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Extent of resection after surgery is one of the main prognostic factors for patients diagnosed with 
glioblastoma. To achieve this, accurate segmentation and classification of residual tumor from post‑
operative MR images is essential. The current standard method for estimating it is subject to high 
inter‑ and intra‑rater variability, and an automated method for segmentation of residual tumor in 
early post‑operative MRI could lead to a more accurate estimation of extent of resection. In this study, 
two state‑of‑the‑art neural network architectures for pre‑operative segmentation were trained for 
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the task. The models were extensively validated on a multicenter dataset with nearly 1000 patients, 
from 12 hospitals in Europe and the United States. The best performance achieved was a 61% Dice 
score, and the best classification performance was about 80% balanced accuracy, with a demonstrated 
ability to generalize across hospitals. In addition, the segmentation performance of the best models 
was on par with human expert raters. The predicted segmentations can be used to accurately classify 
the patients into those with residual tumor, and those with gross total resection.

Glioblastoma, the most common malignant primary brain cancer, requires a multidisciplinary treatment 
approach comprising maximum safe surgical resection, followed by concurrent radiation and  chemotherapy1. 
Even so, median survival in unselected patients is only 12  months2. Due to the high invasiveness, a complete 
resection of all tumor cells is not possible. Still, extensive surgical resections are associated with longer  survival3, 
but as surgically induced neurological impairment is associated with shorter  survival4, extent of resection (EOR) 
and surgical strategy, for example resection or biopsy only, needs to be weighed up against risks in individual 
patients.

The EOR is calculated as the ratio between the surgically-removed and pre-operative tumor volume, which 
relies on an accurate segmentation of the tumor tissue in both pre- and post-operative MR scans. In recent years, 
a large body of work has focused exclusively on automated segmentation of pre-operative glioblastoma, yet the 
task of residual tumor segmentation from early post-operative MRI (EPMR) has gained less attention from the 
research community. In current practice, the residual tumor size is estimated manually through eye-balling5, or 
using crude measures such as the bi-dimensional product of the largest axial diameter of the contrast enhancing 
residual tumor, according to the Response Assessment in Neuro-Oncology (RANO)  criteria6. Manual volume 
segmentations are more sensitive but expertise-dependent and time-consuming, with high inter- and intra-
rater  variability5,7. An automated method for post-operative tumor volume segmentation from EPMR would 
therefore be beneficial.

Glioblastoma segmentation from pre-operative MR scans has received a lot of attention in the literature in 
recent years. Many contributions were motivated by the MICCAI Brain Tumor Segmentation (BraTS)  Challenge8. 
With the emergence of fully convolutional neural networks (CNNs)9, deep learning-based approaches have 
nearly completely replaced more conventional methods in medical image  segmentation10. Variants of the U-Net 
 architecture11 have facilitated the basis-architecture for the majority of auto-segmentation algorithms, including 
 DeepMedic12, Attention U-Net13, and the recently established nnU-Net14, with state-of-the-art results in several 
medical image segmentation benchmarks. The winning submissions in the BraTS challenge in 2021 and 2022 
were an extension of the nnU-Net  architecture15, and an ensemble of three state-of-the art architectures for 
medical image segmentation, comprising nnU-Net, DeepSeg, and  DeepSCAN16, respectively. In the absence 
of a publicly available dataset for residual tumor segmentation from EPMR, the literature on this problem is 
sparse when compared to the pre-operative segmentation task. Semi-automatic methods, combining of one or 
several voxel- or shape-based image segmentation algorithm, have been proposed from intensity thresholding 
(e.g., Otsu and relative entropy)17–19, fuzzy  algorithms18, Gaussian mixture  model20, morphological  operations19, 
region-based active  contours21, 22, the level set  approach21–23, and  CNNs24. Unfortunately, these methods relied 
on user inputs, either by manual initialisation, or by interactive refinement of the resulting segmentation. They 
are therefore challenging to use in clinical practice, and in large datasets. In addition, all validation studies were 
solely performed on single-center local datasets, consisting of 15 to 37 patients, making if difficult to demonstrate 
the generalizability of the proposed methods.

Regarding fully automated approaches, Meier et al.25 presented an automated method based on decision 
forests for residual tumor segmentation using EPMR from 19 patients. A more recent work by Ghaffari et al.26 
proposed to fine-tune a 3D densely connected U-Net, pre-trained on the BraTS20 dataset, on a local dataset of 
15 post-operative glioblastomas. However, the MR scans were all acquired for radiation therapy planning and 
not within the recommended time frame to acquire EPMR scans, within 72 hours after surgical  resection6. Deep 
learning approaches have recently shown to outperform more traditional algorithms on most image segmenta-
tion tasks, including segmentation of pre-operative  glioblastomas15,16. The utmost requirement is the number 
of included patients and the quality of the MR images comprising a study dataset. Preferably, the data should 
originate from different locations, to evaluate the ability of the trained models to generalize across different 
hospitals, scanners, or clinical practice.

