 
and the residual component as follows:

Step 4 Repeat the above three steps to obtain the (j + 1)th modal component and the jth residual component:

Step 5 Repeat the above steps until the CEEMDAN can no longer be decomposed by EMD. Finally, the original 
sequence y(t) is decomposed into multiple eigenmodal components and a trend component.

After CEEMDAN has decomposed the residual series, the GWO–XGBOOST model is applied to each eigen-
function component. The final residual forecast is derived by linearly combining the results of each component.

XGBOOST model
Extreme gradient boosting (XGBOOST) was developed by Chen et al.37 in 2016, which integrates a linear scale 
solver with a categorical regression tree learning algorithm. The model combines models with low prediction 
accuracy through certain strategies. The purpose of this is to construct an integrated model that is more accurate 
in terms of prediction. During the model training process, XGBOOST optimizes the boosting process. Each 
iteration generates an updated decision tree to fit the residuals generated in the previous iteration. XGBOOST can 
continuously improve its prediction accuracy and generalization capacity through iterative optimization. While 
traditional gradient boosting decision tree (GBDT) methods utilize only first-order derivatives, XGBOOST does 
a second-order Taylor expansion of the loss function, controls model complexity by introducing regularization 
terms to avoid overfitting problems, and employs a more refined evaluation approach when splitting nodes to 
better capture the nonlinear relationships between features. In recent years, the XGBOOST model has shown 
superior performance in financial risk control, medical health, natural language processing, and other fields. 
This model is based on the following mathematical principles:

An integration model for the definition tree can be described as follows:

where ŷi is the prediction value; M is the number of decision trees; F is the tree selection space; xi is the first i 
input feature.

XGBOOST’s loss function is as follows:

The first part of the function is the prediction error between the predicted value and the real training value of 
the XGBOOST model, and the second part represents the complexity of the tree, which is mainly used to control 
the regularization of the model complexity:

(3)yi(t) = y(t)+ σni(t), i = 1, 2...N

(4)imf1(t) =
1

N

∑N

i=1
imf1i(t)

(5)R1(t) = yi(t)− imf
′
1(t)

(6)imf2(t) =
1

N

N∑

i=1

E1(R1(t)+ σ1E1(ni(t)))

(7)R2(t) = R1(t)− imf2
′
(t)

(8)imfj+1(t) =
1

N

∑N

i=1
E1
(
Rj(t)+ σjEj(ni(t))

)

(9)Rj(t) = Rj−1(t)− imfj
′
(t)

(10)y(t) = imf (t)+ Res(t)

(11)ŷi =
∑M

m=1
fm(xi), fm ∈ F

(12)Q =
∑n

i=1
l(yi , ŷi)+

∑M

m=1
θ
(
fm
)
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where γ and τ are penalty factors.
By adding an incremental function ft(xi) to Eq. (13), the value of the loss function is minimized. Then the 

objective function of the t  th time is

The second-order Taylor expansion of Eq. (15) is used to approximate the objective function, and the set of 
samples in each child of the j tree is defined as Ij =

{
i
∣∣q
(
xi = j

)}
 . At this point the Q(t) can be approximated as

where gi = ∂ŷt−1
i

l
(
yi , ŷ

t−1
i

)
 is the first order derivative of the loss function; hi = ∂2 ŷt−1

i
l
(
yi , ŷ

t−1
i

)
 is the second 

order derivative of the loss function. Defining Gi =
∑

i ∈ Ijgi , Hi =
∑

i∈Ij hi then we have:

The partial derivative of ω yields

By incorporating weights into the objective function, we get

A large portion of the model’s performance is determined by parameter selection during the training process 
of the XGBOOST model. There are 23 hyperparameters in the XGBOOST algorithm, mainly divided into gen-
eral parameters for macroscopic function control, booster parameters for booster detail control, and learning 
target parameters for training target control. The GWO–XGBOOST combinatorial model combines the three 
hyperparameters that have a significant impact on the performance of XGBOOST (learning_rate, n_estimators, 
and max_depth) as the position vector of the head wolf α in the GWO algorithm and continuously updates them 
through the iterations of the GWO algorithm to continuously find the optimal position until the global optimal 
position is output as the final parameter of the XGBOOST model.

GWO model
A pack intelligence optimization algorithm, the grey wolf optimizer (GWO), based on the predatory behavior 
of grey wolves, was proposed by Mirjalili et al.38 in 2014, inspired by the predatory behavior of grey wolves. The 
optimization process of the GWO algorithm can be analogized to the hunting behavior of the gray wolf pack. 
Among them, α, β , and δ wolves with the highest social level in each generation of the population act as the 
leaders of the gray wolf pack. A predator searches, encircles, and attacks prey to achieve its optimization goal. 
GWO has strong global convergence ability, robustness, and fewer parameters to adjust, and is now used in many 
fields for optimization problems.

Firstly, the mathematical definition of how a wolf pack searches for and surrounds its prey is as follows:

where F(t) is the position of the prey after the t  th iteration; FP(t) is the position of the gray wolf at the t  iteration; 
A is the distance between the gray wolf and the prey; F(t + 1) is the update of the position of the gray wolf; C 
and B are the coefficient vectors;c is the convergence factor whose value decreases linearly from 2 to 0 with the 
number of iterations, D is the number of previous iterations, and E is the maximum number of iterations; r1 and 
r2 are the random numbers between [0,1].