In this work, we determine the performance of two CNN architectures to segment residual enhancing glio-
blastoma on early post-operative scans. The selected architectures are the nnU-Net, state-of-the-art for pre-
operative glioblastoma segmentation, and AGU-Net, an architecture developed for pre-operative segmentation 
of brain tumors. These architectures have both demonstrated excellent performance on pre-operative segmenta-
tion in previous studies on pre-operative brain tumor  segmentation27–29, and they exhibit different strengths and 
weaknesses. The automatic results are compared with manual segmentations, using different combinations of 
MRI scans in a large dataset consisting of paired pre- and early post-operative MRI scans from 956 patients in 12 
medical centers in Europe and the United States. Extensive validation studies are presented to identify the best 
architecture configuration, quantify the performances and ability to generalize, and highlight potential relevance 
for use in clinical practice. Finally, the best performing models are made publicly available and integrated into 
the open software  Raidionics29.
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Materials & Method
Ethics and informed consent statement
The study was conducted in accordance with the Declaration of Helsinki. The study protocol was approved by 
the Medical Ethics Review Committee of VU University Medical Center (IRB00002991, 2014.336), and the Nor-
wegian regional ethics committee (REK ref. 2013/1348 and 2019/510). Written informed consent was obtained 
from patients as required for each participating hospital.

Data
A dataset comprised of pre-operative and early post-operative MRI scans from 956 patients, who underwent 
surgical resection of glioblastoma, was assembled for this study. Twelve different hospitals across Europe and 
in the US contributed data, with the following patient distribution per center: 23 patients from the Northwest 
Clinics, Alkmaar, Netherlands (ALK); 73 patients from the Amsterdam University Medical Centers, location VU 
medical center, Netherlands (AMS); 43 patients from the University Medical Center Groningen, Netherlands 
(GRO); 40 patients from the Medical Center Haaglanden, the Hague, Netherlands (HAG); 55 patients from the 
Humanitas Research Hospital, Milano, Italy (MIL); 41 patients from the Hôpital Lariboisière, Paris, France (PAR); 
108 patients from the University of California San Francisco Medical Center, U.S. (SFR); 53 patients from the 
University Medical Center Utrecht, Netherlands (UTR ); 45 patients from the Medical University Vienna, Aus-
tria (VIE); 51 patients from the Isala hospital, Zwolle, Netherlands (ZWO); 237 patients from St. Olavs hospital, 
Trondheim University Hospital, Norway (STO); and 187 patients from the Sahlgrenska University Hospital, 
Gothenburg, Sweden (GOT).

The cohorts are subsets of a broader dataset, thoroughly described previously for their pre-operative  content30, 
for patients with available EPMR data. All EPMR scans were acquired within 72 hours after surgery, with the 
exception of the UTR center where the limit used was up to one week post-surgery. The recommended time 
frame for acquiring the EPMR scans has been stated in the National Comprehensive Cancer Network (NCCN) 
 recommendations31, in order to maximize differences between residual enhancing tumor and enhancement 
due to post-surgical changes in the  tissue32, 33. For each patient in the dataset, the following post-operative MRI 
sequences were acquired: T1-weighted (T1w), gadolinium-enhanced T1-weighted (T1w-CE), and T2-weighted 
fluid attenuated inversion recovery (FLAIR).

For the T1w-CE sequence, the volume dimensions are covering [128;896] × [42;896] × [17;512] voxels, and 
the voxel size ranges are [0.26;1.2] × [0.26;5.0] × [0.49;7.2] mm3 . An average T1w-CE volume has a resolution of 
[430, 461, 180] voxels with a spacing of [0.67 × 0.64 × 1.96] mm3 . Details about the the resolution and spacing 
of the other sequences can be found in the supplementary materials, Table S2.

The residual tumor tissue was manually segmented in 3D in T1w-CE MR scans by trained annotators, super-
vised by expert neuroradiologists and neurosurgeons. The manual segmentation was performed using all avail-
able standard MR sequences, and residual tumor tissue was defined as enhancing tissue in the T1w-CE scan, 
but darker in the T1w scan. Hence, blood was distinguished from residual tumor by a hyperintense signal 
on T1w scans. For each patient, a further post-operative distinction can be made between cases showcasing 
residual tumor (RT) in EPMR scans and cases presenting a gross total resection (GTR), defined as a residual 
tumor volume of less than 0.175  ml34. The cut-off was chosen to reduce risk of interpretation problems when 
distinguishing between tumour enhancement and that of non-specific enhancement, such as small vessels or 
enhancing pia mater. Under this paradigm, 352 patients (35%) in our dataset had a GTR, whereas the remaining 
604 patients had residual tumor. The average post-operative tumor volume is 3 ml, whereas the average pre-
operative tumor volume is 35 ml. An overview of the data from the 12 hospitals is shown in Table 1, and some 
examples are illustrated in Fig. 1.

In addition, 20 patients out of the 73 in the AMS cohort have been annotated eight times in total, by four 
novices raters and four experts raters. This cohort has been used in a previous study to evaluate the inter-rater 

Figure 1.  Dataset examples for four patients, separated by white dash-lines. For each patient, an axial view 
from the EPMR T1w-CE, EPMR T1w, EPMR FLAIR, and pre-operative T1w-CE are displayed. Outlines of the 
manually annotated tumors are shown in green.
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variability of tumor annotation from annotators with different levels of  experience7, and will be referred to as 
the inter-rater variability dataset in the remainder of the document.