Secondly, the prey is finally determined by constantly updating the positions of the three optimal wolves α, 
β , and δ . The mathematical definition of the hunting process of the gray wolf pack is

(13)θ(fm) = γT +
1

2
τ�ω�2

(14)Q(t) =
∑n

i=1
l(yi , ŷi)+

∑M

m=1
θ
(
fm
)
=

∑n

i=1
l
(
yi , ŷ

t−1
i + ft(xi)

)
+ θ

(
ft
)

(15)Q(t)
∼=

T∑

j=1

[(∑
i∈Ij

gi

)
ωj + (1/2)

(∑
i∈Ij

hi + τ

)
ωj

2

]
+ γT

(16)Q(t)
∼=

∑T

j=1

[
Gjωj + (1/2)

(
Hj + τ

)
ωj

2
]
+ γT

(17)ωj = −Gj/(Hj + τ)

(18)Q(t)
∼= −(1/2)

∑T

j=1
Gj

2/(Hj + τ)+ γT

(19)A =
∣∣B · Fp(t)− F(t)

∣∣

(20)F(t + 1) = Fp(t)− C · A

(21)c = 2− 2D/E

(22)C = 2c · r1 − c

(23)B = 2 · r2

(24)Aα = |B1 · Fα(t)− F(t)|
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where Fα(t) , Fβ(t) and Fδ(t) are the positions of α , β and δ wolves when the population is iterated to generation 
t; F(t) is the position of individual gray wolves in generation t; C1 and B1 , C2 and B2 , C3 and B3 are the coefficient 
vectors of α , β and δ wolves, respectively; F1(t + 1),F2(t + 1) and F3(t + 1) are the positions of α , β and δ wolves 
after (t + 1) iterations, respectively; F(t + 1) is the position of the next generation of gray wolves.

GWO–XGBOOST–CEEMDAN model
To improve carbon price prediction, we propose to combine the CEEMDAN, XGBOOST, and GWO models 
to build the GWO–XGBOOST–CEEMDAN model. The general idea is as follows: First, the GWO–XGBOOST 
model is established, and the GWO algorithm is used for optimizing the parameters of the XGBOOST model. 
Secondly, the CEEMDAN method is applied to decompose the residual series of the GWO–XGBOOST model 
to establish the GWO–XGBOOST–CEEMDAN hybrid model. Finally, the predicted values and the accumu-
lated values of the residual predictions are summed up to get the final prediction results of the model. Figure 1 
illustrates the specific process.

Data description
Data source
Accurate carbon price forecasts smooth investment decisions and maintain carbon market stability. There are big 
differences between China’s carbon trading pilots. The Hubei carbon trading market is the only carbon trading 
market in central China12. In addition, the Guangdong carbon market was officially launched in 2013, setting 
five first places in China’s carbon market trading39. Fujian is the first ecological civilization demonstration zone 
in China. The carbon market is aligned with the overall idea of the national carbon market, and it is the first pilot 
to adopt carbon verification standards and guidelines issued by the state. In particular, the data direct reporting 
system is completely consistent with the national system under construction standards, and the construction 
starting point is high40,41. To sum up, this paper chooses Guangdong, Hubei, and Fujian carbon trading markets 
as research objects. In this paper, we collect data on the three carbon markets from the Choice financial termi-
nal and the Wind database. The selected carbon prices take into account public holidays, differences in trading 
hours, and missing values of variables at home and abroad. In the above data, the Bohai Sea Power Coal Price 
Index and Natural Gas Market Quotation are weekly and ten-day data, and Eviews software is used to convert 
them into daily data. A hybrid model is evaluated by using 80% of the data for training and 20% for testing. The 
carbon price information for the three trading markets is shown in Table 1, and Table 2 presents descriptive 
statistics for each indicator.

ADF inspection
The ADF (Augmented Dickey–Fuller) test was proposed by economists David Dickey and Wayne Fuller in 1979. 
The test is a statistical method used to determine whether the time series data has a unit root (or the root of the 
series), i.e., to verify whether the data has smoothness. The ADF test gives a Guangdong p-value of 0.912439, a 
Hubei p-value of 0.638039, and a Fujian p-value of 0.988874, which are greater than the usually chosen signifi-
cance level (e.g., 0.05 or 0.01). Therefore, the original hypothesis cannot be rejected; that is, the historical carbon 
price data of the three carbon markets is not stationary. In short, it is not possible to use traditional econometric 
methods for experiments, and an integrated learning approach is used for the prediction study of non-stationary 
time series of carbon prices.

Data pre‑processing
The factors often have different magnitudes and units of magnitude. It is crucial to pretreat the data to be limited 
to [0, 1] to remove the adverse effects caused by odd sample data and make the data comparable.

where Z∗ represents the normalized value of the data; Z is the input data, and Zmin and Zmax represent the mini-
mum and maximum values of the input data, respectively.

(25)Aβ =
∣∣B2 · Fβ(t)− F(t)

∣∣

(26)Aδ = |B3 · Fδ(t)− F(t)|

(27)F1(t + 1) = Fα(t)− C1 · Aα

(28)F2(t + 1) = Fβ(t)− C2 · Aβ

(29)F3(t + 1) = Fδ(t)− C3 · Aδ

(30)F(t + 1) = (F1(t + 1)+ F2(t + 1)+ F3(t + 1))/3

(31)Z∗ =
Z − Zmin

Zmax−Zmin



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18447  | https://doi.org/10.1038/s41598-023-45524-2

www.nature.com/scientificreports/

Four aspects that affect the price of carbon
Carbon prices are impacted by a number of factors. This paper builds primary indicators of carbon price influ-
encing factors from four aspects: macroeconomics, energy prices, international carbon markets, and weather 
conditions. The detailed classification and secondary quantification of each indicator level are shown in Table 3.

Macroeconomics
The macroeconomy directly determines the boom in the carbon market42. The macroeconomic situation, specifi-
cally the advancement of the industrial economy, is the most representative of CO2 emissions, which will affect 
the price of carbon trading43. Guo Fuchun says that when macroeconomic conditions are favorable, production 
and business activities become active, and the carbon trading price will enter a relatively stable operation. In 
contrast, when the economy slows down, the carbon trading price will fluctuate sharply44. Meanwhile, carbon 

Figure 1.   GWO–XGBOOST–CEEMDAN model prediction process.

Table 1.   Carbon trading market data information.

Market Dataset Training set Test set Training date Test date Time nodes

Guangdong 703 563 140 2020/4/3–2022/7/14 2022/7/15–2023/2/3 2020/4/3–2023/2/3

Hubei 750 601 149 2020/1/2–2022/8/24 2022/8/25–2023/4/10 2020/1/2–2023/4/10

Fujian 699 560 139 2018/1/2–2022/9/16 2022/9/19–2023/5/5 2018/1/2–2023/5/5
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prices also reflect a country’s economic growth to a certain extent45. In addition, China’s carbon trading market is 
developing and maturing. It covers a broad spectrum of industries, including chemicals, construction materials, 
steel, non-ferrous metals, and various other sectors. Therefore, the rapid economic development and extension 
of China’s carbon market highlight the significance of carbon pricing mechanisms46.

Table 2.   Descriptive statistics of carbon price data.

Index name Mean Std Var Min 25% 50% 75% Max

Research object I: Guangdong carbon market—related variables

Y 50.95700 21.67600 469.86900 27.04000 28.48000 42.61000 77.02000 95.26000

X1.1 3105.00500 283.22600 80,216.69900 2247.32000 2856.65000 3019.20000 3229.08000 3544.69000

X1.2 31,804.61600 3344.51100 11,185,756.23000 21,052.53000 29,883.79000 32,861.34000 34,451.23000 36,799.65000

X1.3 3938.82600 489.80400 239,908.31400 2488.65000 3655.04000 3963.51000 4348.87000 4793.54000

X1.4 4579.15800 513.71300 263,900.86800 3508.70000 4098.71000 4712.31000 4964.77000 5807.72000

X2.2 662.55000 88.60400 7850.71000 525.35000 573.14000 683.08000 735.00000 850.94000

X2.3 5188.03000 1821.86100 3,319,179.05200 2490.57000 3491.55000 5445.17000 6740.67000 8615.91000

X3.1 56.53500 23.80500 566.68300 17.86000 30.81000 57.70000 79.72000 97.59000

X4.3 62.03100 29.04700 843.73200 13.00000 41.00000 53.00000 76.00000 201.00000

Research object II: Hubei carbon market—related variables

Y 37.91793 9.21166 84.85500 24.49000 28.96750 38.26000 47.44000 61.48000

X1.2 31,662.85910 3400.11127 11,560,756.66000 18,591.93000 29,869.74000 32,630.30500 34,293.65000 36,799.65000

X1.3 3910.49480 496.30847 246,322.10100 2237.40000 3653.15250 3944.67500 4275.00000 4793.54000

X1.4 4527.37730 518.30981 268,645.06100 3508.70000 4046.36750 4628.22500 4939.75750 5807.72000

X2.1 72.60910 23.53668 553.97500 19.50000 51.43750 74.10000 87.70250 129.47000

X2.2 662.95280 85.60991 7328.91900 508.96000 576.48740 673.27550 735.00000 863.67000

X2.3 5135.90040 1746.30901 3,049,595.17500 2488.45000 3614.98900 5246.80680 6604.83080 8676.97000

X3.1 57.30340 24.86076 618.05800 15.45000 29.74500 58.40500 80.95500 97.67000

X4.3 63.57550 31.84088 1013.84200 13.00000 42.00000 63.23500 73.25000 239.00000

Research object III: Fujian carbon market—related variables

Y 20.74330 6.73573 2,712,776.15600 2542.36000 16.25000 19.19000 25.28000 38.12000

X1.1 2774.70790 356.36149 126,993.51400 1975.77000 2481.34000 2835.87000 3032.92000 3544.69000

X1.2 29,673.45940 3707.38569 13,744,708.68000 22,445.37000 26,112.53000 29,673.46000 33,156.41000 36,432.22000

X1.3 3535.71570 627.95655 394,329.42300 2416.62000 2884.43000 3535.72000 4017.82000 4791.19000

X2.1 76.34070 19.25121 370.60900 39.54000 64.40000 74.78000 87.23000 124.37000

X2.2 650.75130 86.31098 7449.58600 531.04000 575.71000 595.10000 734.00000 884.03000

X2.3 5113.61820 1647.05074 2,712,776.15600 2542.36000 3678.41000 4684.76000 6602.58000 8557.84000

X3.1 49.74140 30.12951 907.78700 7.62000 24.90000 32.02000 80.84000 97.67000

X4.3 41.86680 14.44742 208.72800 13.00000 31.00000 41.87000 49.00000 126.00000

Table 3.   Primary indicators of carbon price impact factors.

Primary indicators Secondary indicators Factor symbols Serial number Literature sources

Macroeconomics

Shanghai Stock Exchange Industrial Index SHZQ X1.1 10,64

Dow Jones Industrial Average DQS X1.2 10

S&P 500 Index BP500 X1.3 10,64

CSI300 Index CSI300 X1.4 65,10

Energy prices

Brent Crude Oil CFD CFD X2.1 66,47,10

Bohai Sea Power Coal Price Index HBH X2.2 10

Natural Gas Market Offer TRQ X2.3 10,47

International carbon markets EU Carbon Emission Allowances EUA X3.1 66,11

Maximum Temperature ZGQW X4.1 47

Weather conditions Minimum Temperature ZDQW X4.2 47

Air Quality Index AQI X4.3 47,10,13
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Energy prices
It is often considered that energy is the factor that has the greatest impact on carbon prices47. With this in mind, 
researchers have been empirically searching for the drivers of carbon prices and understanding their future 
value through adequate predictive analysis. Early studies have identified energy prices as one of the indicators 
of the main influencing factors of carbon prices26,48–50. For example, crude oil51 and natural gas prices52. The 
majority of these studies have found that energy prices have a significant impact on carbon prices. However, 
investment strategies need to focus not only on the impact of external factors on carbon prices but also on the 
predictability of future returns. Consequently, numerous recent studies have concentrated on the predictability 
of carbon prices’ future values53,54. In conclusion, it is valuable to study the influence of energy prices on carbon 
prices both now and in the future.