Segmentation process
Similar to our previous work on pre-operative glioblastoma  segmentation27, the following two competitive CNN 
architectures were selected for the task of voxel-wise segmentation of residual tumor tissue: patch-wise nnU-
Net14 and full-volume AGU-Net28.

Multiple MR sequences combinations can be considered as input for the CNN architectures. In an attempt to 
minimize essential input and following typical incremental assessment by neuroradiologists, these combinations 
of input sequences were considered for the automated segmentations of post-operative tumor: (A) the EPMR 
T1w-CE scan only, (B) the EPMR T1w-CE and EPMR T1w, to potentially distinguish between blood and residual 
tumor, (C) all standard EPMR sequences: T1w-CE, T1w, and FLAIR scans, (D) the EPMR T1w-CE and EPMR 
T1w, and the pre-operative T1w-CE MR scan and corresponding tumor segmentation mask, and (E) all standard 
EPMR sequences: T1w-CE, T1w, and FLAIR scans, and the pre-operative T1w-CE MR scan and corresponding 
tumor segmentation mask. An overview of the whole segmentation pipeline with the different input designs and 
subsequent steps is presented in the following sections, and illustrated in Fig. 2.

Pre‑processing
For proper anatomical consistency across the different inputs sequences, an initial image-to-image registration 
procedure was performed. The EPMR T1w-CE scan was elected as the reference space and all subsequent volumes 
were registered to it using the SyN diffeomorphic  method35 from the Advanced Normalization Tools (ANTs) 
 framework36. Skull-stripping was subsequently performed on all input MR scans, based on the brain mask from 
the EPMR T1w-CE scan. All brain masks were automatically generated using a pre-trained slab-wise AGU-Net 
model with input shape 256× 192× 32 voxels. For the nnU-Net architecture, the pre-processing was automati-
cally decided by the framework based on the dataset, and all inputs were resampled to 0.5× 0.5× 1.0mm3 spac-
ing and zero-mean normalized. For the AGU-Net architecture, the full-resolution analysis required a lower reso-
lution, and therefore all inputs were resampled to an isotropic 1.0mm3 spacing, resized to 128× 128× 144 voxels, 
and zero-mean normalized.

Table 1.  Dataset distributions and statistics across the twelve hospitals, represented by their acronyms. RT: 
residual tumor, GTR: gross total resection.

Hospital HAG MIL ZWO VIE ALK PAR SFR GRO UTR AMS STO GOT

Patients 40 55 51 45 23 41 108 43 53 73 237 187

RT 23 34 18 30 18 29 80 26 20 51 162 113

GTR 17 21 33 15 5 12 28 17 33 22 75 74

RT ratio (%) 57.5 61.8 35.3 66.7 78.3 70.7 74.1 60.5 37.7 69.9 68.4 60.4

Figure 2.  Overall residual tumor segmentation pipeline from EPMR scans and classification between gross 
total resection or residual tumor. The registration is performed using the SyN approach from ANTs, multiple 
input configurations using different combinations of MR sequences were considered (noted from A to E), and 
two architectures were evaluated: nnU-Net and AGU-Net.
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Training specifications for the nnU‑Net architecture
Architecture design. From the nnU-Net framework analysis of the dataset, the 3D full-resolution U-Net with 
the following parameters was recommended, using 192× 128× 80 voxels as input patch size. The network used 
five levels, downsampling using strided convolution layers, and upsampling using transposed convolution lay-
ers. Kernel size of 1× 3× 3 voxels for the first level, 3× 3× 3 for the remaining four levels, and filter sizes of 
{32, 64, 128, 256, 320} were used for each level, respectively. The loss function was a combination of the Dice 
score and cross-entropy. A stride of one was used for the convolution layers.

Network training. All models were trained from scratch for 1000 epochs using a stochastic gradient descent 
with Nesterov momentum optimizer (momentum=0.99). One epoch was defined as 250 batch iterations with a 
batch size of two. On-the-fly data augmentations were performed comprising rotation, scaling, additive Gauss-
ian noise, Gaussian blur, brightness and contrast augmentation, and gamma augmentation.

Training specifications for the AGU‑Net architecture
Architecture design. The AGU-Net, as described by Bouget et al.28, is a 3D U-Net architecture with an inte-
grated attention-gated mechanism, with five block levels using filter sizes of {16, 32, 128, 256, 256}, respectively. 
The input size of the network was set to 128× 128× 144× S , with S being the number of sequences used as 
input. The architecture also uses multi-scale input and deep supervision. The class-averaged Dice loss, excluding 
the background, was used for training the different models.

Network training. All models were initialized using pre-trained weights from the best pre-operative glioblas-
toma segmentation  model27, and only the input layer was adapted to account for the different input combina-
tions considered. The Adam optimizer was used with an initial learning rate of 1× 10−3 , and the training was 
stopped after 30 consecutive epochs without validation loss improvement. Gradient  accumulation37 was per-
formed to increase the batch size from 2 samples to 32, tackling graphics processing unit (GPU) memory limita-
tions for large batch training. Data augmentation techniques were leveraged including horizontal and vertical 
flipping, random rotations in the range [−20◦, 20◦] , and a translation of up to 10% of the axis dimension. Each 
augmentation was performed with a probability of 50% for each training sample.