International carbon markets
Foreign carbon markets influence China’s carbon prices11. On the one hand, Chinese carbon markets are still 
in the development stage. In contrast, foreign carbon markets have been established for a longer period of time 
and are relatively well-established. China’s carbon market will, to a certain extent, refer to foreign carbon mar-
kets when setting carbon emission quotas. For instance, the EUA price acts as the primary reference point in 
the global carbon trading market, significantly shaping carbon emission allowances and, consequently, carbon 
prices55. Specifically, EUA, certified emission reductions (CER), and other similar products are used to reference 
the fulfillment of carbon reduction obligations29. On the other hand, the disparity in economic development 
between China and other nations can result in variations in carbon market pricing. If China’s carbon market is 
priced low, transnational companies will speculate heavily in the Chinese carbon market to buy a large number 
of carbon emission rights, thus adding to the demand for carbon emission rights in the Chinese market and 
driving up the Chinese carbon price until it reaches parity with the international carbon price. Furthermore, at 
the macro level, an increase in carbon emissions reduces foreign direct investment, which affects the trading of 
carbon allowances and indirectly causes price volatility10. As of now, China’s carbon market is not yet in line with 
international standards. Consequently, the investor base remains relatively modest in size. Nevertheless, once 
the two are connected, the issue of speculation is expected to escalate. Hence, foreign carbon prices will have 
a dual effect: they will inform the establishment of carbon prices in China and potentially drive up the carbon 
price in the country through speculative activities11.

Weather conditions
Global warming is becoming more severe and the primary cause of this issue can be attributed to greenhouse 
gas emissions, especially CO2

56. Climate change can affect carbon price volatility through multiple channels. 
Earlier studies have shown that climate change can alter fossil energy consumption and thus affect carbon price 
fluctuations57–60. In the past few years, researchers have mainly addressed the significance of climate change on 
carbon prices from different perspectives. From a production standpoint, when temperatures become exces-
sively high or low, residents resort to cooling or heating equipment, resulting in a temporary upswing in energy 
consumption and subsequent CO2 emissions. In addition, from a business perspective, extreme weather and 
catastrophic events are exposing new energy companies to a significant physical risk, leading to changes in the 
energy mix and having a considerable impact on carbon prices61,62. To be more precise, the generation of envi-
ronmentally friendly energy sources like wind, solar, and hydropower is strongly influenced by various weather 
factors, including temperature, precipitation, and humidity63. Therefore, it is very important to consider climate 
change when predicting carbon prices46.

Experimental results and discussion
Evaluation indicators
In this study, five common metrics are used, as shown in Table 4. The larger the R2 and the smaller the remaining 
indicators, the better the predictive performance of the model.

Table 4.   Evaluation indicators.

Indicators Definition Formula

MSE Mean square error MSE = 1

n

∑n
i=1

(
yi − ŷi

)2

MAE Mean absolute error MAE = 1

n

∑n
i=1

∣∣yi − ŷi
∣∣

RMSPE Root mean square percentage error RMSPE =
√

1

n

∑n
i=1

∣∣∣ yi−ŷi
yi

∣∣∣
2

∗ 100%

MAPE Mean absolute percentage error MAPE = 1

n

∑n
i=1

∣∣∣ yi−ŷi
yi

∣∣∣ ∗ 100%

R2 Coefficient of determination R2 = 1− SSresidual
SStotal
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Experiment one: comparison of this paper’s model with different benchmark models
Algorithm table
To demonstrate the superiority of the prediction performance of the proposed GWO–XGBOOST–CEEMDAN 
model in practical applications, four other different benchmark models are first set up for comparison in this 
paper, namely GBDT, XGBOOST, GWO–XGBOOST, and GWO–XGBOOST–EEMD. As indicated in Table 5.

Model parameter setting
To validate the prediction accuracy of the GWO–XGBOOST–CEEMDAN model, various comparison algorithms 
are utilized to evaluate forecasting performance. For the prediction of the base model, the GBDT and XGBOOST 
models are selected to compare and analyze the prediction effect of GWO–XGBOOST. For the prediction of the 
combined residual correction model, the EEMD and CEEMDAN methods are used to compare and decompose 
the residual sequences generated by GWO–XGBOOST. The parameter settings of each model are shown in 
Table 6. According to the actual situation of the three carbon trading markets, the parameters of each model are 
adjusted as shown in Table 7, and the remaining parameters are set by default in Python.

Screening analysis of carbon price influencing factors
This study considers both the selection of historical carbon price variables and the identification of external influ-
ences in three carbon trading markets. More specifically, for the purpose of examining the correlation between 
historical carbon price variables and the carbon price data, we use PACF in order to identify the relevant input 
data characteristics for forecasting. Figure 2 shows the PACF results for Guangdong, Hubei, and Fujian. This 
analysis reveals a notable fourth-order autocorrelation in the carbon price data of Guangdong, whereas both 
Hubei and Fujian demonstrate a third-order autocorrelation. Xi is the output feature; {Xi-1, Xi-2, Xi-5, Xi-7} are 
the input historical variables for the Guangdong dataset; {Xi-1, Xi-3, Xi-5} are the input historical variables for 
the Hubei dataset; and {Xi-1, Xi-2, Xi-3} are the input history variables for the Fujian dataset.

Furthermore, with the intention of identifying the main external influences on carbon prices, this paper 
selects 11 primary carbon price indicators and uses random forest to rank the importance of the indicators 
for the purpose of indicator screening, as shown in Fig. 3. The screened carbon price indicators are shown in 
Table 8. The input variables for the Guangdong data set are {Xi-1, Xi-2, Xi-5, Xi-7, X1.1, X1.2, X1.3, X1.4, X2.2, 
X2.3, X3.1, X4.3}, and the input variables for the Hubei data set are {Xi-1, Xi-3, Xi-5, X1.2, X1.3, X1.4, X2.1, 
X2.2, X2.3, X3.1, X4.3}, and the input variables for the Fujian dataset are {Xi-1, Xi-2, Xi-3, X1.1, X1.2, X1.3, 
X2.1, X2.2, X2.3, X3.1, X4.3}.

Table 5.   Comparison of different models.

Models Decomposition technology Parameter optimization

GBDT

XGBOOST

GWO–XGBOOST √

GWO–XGBOOST–EEMD √ √

PROPOSED MODEL √ √

Table 6.   Parameters of each model.

Models Adjustment parameters

GBDT n_estimators; min_samples_leaf; learning_rate; max_depth; min_samples_split

XGBOOST n_estimators; colsample_bytree; learning_rate; max_depth

GWO–XGBOOST n_estimators; colsample_bytree; learning_rate; max_depth; subsample

Table 7.   Model parameter settings.

Models Guangdong parameters Hubei parameters Fujian parameters

GBDT (100,2,0.1,8,4) (30,9,0.1,20,20) (15,8,0.1,20,20)

XGBOOST (100,0.5,0.1,10) (100,0.2,0.1,18) (100,0.3,0.1,20)

GWO–XGBOOST (37.5037,0.3176,0.2457, 56.2732, 0.5770) (31.1208, 0.4177, 0.0441, 40.7127, 0.1817) (11.3251, 0.1224, 0.0683, 19.2370, 
0.5652)
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Carbon price forecast results I
Table 9 shows the effect of the fitted curves on the carbon price predictions for each model in the three test sets. 
Furthermore, to facilitate a visual comparison of the prediction outcomes between the proposed model and 
other comparative models, Figs. 4, 5, and 6 depict the prediction results for the Guangdong, Hubei, and Fujian 
datasets, respectively.

Experiment two: comparison of this paper’s model with different input feature models
Algorithm table
To further confirm the effectiveness of the feature selection algorithm, GWO–XGBOOST–CEEMDAN*, All-
VARIABLE-GWO–XGBOOST–CEEMDAN, and the proposed GWO–XGBOOST–CEEMDAN model are com-
pared in this paper, and the algorithm experiment table is shown in Table 10.

Carbon price forecast results II
The predicted effect graphs are shown in Figs. 7, 8, and 9, and the algorithm experimental results table is shown 
in Table 11.

Figure 3.   Random Forest screening results.

Table 8.   Carbon price finalization indicators.

Guangdong Hubei Fujian

Macroeconomics

Shanghai Stock Exchange Industrial Index 
(X1.1) Dow Jones Industrial Average (X1.2) Shanghai Stock Exchange Indus-

trial Index (X1.1)

Dow Jones Industrial Average (X1.2) S&P 500 Index (X1.3) Dow Jones Industrial Average 
(X1.2)

S&P 500 Index (X1.3) CSI300 Index (X1.4) S&P 500 Index (X1.3)

CSI300 Index (X1.4)

Energy prices

Bohai Sea Power Coal Price Index (X2.2) Brent Crude Oil CFD (X2.1) Brent Crude Oil CFD (X2.1)

Natural Gas Market Offer (X2.3) Bohai Sea Power Coal Price Index (X2.2) Bohai Sea Power Coal Price Index 
(X2.2)

Natural Gas Market Quotes (X2.3) Natural Gas Market Quotes (X2.3)

International carbon markets EU Carbon Emission Allowances (X3.1) EU Carbon Emission Allowances (X3.1) EU Carbon Emission Allowances 
(X3.1)

Weather conditions Air Quality Index (X4.3) Air Quality Index (X4.3) Air Quality Index (X4.3)
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Table 9.   Algorithm experiment results table. Significant values are given in Bold.

Forecast range Evaluation indicators GBDT XGBOOST GWO–XGBOOST GWO–XGBOOST–EEMD
GWO–XGBOOST–
CEEMDAN

Guangdong

MSE 0.650193 0.410348 0.368359 0.119977 0.078120

MAE 0.508363 0.391618 0.436538 0.275044 0.223989

RMSPE 1.013249 0.806493 0.775963 0.441638 0.356462

MAPE 0.642882 0.495045 0.556786 0.003506 0.002856

R2 0.931976 0.957069 0.961462 0.9874478 0.991826

Hubei

MSE 0.101325 0.081960 0.075187 0.005043 0.004184

MAE 0.240302 0.216567 0.232021 0.056902 0.050459

RMSPE 0.657276 0.589355 0.567327 0.147217 0.134632

MAPE 0.496693 0.447754 0.480307 0.001180 0.001047

R2 0.949081 0.958812 0.962216 0.997466 0.997898

Fujian

MSE 0.299317 0.170274 0.075187 0.005043 0.004184

MAE 0.407047 0.332075 0.232021 0.056902 0.050459

RMSPE 1.802013 1.347809 0.567327 0.147217 0.134632

MAPE 1.328623 1.080592 0.480307 0.001180 0.001047

R2 0.945945 0.958812 0.962216 0.997466 0.997898

Figure 4.   Guangdong model prediction effect.

Figure 5.   Hubei model prediction effect.
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Figure 6.   Fujian model prediction effect.

Table 10.   Algorithm experiment table.

Models External influencing factors Historical carbon price

GWO–XGBOOST–CEEMDAN* √

ALL-VARIABLE- GWO–XGBOOST–CEEMDAN √ √

PROPOSED MODEL √ √

Figure 7.   Guangdong model prediction effect.

Figure 8.   Hubei model prediction effect.
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Analysis of experimental results
Figure 10 shows the predicted results of the evaluation indexes of the above two groups of experiments. By 
comparing and analyzing the above two sets of experiments, we can draw the following conclusions:

(1)	 In single-model prediction, the GWO–XGBOOST model has the best prediction effect, which is mainly 
attributed to the following reasons: First, GBDT builds an integrated model by training a series of decision 
trees; each tree is trained on the residuals of the previous tree, so when the number of trees is large, the 
model may be over-fitted on the training set, resulting in large model prediction errors. Second, XGBOOST 
is an integrated learning method that enhances and optimizes on the basis of GBDT and improves generali-
zation ability but has weaker performance in dealing with the category imbalance problem. Finally, GWO, 
as an optimization algorithm for searching for the global optimal solution, can not only tune the hyper-
parameters in XGBOOST, such as learning rate, tree depth, subsample ratio, etc., but also fuse multiple 
XGBOOST models, adjusting the weights and parameters of different models to achieve the combination 
and integration of models. This can, to some degree, enhance the model’s stability and generalization ability, 
thus increasing its overall capability.