Post‑processing and GTR classification
During inference, residual tumor tissue was predicted by each trained model, resulting in a probability map of 
the same resolution as the EPMR T1w-CE scan. A binary mask was then generated from the probability map, 
using the best threshold determined from the validation studies. The binary mask was further refined by filtering 
out potential noise, inherent to the voxel-wise segmentation task, by applying a connected components analysis 
and removing any identified object smaller than 20 voxels. Finally, the refined binary mask was used to assess 
whether gross total resection has been achieved for the patient.

Validation studies
In this work, the trained models were assessed based on their ability to perform segmentation of the residual 
tumor and to classify patients into those with gross total resection and those with residual tumor. For the segmen-
tation task, only two classes are considered, whereby a positive voxel exhibits tumor tissue, whereas a negative 
voxel represents either background or normal tissue. For the classification task, a rest tumor volume threshold 
was selected to serve as cut-off value.

Protocols
The validation studies presented in this work were conducted following a five-fold cross-validation, summarized 
in Table 2. First, all patients from 11 out of the 12 the hospitals in our dataset, excluding the AMS cohort, were 
split into five hospital-stratified folds, with an approximately balanced number of patients in each fold. The 
remaining 73 patients from the AMS hospital were kept as an hold-out test set. For each iteration of the cross-
validation, four folds were used for training, the remaining fifth fold was used for validation, and the hold-out 
set was used for test.

This approach presents similar benefits to the leave-one-hospital-out strategy used in previous  work27, with 
the advantage of a reduced training time. Finally, predictions over the test set were generated by ensembling 
over the predictions obtained by each of the five trained models. An average pooling voting scheme was applied 
to each of the model predictions, to produce a single softmax prediction.

Table 2.  Distribution of hospitals and patient samples featured in the 5-fold validation sets and hold-out test 
set.

Hospital-wise cross-validation set

Hold-out setFold 0 1 2 3 4

Hospitals validation STO GRO, MIL UTR SFR, VIE PAR, ZWO ALK, HAG GOT AMS

Patients train 646 732 730 728 696 —

Patients validation 237 151 153 155 187 73
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Metrics
To evaluate the models’ voxel-wise performance on the task of residual tumor segmentation, Dice scores were 
computed between the ground truth annotation and the post-processed binary prediction mask. The Dice scores 
are reported for the subgroup of patients with residual tumor tissue according to the ground truth annotation, 
labelled as the ’positive’ (P) group, as the Dice score is not stable when applied to empty or nearly empty seg-
mentation masks. The Dice scores for the subgroup of patients with residual tumor according to the ground 
truth annotation and the network predictions, labelled as the ’true positive’ (TP) group, are also reported. Pooled 
estimates, when computed from each fold’s results, are reported for each measurement as mean and standard 
deviation (indicated by ±) in the tables. For the purpose of assessing the correctness of the predicted tumor size 
and location, the median absolute volume error (AVE) and the 95% Hausdorff distance (HD95) metrics are also 
reported.

For the patient-wise classification task of distinguishing patients with gross total resection and patients 
with residual tumor, a standard sensitivity and specificity approach was conducted represented by the balanced 
accuracy score (noted bAcc). A residual tumor volume below the clinical volume threshold was thus counted as 
a negative (i.e., GTR) and as positive otherwise (i.e., RT). Following this consideration, a patient was considered 
a true positive (TP) if both the ground truth annotation residual tumor volume and detected residual tumor 
volume were ≥ 0.175 ml, for any given Dice score (i.e., ≥ 0.01 ). Conversely, if both volumes were < 0.175 ml, the 
patient was labelled as a true negative (TN). Patients where the ground truth volume was above the threshold 
volume and the prediction was below were marked as false negatives (FN), and false positive (FP) vice versa.

In the case of inter-rater variability, the Jaccard score, closely related to the Dice score by J = D
2−D

 , was used 
to compare the models’ performance. The Jaccard was chosen for easy comparison with a previously published 
work on the same  dataset7.

Statistics
Multiple statistical analyses were carried out to assess and compare the different architectures and input configu-
rations. Statistical tests were conducted on both the cross-validation splits and test set, depending on the task. 
A significance level of 5% was used throughout the statistical analysis.

For comparing the different input configurations in terms of segmentation performance, Tukey’s range tests 
were performed on the test set, for each of the two architectures. For comparing the two architectures trained 
on the best input configurations on the segmentation task, a Mann-Whitney U test was conducted on the test 
set. In terms of classification performance, confidence intervals of individual models were calculated using the 
bias-corrected and accelerated (BCa) interval method on the test set. For the confidence intervals, significance 
was determined by assessing whether the intervals overlapped. The models classification performance were also 
compared using the cross-validation set, computing normal confidence intervals for individual models using 
pooled estimates from each fold. In the inter-rater study, the Mann-Whitney U test was used to compare each 
of the architectures with the best input configuration against each individual annotator, as well as the average 
scores of the two annotator groups novices and experts, and the average over all annotators.

Experiments
The following three experiments were conducted in this study: 

(1) Residual tumor segmentation performance study: using the 5-fold cross-validation protocol and segmenta-
tion metrics, both nnU-Net and AGU-Net architectures’ segmentation performances were compared for 
the five combinations of input sequences.