(2)	 For the combination algorithm, all combination models outperform comparison models in relation to 
predictive accuracy. The Guangdong dataset is used as an example, and the Hubei and Fujian datasets are 
consistent with this conclusion. First, to verify the effectiveness of the decomposition method proposed 
in this paper, GWO–XGBOOST–EEMD is contrasted with the model in this paper, and it is found that 
the prediction accuracy of the proposed model in this paper is improved by 34.888%, 18.562%, 19.286%, 
18.540%, and 0.443% for MSE, MAE, RMSPE, MAPE, and R2, respectively. The results indicate that the 
CEEMDAN approach proposed in this study offers an additional enhancement to the prediction accuracy 
of the GWO–XGBOOST model when compared to EEMD. Secondly, to further demonstrate the superior-

Figure 9.   Fujian model prediction effect.

Table 11.   Algorithm experiment results table. Significant values are given in Bold.

Forecast range Evaluation indicators GWO–XGBOOST–CEEMDAN*
ALL-VARIABLE- GWO–XGBOOST–
CEEMDAN PROPOSED MODEL

Guangdong

MSE 0.142878 0.147749 0.078120

MAE 0.302748 0.307266 0.223989

RMSPE 0.479748 0.488676 0.356462

MAPE 0.003858 0.003911 0.002856

R2 0.985052 0.984542 0.991826

Hubei

MSE 0.006618 0.029784 0.004184

MAE 0.065209 0.139503 0.050459

RMSPE 0.168078 0.357332 0.134632

MAPE 0.001348 0.002888 0.001047

R2 0.996674 0.985033 0.997898

Fujian

MSE 0.020320 0.021822 0.013272

MAE 0.114830 0.119552 0.095404

RMSPE 0.462370 0.475852 0.371209

MAPE 0.003709 0.003846 0.003070

R2 0.996330 0.996059 0.997603



16

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18447  | https://doi.org/10.1038/s41598-023-45524-2

www.nature.com/scientificreports/

ity of the feature selection algorithm, the GWO–XGBOOST–CEEMDAN* model only considers carbon 
price historical data, and the All-VARIABLE-GWO–XGBOOST–CEEMDAN model takes carbon price 
historical data and all external influences as input variables. The results of these three models indicate that 
the feature selection algorithm is helpful in improving the prediction performance of the hybrid model.

Discussion
Validation on other data sets
In order to verify the generalization ability of the model as well as its strong robustness, we selected a Q1 parti-
tioned article published in the journal ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH29. This 
paper selects the daily carbon prices in Beijing, Hubei, and Shanghai as sample data, all of which come from the 
China Carbon Trading Network, and the experiment uses 75% of the data as the training set and 25% as the test 
set as a way to verify the accuracy of the hybrid model. We use the raw data from this published paper to do a 
comparative analysis between our proposed model and the model prediction results from the published paper, 
which not only verifies again that our own model has strong stability and prediction accuracy but also makes the 
study richer and more convincing. The information on the three carbon trading markets is shown in Table 12.

The effect of the fitting curves of our carbon price prediction for three carbon markets using the proposed 
GWO–XGBOOST–CEEMDAN model is shown in Fig. 11. In addition, Table 13 is a table of the experimental 
results of the algorithms of the two models for the three carbon markets, which compares more intuitively the 
prediction accuracy capability of the proposed model with the models of the published papers.

Comparing the prediction accuracy of our own proposed model with the published paper model for the same 
dataset, we can draw the following conclusions:

Figure 10.   Results of index evaluation of each model.

Table 12.   Carbon trading market data information.

Market Dataset Training set Test set Training date Test date Time nodes

Beijing 1577 1183 394 2013.11.28–2018/9/7 2018/9/10–2020.4.27 2013.11.28–2020.4.27

Hubei 1525 1144 381 2014.4.3–2018/9/27 2018/9/28–2020.4.27 2014.4.3–2020.4.27

Shanghai 1561 1171 390 2013.12.19–2017/4/19 2017/4/20–2020.4.27 2013.12.19–2020.4.27
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(1)	 Most of the previous research focused on the analysis of historical carbon price prediction, and the selected 
published paper is a typical representative of the previous research, which is different from one of the 
innovations of my own thesis: considering the historical carbon price and the influencing factors at the 
same time so as to create a rich indicator system. Therefore, this published paper also validates, to a certain 
extent, the prediction accuracy of the proposed model when only considering the historical carbon price.

(2)	 The research objects of the published papers are selected as Beijing, Hubei, and Shanghai, which are dif-
ferent from the objects of our own paper. Firstly, it verifies that the proposed model is not limited to the 
carbon market in Guangdong, Hubei, and Fujian but can also be used in carbon price prediction studies in 
other regions, which means that the results can be extended to other regions, such as Beijing and Shanghai. 
Secondly, the research object in the published paper still includes the Hubei carbon market, which veri-
fies that the proposed model still has high accuracy in the case of another dataset that only considers the 
historical carbon price. In conclusion, by comparing the carbon price prediction with the published paper 
for the same dataset, it shows that the proposed model has stronger generalization ability and robustness.

(3)	 The GWO–XGBOOST–CEEMDAN model is more suitable than the VMD–SE–DRNN–GRU model used in 
the published paper to deal with the problem of forecasting time series data. Firstly, CEEMDAN automati-
cally determines the number of modes to be generated based on the dataset and generates intrinsic modal 
functions (IMFs), while VMD, although it can also perform modal decomposition, needs to pre-specify 
the number of modes to be decomposed into, which requires some domain knowledge or experiments to 
determine. If the number of modes chosen is inappropriate, it may lead to inaccurate decomposition results, 
thus CEEMDAN has more adaptive and flexible compared to VMD. Secondly, the GWO–XGBOOST–
CEEMDAN model has lower complexity compared to deep learning models, thus it is easier to train with 
limited data and does not require a large amount of computational resources, which can make it more 
practical in some applications, such as the field of carbon price prediction. Finally, XGBOOST models are 
usually very interpretable and can provide feature importance rankings, whereas deep learning models such 
as DRNN and GRU are usually more difficult to interpret, especially in highly complex network structures. 
In conclusion, both VMD–SE–DRNN–GRU and GWO–XGBOOST–CEEMDAN are sophisticated carbon 
price prediction methods, and GWO–XGBOOST–CEEMDAN may be a better choice in cases of complex 
or non-stationary data.

DM test
To further examine the prediction performance between the proposed GWO–XGBOOST–CEEMDAN integrated 
combination model and the comparison models, this section uses the DM test to analyze statistical errors from 
the perspective of statistical errors. The bold values in the table indicate that the p-value is below the significance 
threshold of 0.05. To visually assess the predictive performance of the GWO–XGBOOST–CEEMDAN model and 
other models, we analyze their predictive ability using the coverage ratio based on the DM results. The coverage 
ratio is expressed as the ratio of the number of DM results rejecting the original hypothesis to the total number 
of DM results. When the models exhibit comparable predictive capabilities, a lower number of DM test results 
have a p-value less than 0.05, resulting in a coverage rate below 50%. When the models demonstrate significantly 
superior predictive capabilities compared to the benchmark model, a higher number of DM test results exhibit 
a p-value below 0.05, leading to a coverage rate exceeding 50%.

This further analysis of the DM test results in Table  14 revealed that DM coverage for the 
GWO–XGBOOST–CEEMDAN model was 83.3% in all three datasets, demonstrating that the 
GWO–XGBOOST–CEEMDAN model outperformed the proposed benchmark model in the majority of 
instances, and thus the proposed hybrid model was statistically significant.

Limitations of the current study and future work
Although the constructed hybrid forecasting framework showcases superior performance in carbon trading price 
prediction and fills the current research gap in carbon price prediction, there are still a few shortcomings that 
need further improvement and development. Following are the main limitations of this study:

(1)	 Due to data availability limitations, the hybrid prediction framework we developed only considers eight 
influencing factors.

(2)	 This study provides information for related scholars. Firstly, this paper performs carbon price prediction 
first and then decomposes the residual series. As a result, data can be explored and utilized more effec-

Table 13.   Algorithm experiment results table. Significant values are given in Bold.

Forecast range Model MAE MAPE RMSE

Beijing
Published paper model 2.543 0.232 3.363

Proposed model 0.0847 0.0012 0.7177

Hubei
Published paper model 0.654 0.144 1.048

Proposed model 0.0265 0.0009 0.0328

Shanghai
Published paper model 1.212 0.143 1.673

Proposed model 0.0212 0.0006 0.0271
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tively, and prediction accuracy and reliability can be improved. Compared with the traditional method of 
decomposition followed by prediction, this paper provides an alternative way of thinking and method for 
carbon price prediction, which scholars can refer to further to explore and analyze the intrinsic mechanism 
of carbon price, expand the research field, and deepen theoretical understanding. Second, in the modeling 
process, in addition to the factors already considered, other factors that may affect carbon prices can be 
further considered. This will reveal more factors affecting carbon price change and further improve the 
prediction effect. In addition to better adapting to changes in data characteristics, we need to improve the 
hybrid forecasting framework. Specifically, we can implement automatic key parameter settings and build a 
smart carbon price prediction framework. This framework automatically adapts to data changes, improving 
prediction accuracy and stability. Finally, future research can also extend carbon price prediction to other 
fields, for instance, energy market prediction and climate change risk management, which will further 
prove the value of our research results.

Impact on sustainability
This study examines the effects of macroeconomics, energy prices, international carbon markets, and weather 
conditions on improving carbon trading price forecasts, which have crucial ramifications for sustainable devel-
opment. In particular, risk managers can incorporate multiple factors, such as energy factors and global carbon 
prices, into carbon market management. In addition, investors can grasp carbon market dynamics based on 
influencing factors and improve market participants’ flexibility and motivation. This paper conducts research 
related to carbon price forecasting, which is helpful for the government and enterprises to grasp the character-
istics of carbon prices and helps carbon market management and investment decisions, especially the solution 
of the carbon price prediction problem, which is linked to whether the double carbon target can be achieved 
on time or in advance. Therefore, this study aims to provide a reasonable forecast of carbon prices in order to 
facilitate carbon market participants in achieving their goals and help real producers reduce emissions efficiently 
through market mechanisms. In conclusion, the forecasting framework and the associated research findings we 
have developed hold significant implications for the advancement of sustainable development.

Feature importance analysis
To identify the key determinants in carbon price prediction, this paper uses XGBOOST and GBDT models for 
feature importance analysis, respectively. The results and statistical plots of feature importance indices for each 
model are shown in Table 13 and Fig. 12. Through preliminary observation, it is evident that the feature ranking 
results in the two models for the three data sets vary to some extent. A more in-depth examination of the feature 
rankings in Table 15 uncovers that the historical carbon price, natural gas market offers, and Bohai Ring Power 
Coal Price Index in energy prices, the S&P 500 and Dow Jones Industrial Index in macroeconomics, and the 
EU carbon emission allowances in the international carbon market rank ahead of the two models for the three 
data sets XGBOOST and GBDT as the key factors for carbon price prediction.

For governments, our findings suggest that historical carbon prices, natural gas market quotes, the Bohai Ring 
Power Coal Index, the S&P 500 Index, the Dow Jones Industrial Average, and EU carbon emission allowances 
can be effective ways to improve the predictive power of carbon prices in regional carbon trading markets, and 
policymakers can refer to our findings to make decisions about carbon market policies. First, for historical car-
bon price data, when the carbon price rises, the government makes stricter carbon reduction policies. This is to 
stimulate emission reduction measures. And when carbon prices fall, the government may reduce subsidies and 
support for carbon abatement to prevent a burden on the Treasury. Second, changes in natural gas supply and 
the Bohai Ring Power Coal Index can affect energy security. When these prices rise, the government can increase 
domestic production and reserves to guarantee energy supply stability. When prices fall, the government should 
promote the energy market by increasing subsidies and controlling imports. Moreover, the S&P 500 and the 
Dow Jones Industrial Average reflect the macroeconomic environment. When prices fall, the government takes 
stimulus measures, such as cutting taxes or increasing spending, to promote economic growth. When prices rise, 
the government can take restraining measures, such as strengthening regulation or controlling capital inflows, to 
prevent overheating. Finally, EU carbon emission allowances reflect international carbon markets. When quotas 
rise, the government should increase carbon emission quotas to ease enterprises’ economic burden. This will 
avoid excessive carbon prices that lose them competitiveness. When the quota decreases, the government should 

Table 14.   DM test results. a p-value of 0.0 does not mean that the data is 0, it just means that the p-value is 
small and the probability tends to be 0.