(2) Gross total resection classification performance study: using the 5-fold cross-validation protocol, clas-
sification metrics, and best input combination identified in the first experiment, both architectures were 
compared in terms of ability to classify between gross total resection and residual tumor patients.

(3) Inter-rater variability study: the best model from each architecture was benchmarked in terms of segmenta-
tion performance against the performance of novice and expert annotators, using the inter-rater variability 
dataset. For each patient, a consensus agreement annotation has been created using a majority voting 
approach. Using all eight annotations from both experts and novices, a voxel was defined as belonging to 
a tumor if annotated by more than half of the annotators. The models’ binary predictions and the eight 
inter-rater annotations were then compared against the ground truth annotations (as used in the hold-out 
test set) and the consensus annotations.

Results
The studies were performed using multiple machines with the two following specifications: (i) Intel Core Proces-
sor (Broadwell, no TSX, IBRS) central processing unit (CPU) with 16 cores, 64GB of RAM, Tesla V100S (32GB) 
dedicated GPU, and a regular hard-drive and (ii) a GPU server with a total of 256 CPU cores, 2TB of RAM, and 
six NVIDIA A100-SXM4 (80GB) cards. The AGU-Net architecture was implemented in Python 3.6 with the 
TensorFlow v1.13.1  library38. For the nnU-Net architecture, Python 3.8, PyTorch v1.13.139, and the nnU-Net 
framework v1.7.014 were used.

Residual tumor segmentation performance study

Segmentation performances across both architectures, for all input sequences combinations, and only for patients 
with residual tumor are summarized in Table 3. For both architectures, the lowest average Dice score over the 
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external test set was obtained with configuration A, indicating that solely using T1w-CE MR scans is insufficient 
for identifying post-operative residual tumor. The addition of the T1w scan as input (i.e., configuration B) pro-
vides at least a 5% improvement in Dice scores over the test set for both architectures. This illustrates the addi-
tional value of the T1w sequence, presumably due to better distinction between blood and tumor. The inclusion 
of the FLAIR scan in input configuration C slightly degraded the Dice score compared to input configuration 
B. Finally, the inclusion of pre-operative data does not seem to improve the performance for any architecture, 
as the Dice scores for input configuration D are again slightly lower than for configuration B. Further addition 
of the FLAIR scan in input configuration E leads to a minor decrease in Dice scores compared to configuration 
D. For both architectures, input configuration B yielded the highest Dice scores on the test set. The highest Dice 
and true positive Dice scores were obtained with the nnU-Net architecture trained on input configuration B, 
with respectively 53% and 59% Dice on the validation and test sets. The segmentation performance of nnU-Net 
trained on config B was significantly better than the segmentation performance of AGU-Net trained on config 
B (p-value=0.0023, see Table S5, supplementary material). Overall, performances obtained across the test set are 
stable, in support of generalizability. Likewise, performances over the validation sets from the cross-validation 
protocol are consistent for input configurations B to E. The same results trends can be observed across both archi-
tectures for the true positive Dice, although slightly higher for the positive Dice using the nnU-Net architecture. 
However, none of the observed differences between input configurations for each architecture were statistically 
significant according to the Tukey’s range tests (see Table S3 and S4, supplementary materials).

Looking at patient-wise performances, models trained with the nnU-Net architecture achieve nearly perfect 
recall across all configurations for both the validation and test sets. Whereas the patch-wise strategy followed 
allows for segmenting smaller structures, the loose criterion to consider a network prediction as true positive 
further strengthens this aspect. Indeed, only a few correctly overlapping voxels between the prediction and the 
ground truth are needed for residual tumor to be considered satisfactorily identified patient-wise. Due to the full 
volume approach, models trained with AGU-Net generally struggle to identify small elements, as indicated by 
an overall around 80% across the board. Conversely, the opposite trend can be noticed in regards to patient-wise 
precision performance. Models trained with nnU-Net tend to perform more erroneous predictions as indicated 
by average precision scores below 70%, whereas AGU-Net models tend to be more precise with precision scores 
up to 95%. Similarly, the HD95 for nnU-Net evaluated on the validation set are about twice the distances of the 
AGU-Net, most likely due to the high rate of false positives produced by the patch-wise approach. This effect 
is considerably reduced for the test set, probably due to the effect of ensembling of the five models from cross-
validation on reducing the number of false positives. The median AVE are quite similar between the models, 
and acceptable given the average volumes on the two datasets of 3.06 ml and 1.93 ml on the validation and test 
sets, respectively.

From the segmentation performances analysis, the best results have been obtained with the nnU-Net architec-
ture using input configuration B. Visual comparisons are provided in Fig. 3 between the two architectures using 
the best input configuration for some patients from the test set, one featured per row. In the top row, both models 

Table 3.  Segmentation performances for patients with residual tumor, for both architectures, all input 
configurations, and over the validation and test sets.

Input Prot. Arch.

Voxel-wise Patient-wise

DSC-P DSC-TP Recall Precision HD95 (mm) mAVE (ml)

A

Val
nnU-Net 46.94±24.03 49.51±21.70 94.42±6.69 62.96±6.60 37.55±32.40 0.97

AGU-Net 37.72±29.54 51.05±22.28 74.10±7.57 80.75±5.79 18.05±17.99 0.76

Test
nnU-Net 52.38±21.14 53.43±19.77 98.04 70.83 22.99±32.03 1.49

AGU-Net 38.06±27.45 46.21±22.80 82.35 84.31 21.55±33.40 1.37

B

Val
nnU-Net 52.97±22.66 55.62±19.63 95.08±5.73 66.82±6.06 29.02±31.02 0.51

AGU-Net 39.71±28.25 51.54±20.59 77.15±7.14 82.30±4.60 16.84±18.09 0.65

Test
nnU-Net 59.19±20.49 61.61±16.72 96.08 80.65 22.56±33.25 0.57

AGU-Net 43.76±27.61 53.14±20.23 82.35 87.76 21.28±35.39 0.89

C

Val
nnU-Net 52.43±22.45 54.72±19.77 95.55±7.10 63.70±6.68 35.82±35.02 0.60

AGU-Net 37.43±28.69 51.09±20.49 73.23±10.68 84.70±3.23 18.76±19.78 0.62

Test
nnU-Net 58.14±21.01 60.51±17.52 96.08 76.12 25.43±35.27 0.55

AGU-Net 42.33±27.87 53.97±18.51 78.43 95.24 20.73±36.04 0.55

D

Val
nnU-Net 52.80±22.59 55.26±19.73 95.35±6.40 66.21±5.72 25.08±28.91 0.48

AGU-Net 41.02±28.08 52.45±20.14 78.28±6.25 85.16±5.24 15.87±16.62 0.55

Test
nnU-Net 58.05±22.74 60.42±19.61 96.08 79.69 21.23±33.67 0.34

AGU-Net 40.84±28.62 52.07±20.96 78.43 93.02 19.97±26.64 0.69

E

Val
nnU-Net 53.61±22.57 55.81±19.97 95.86±6.38 63.86±6.93 29.47±31.84 0.64

AGU-Net 39.44±27.05 48.89±20.92 80.67±5.71 84.58±3.39 16.36±15.42 0.73

Test
nnU-Net 56.30±21.07 58.60±17.84 96.08 76.12 19.50±30.01 0.69

AGU-Net 41.23±25.72 47.78±20.93 86.27 89.80 21.38±35.04 1.11
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achieved excellent segmentation with a Dice score above 90%. In the second row, a multifocal post-operative 
residual tumor case is featured whereby the AGU-Net model produced one false positive component as can be 
seen in red in the 3D representation. For the third row, a challenging multifocal and fragmented residual tumor 
case is displayed where both models failed to segment the largest component. Finally, in the last row, overseg-
mentation was performed using both models leading to Dice scores below 40%.

Gross total resection classification performance study

Classification performances between patients with residual tumor and gross total resections, across both archi-
tectures and for all input configurations, are reported in Table 4. The first noticeable result is the overall tendency 
of the nnU-Net architecture to oversegment, resulting in a perfect recall over both the test set and validation set, 
for a really poor specificity often below 30%. Overall, nnU-Net achieves balanced accuracy scores barely above 
0.5 for all input configurations, which means the classification performance is only slightly better compared to 
the average score of random guessing (i.e., 0.5). Conversely, models trained with the AGU-Net architecture are 
more conservative leading to higher specificity scores, up to 90% for input configuration C, and reasonably high 
recall/sensitivity values above 80%. The classification performances of AGU-Net configurations B-E were all 
significantly better than all of the nnU-Net configurations, evaluated on the cross-validation set (see Table S7, 
supplementary materials). However, the difference was only significant between AGU-Net config B-E and nnU-
Net config A when evaluated on the test set. In contrast to segmentation performances, the successive addition 
of MR scans within the input configuration lead to improved classification performances for both architectures, 
although none of these improvements were statistically significant (see Tables S6 and S7, supplementary materi-
als). One apparent difference is the added value of the FLAIR sequence with the AGU-Net architecture, further 
increasing the specificity and balanced accuracy, unlike performances with the nnU-Net architecture.

From the classification performance analysis, the best results on the test set according to the balanced accuracy 
have been obtained with the AGU-Net architecture using input configuration C. However, the best results on 
the validation sets are achieved with input configuration E. In a clinical scenario, a high sensitivity has higher 
priority than a high specificity, as long as the trade-off is reasonable. AGU-Net trained with input configuration E 

Figure 3.  Segmentation comparison between the manual ground truth (in blue) and the binary predictions 
(in red) for the two architectures using configuration B, over the test set. One patient is featured per row, the 
patient-wise Dice is reported in white, and a 3D representation of the overlap is included (best viewed digitally 
and in color).
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is therefore the preferred model for classification. This configuration achieves the highest sensitivity for all input 
configurations while still achieving a reasonable specificity, higher than configurations A and B.

Inter‑rater variability study
For the 20 patients constituting the inter-rater variability dataset, a comparison of the Jaccard scores, obtained 
between each rater and the best model from each architecture, are reported in Fig. 4. The two references used in 
the analysis are also evaluated against each other to illustrate how they differ. The scores differ slightly between 
the two considered references since the reporting over “positive” cases (i.e., with residual tumor) is inherently 

Table 4.  Gross total resection versus residual tumor classification performances for both architectures, all 
input configurations, and over the validation and test sets.