Models

Guangdong Hubei Fujian

MAE MSE MAE MSE MAE MSE

GBDT 1.31480e-07 0.000140 0.000000 2.31306e-10 0.000000 3.09520e-10

XGBOOST 0.000100 0.002870 0.000000 3.12004e-10 0.000000 4.68075e-11

GWO-XGBOOST 3.02359e-09 7.92154e-06 0.000000 0.000000 0.000000 0.000000

GWO-XGBOOST-EEMD 0.015140 0.009720 0.130250 0.215960 0.464508 0.254400

GWO-XGBOOST-CEEMDAN* 0.000610 0.000350 0.003640 0.007930 0.033014 0.009580

All-VARIABLE-GWO-XGBOOST-CEEMDAN 0.411980 0.632980 0.000000 1.04716e-12 0.006089 0.001100
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reduce carbon emission quotas or support low-carbon technologies to reduce carbon emissions. In addition, 
the government should strengthen regulation and management to reduce fraud and misconduct on the carbon 
market, which will improve market transparency and stability.

In conclusion, the carbon price forecasting study in this paper can act as a point of reference for policymakers 
to consider various factors. This will ensure policy sustainability and effectiveness.

Figure 12.   Feature importance diagram.

Table 15.   Carbon price characteristics in order of importance.

Guangdong Hubei Fujian

XGBOOST GBDT XGBOOST GBDT XGBOOST GBDT

Features Score Features Score Features Score Features Score Features Score Features Score

xi-1 0.302 xi-1 0.291 xi-1 0.246 xi-1 0.211 xi-2 0.192 xi-1 0.239

xi-5 0.136 xi-5 0.173 xi-3 0.187 xi-3 0.118 xi-1 0.189 xi-3 0.132

xi-2 0.134 xi-2 0.170 AQI 0.115 xi-5 0.111 EUA 0.112 DQS 0.091

TRQ 0.093 xi-7 0.055 BP500 0.081 TRQ 0.109 AQI 0.090 BP500 0.083

xi-7 0.066 EUA 0.055 TRQ 0.078 CSI300 0.097 xi-3 0.089 EUA 0.076

HBH 0.059 BP500 0.047 CFD 0.076 EUA 0.096 TRQ 0.072 SHZQ 0.073

DQS 0.044 DQS 0.044 xi-5 0.075 CFD 0.066 HBH 0.067 xi-2 0.068

BP500 0.041 TRQ 0.039 DQS 0.062 HBH 0.052 SHZQ 0.056 CFD 0.065

CSI300 0.040 HBH 0.033 HBH 0.031 DQS 0.050 CFD 0.056 HBH 0.064

SHZQ 0.038 AQI 0.032 EUA 0.025 AQI 0.050 BP500 0.044 TRQ 0.057

EUA 0.023 CSI300 0.031 CSI300 0.023 BP500 0.039 DQS 0.035 AQI 0.053

AQI 0.021 SHZQ 0.030
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Conclusions
This paper uses sophisticated data decomposition methods and efficient feature subset selection algorithms to 
propose a comprehensive consideration of multiple influencing factors in a carbon price forecasting framework, 
thus achieving the expected forecasting results. To validate the effectiveness of the designed hybrid forecasting 
framework, we conducted an empirical study on three regional carbon emission trading markets in Guangdong 
Province, Hubei Province, and Fujian Province, China, and evaluated five performance evaluation indicators, 
six benchmark models, three case analyses, and four discussions to systematically and holistically examine the 
developed hybrid forecasting framework. The prediction results clearly demonstrate the superior performance 
of the developed prediction framework over all benchmark models. Therefore, we contend that the proposed 
carbon price forecasting framework offers a valuable and effective approach to predicting carbon prices. Specifi-
cally, this study’s findings can be briefly outlined as follows:

(1)	 The XGBOOST model based on the boosting integrated learning framework has high prediction accuracy 
and strong generalization ability. However, the model’s predictive performance is sensitive to parameter 
settings, and the grey wolf optimization algorithm facilitates rapid determination of the optimal parameters 
for the XGBOOST model. Among the single-model carbon price prediction approaches, the proposed 
GWO–XGBOOST model exhibits the highest level of accuracy.

(2)	 The nonlinear residual series generated by an individual machine learning model for carbon price predic-
tion still contains valid information. In this paper, CEEMDAN is utilized to decompose the residual series 
generated by the GWO–XGBOOST model into sub-series with different frequencies, so that each sub-series 
is predicted separately, and finally, the prediction results of each sub-series are superimposed to achieve the 
overall prediction result. In comparison to the traditional single model, the combined GWO–XGBOOST–
CEEMDAN model presented in this paper has the most accurate prediction effect.

(3)	 Two machine learning models, XGBOOST and GBDT, are used to model carbon prices separately and 
perform feature importance analyses. It is found that the historical carbon price, the natural gas market 
price, and the Bohai Sea Power Coal Price Index in the energy price, the macroeconomic S&P 500 and Dow 
Jones Industrial Average in the macroeconomy, and EU carbon emission allowances in the international 
carbon market are the main influencing factors for carbon price prediction.

(4)	 This study constructs a carbon price prediction model in accordance with multiple influencing factors and 
introduces a feature selection method. By selecting the features with the most predictive power from many 
possible input features and mitigating the adverse impacts of redundant information and noise among 
features, the model’s predictive performance and generalization capability are enhanced.

(5)	 In this paper, external influences and historical carbon price data are jointly used as input features of the 
model, such as macroeconomics, energy prices, and international carbon markets. Compared with previous 
studies that only considered historical carbon price data and all external influences and historical carbon 
price data concurrently, the accuracy of carbon price prediction has significantly improved. For one thing, 
it shows the significance of feature selection, and for another, it indicates that the combination of external 
factors and historical carbon price data can forecast the carbon price trend more precisely.

Data availability
The data used to support the findings of this study are available from the corresponding author upon request.
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