Exp. Data Arch.

Patient-wise

Sensitivity Specificity bAcc

A

Val
nnU-Net 99.81±0.35 2.53±2.21 51.17±1.22

AGU-Net 79.70±6.69 68.01±10.43 73.86±4.94

Test
nnU-Net 100.00 4.55 52.27

AGU-Net 84.31 63.64 73.98

B

Val
nnU-Net 99.47±0.71 18.04±4.41 58.75±2.30

AGU-Net 81.25±6.47 71.01±5.36 76.13±4.12

Test
nnU-Net 98.04 45.45 71.75

AGU-Net 84.31 72.73 78.52

C

Val
nnU-Net 99.81±0.35 5.64±3.44 52.73±1.76

AGU-Net 79.29±10.08 74.00±11.13 76.64±4.87

Test
nnU-Net 100.00 27.27 63.64

AGU-Net 78.43 90.91 84.67

D

Val
nnU-Net 99.66±0.44 15.28±6.85 57.47±3.55

AGU-Net 82.80±5.27 73.00±14.63 77.90±6.44

Test
nnU-Net 100.00 40.91 70.45

AGU-Net 78.43 86.36 82.40

E

Val
nnU-Net 100.00 6.12±4.30 53.06±2.15

AGU-Net 85.61±4.83 72.63±9.39 79.12±4.60

Test
nnU-Net 100.00 27.27 63.64

AGU-Net 86.27 77.27 81.77

Figure 4.  Inter-rater Jaccard score variability over a subset of the AMS cohort. To the left, the ground truth 
annotation used for training served as segmentation of reference. To the right, the reference segmentation was a 
consensus agreement between annotations from all raters.
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linked to the segmentation used as reference. As all configurations B-E yielded very similar segmentation per-
formance scores, with no significant differences between configurations for each architecture (see Table S3 and 
S4, supplementary materials), input configuration B was selected as the best configuration for both architectures. 
In addition, configuration B also has the advantage of minimal requirements in terms of input sequences. Using 
the ground truth annotation from the test set as a reference segmentation, both architectures achieved Jaccard 
scores within the variability range of the novice and expert annotators, and the nnU-Net architecture even dem-
onstrated significantly better performance compared to two of the novice annotators. However, no significant 
differences were observed between any of the two architectures and the novice and expert annotators on a group 
level (see Table S8 and S9, supplementary material). Using the consensus agreement annotation as the reference 
segmentation, the AGU-Net model achieved slightly poorer Jaccard scores than the majority of the expert human 
raters, however only one of the expert annotators scores were significantly better than the model (see Table S6, 
supplementary materials), and the model remained within the variability of all annotators on a group level. The 
nnU-Net model achieved scores similar to the variability range of the expert raters, also when compared to the 
consensus agreement annotation, and none of the differences with the annotators were significant.

Discussion
In this multicenter study, the feasibility of post-operative residual tumor segmentation with deep neural networks 
was assessed. Two state-of-the-art architectures for pre-operative glioblastoma segmentation were compared: 
nnU-Net and AGU-Net. Both architectures were trained on five different combinations of early post-operative 
and pre-operative MR scans as input, and benchmarked in terms of segmentation and classification performances 
compared with manual rating. The main finding is that automatic segmentation performances are comparable 
to human rater performance on real world MRI scans, requiring early post-operative T1w-CE and T1w MRI 
scans only. In addition, the trained automated models have shown promising ability to classify patients who 
underwent gross total resection from patients exhibiting post-operative residual tumor.

The multimodal and multicentric dataset in this study is the largest cohort used for the task of early post-
operative glioblastoma segmentation, with a total of 956 patients. Regarding the dataset curation, our strict 
inclusion criteria required availability of all four MR scans as input (i.e., post-operative T1w-CE, T1w, FLAIR, 
and pre-operative T1w-CE) for each patient. Whereas this decision was motivated by a simpler method design, 
approximately 150 patients were excluded as one or more MR scans were missing. A relaxation of the inclusion 
criteria would increase the size of the dataset, and open the possibility to generate a more diverse set of input 
MR scans, including for example T2-weighted images. Ideally, the trained methods should be able to deal with 
a sparse set of inputs, where one or more MR scans are missing. The trained models should be used off the shelf, 
by replacing missing sequences with empty volumes, synthetically generated sequences, or allowing missing 
inputs using sparsified learning  techniques40.

In their ability to segment post-operative tumor, nnU-Net and AGU-Net exhibit strengths and weaknesses 
inherent to their design. Through a patch-wise approach, nnU-Net models are able to segment relatively small 
structures, having access to more fine-grained details from the use of MR scans close to their initial resolution. 
Considering the relatively small volumes and fragmented state for residual tumors, nnU-Net models are able to 
achievesignificantly higher Dice score and recall performances than the AGU-Net. On the other hand, models 
trained using the AGU-Net approach are following a full volume approach, largely downsampling the input MR 
scans, hindering the ability for detecting smaller structures. However, such models appear to be more conserva-
tive in their predictions, hence heavily reducing the amount of false positives enabling to reach high specific-
ity performances, and significantly higher balanced accuracy scores than the nnU-Net architecture for some 
configurations. Regarding the different input configurations, the biggest impact on segmentation performances 
comes from combining EPMR T1w-CE and T1w scans, which corresponds to the favored approach as well in 
clinical practice. The inclusion of additional MR sequences seems to add little to segmentation performances, 
which is confirmed by the absence of statistical significant differences between input configurations for each of 
the models. Adapting the convolution blocks, filter sizes, or other elements of the architectures might be needed 
for letting the number of trainable parameters to evolve according to the number of inputs, instead of a fixed 
amount of parameters.

The validation studies described in this article served the two purposes of investigating the predictive ability 
and capacity to generalize of the trained models. This is obtained through the use of a unique test set, and equally 
distributed hospital-stratified validation sets. Our selection for a specific hold-out hospital as a test set was based 
on the availability of manual annotations from multiple raters, allowing to perform, in addition, an inter-rater 
variability study. Regarding the computation of the reported metrics, the rationale for only including the true 
positive patients in the segmentation performances lies in the Dice score computation itself. Indeed, cases with 
a GTR preclude calculation of a Dice score. Therefore, the validation studies include a separate experiment to 
classify patients into those with a GTR and those with residual tumor.

The inter-rater variability study demonstrated that residual tumor segmentation performance is on par with 
the average human expert annotator performance, when evaluated against an independent ground truth seg-
mentation. Even when evaluated against the consensus agreement annotation, which is by definition biased 
towards each of the human annotators included in the study, the best segmentation model achieves scores similar 
to the individual expert annotations. The consensus agreement annotation based on a majority voting scheme 
over all annotations from the eight different annotators should be considered the gold standard for defining the 
residual tumor. However, this is not achievable in a real-world clinical scenario, where even an exact delineation 
of the tumor remnant from one human annotator is rarely performed. The best available segmentation models 
for pre-operative segmentation achieve Dice scores of up to 90%, but the inter-rater variability study shows that 
this is far from realistic in the early post-operative case. Indeed, the particular challenges of early post-operative 
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segmentation, such as small and fragmented tumors with an average tumor volume of only 3 ml in this dataset, 
in contrast to the pre-operative case with an average tumor volume of 35 ml, makes it difficult even for human 
expert annotators to achieve Dice scores of more than 60%.

The proposed automatic method for residual tumor segmentation should thus be considered an accept-
able alternative to the current standard practice for evaluating the tumor remnant after surgery, as the average 
performance of the method lies within the variability range of individual expert annotators. Such segmentation 
performances are even achieved with the exclusive use of post-operative MR sequences as model inputs (T1w-
CE, T1w, and FLAIR), whereas the addition of pre-operative information (pre-operative T1w-CE and label) 
retains the model performance on similar levels. Thus, in clinical practice, our trained models could be deployed 
even in the absence of pre-operative scans, as long as at least the T1w-CE and T1w post-operative sequences are 
available, to establish an automated and relatively fast method for the segmentation task. On a second level, the 
output segmentation masks can be used to differentiate between patients with remnant tumor after surgery and 
gross total resection patients, with increasing balanced accuracy performance as more sequences are added to 
the model inputs. Our early post-operative glioblastoma segmentation models have been made freely available 
in the Raidionics  environment41.

In spite of promising reported performances, the task of early post-operative glioblastoma segmentation is 
far from accomplished. The full extent of residual tumor, often very fragmented around the resection cavity, is 
never wholly captured. In future work, the pre-operative MR scans and tumor location should be better leveraged 
as the residual tumor is bound to lie in its vicinity. Focusing the search solely within a region of interest might 
help retaining a higher image resolution, for better segmentation of small structures. Nevertheless, competi-
tive pre- and post-operative glioblastoma segmentation models are now publicly available, opening the door to 
clinically-oriented validation studies. Assuming a positive outcome, the use of automatic models and methods 
would be highly beneficial in a clinical setting to collect parameters currently obtained through eyeballing or 
diameter estimation, hence yielding reproducible and deterministic significance.

Conclusion
In this study, two state-of-the-art neural network architectures for glioblastoma segmentation were trained 
and thoroughly validated on a large cohort of 956 patients. Automatic segmentation performances are on par 
with human rater performance on real world MRI scans, requiring early post-operative T1w-CE and T1w MRI 
scans only. In addition, the presented models have shown promising readiness for automatically distinguishing 
between patients who underwent gross total resection, and patients with residual tumor. The prognostic value 
of the automated method should be assessed in future studies.

Data availability
The dataset analysed in this study is available from the corresponding author on reasonable request. The best 
trained models along with source code for validation and inference are made publicly available, and the accession 
codes can be found under ’Additional Information’. The best trained AGU-Net model can be accessed at https:// 
github. com/ raidi onics/ Raidi onics- models/ relea ses/ tag/1. 2.0. The best trained nnU-Net model can be accessed 
at https:// gitlab. com/ pictu re- produ ction/ pictu re- nnunet- packa ge/ tree/0. 3.7. The source code used for comput-
ing the metrics can be accessed at https:// github. com/ dboug et/ valid ation_ metri cs_ compu tation. Inference on 
new patients can be performed using the Raidionics software which is openly available at https:// github. com/ 
raidi onics/ Raidi onics.
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