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Machine learning approach 
to monitor inkjet jetting status 
based on the piezo self‑sensing
Thanh Huy Phung 1,2, Sang Hyeon Park 3, Inyoung Kim 4,5, Taik‑Min Lee 4,5* & Kye‑Si Kwon 3,6*

One of the advantages of inkjet printing in digital manufacturing is the ability to use multiple nozzles 
simultaneously to improve the productivity of the processes. However, the use of multiple nozzles 
makes inkjet status monitoring more difficult. The jetting nozzles must be carefully selected to ensure 
the quality of printed products, which is challenging for most inkjet processes that use multi‑nozzles. 
In this article, we improved inkjet print head monitoring based on self‑sensing signals by using 
machine learning algorithms. Specifically, supervised machine learning models were used to classify 
nozzle jetting conditions. For this purpose, the self‑sensing signals were acquired, and the feature 
information was extracted for training. A vision algorithm was developed to label the nozzle status 
for classification. The trained models showed that the classification accuracy is higher than 99.6% 
when self‑sensing signals are used for monitoring. We also proposed a so‑called hybrid monitoring 
method using trained machine learning models, which divides the feature space into three regions 
based on predicted jetting probability: certain jetting, certain non‑jetting, and doubt regions. Then, 
the nozzles with uncertain status in the doubt region can be verified by jet visualization to improve the 
accuracy and efficiency of the monitoring process.

The application of inkjet printing has been expanding in the field of digital  fabrication1. In particular, inkjet 
technology has been successfully used for various applications, such as 3D  bioprinting2–4,  sensors5–9, or energy 
 devices10–12. In particular, inkjet contributes significantly to display manufacturing industries, including LCD, 
OLED, AMOLED, and micro-LED13–19. A major advantage of inkjet for industrial applications is that multi-
nozzle, multi-array printheads can be used to significantly increase fabrication  efficiency1,20,21. In such cases, 
monitoring the jetting condition of entire nozzles becomes important. If defective nozzles are selected for print-
ing or the jetting status varies during the printing process, they can cause problems with printed products. For 
example, in the case of display manufacturing, dead pixels can be found in the final stage, and it could be costly 
for product inspection and disposal of malfunctioned products.

To verify the jetting condition and eliminate defective nozzles, jet visualization (visualize the jetting using 
high-speed cameras or stroboscopic techniques) and inspection of printed patterns (print the patterns and check 
whether the nozzles are jettable or not) are the two main  approaches1, which are the basics for the development of 
different methods and technologies. However, real-time jet monitoring becomes more challenging as the number 
of nozzles for printing increases. For example, a jet visualization takes at least a second to visualize a droplet 
jetting from an individual nozzle, and a printhead with 1000 nozzles takes over 16 min to scan entire nozzles. 
Also, note that nozzle failures could occur during printing. Hence, fast real-time monitoring is required without 
mechanical alignment to cameras or sensors. To implement real-time monitoring, self-sensing techniques based 
on sensing the signals of piezoelectric nozzles have been  introduced22–25.

In piezo-based inkjet printing, piezo actuators are used as nozzles for jetting. When the jetting driver applies 
waveforms to the nozzles, pressure waves are created, pushing the ink out of the nozzle and producing  droplets26. 
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After jetting, the residual pressure waves during jetting can influence back to the piezo actuators, causing piezo 
actuators to generate signals that can be sensed via the jetting drivers, so-called self-sensing signals. Here, the 
sensed signals are created during the jetting processes and can be used to monitor the jetting status of the nozzles. 
Because the self-sensing signals are acquired directly from the nozzles when the jetting waveform is applied, it 
becomes possible to achieve scanning frequencies (speeds) as high as tens of kilohertz. Furthermore, through the 
implementation of parallel scanning  methods22,25, it is feasible to simultaneously sense multiple nozzles, thereby 
reducing the monitoring time for thousands of nozzles to mere seconds.

To monitor the nozzles using self-sensing, the sensed signals should be analyzed to extract features for the 
classification of nozzle jetting status. However, the decision criteria (threshold values) for the extracted features 
have been intuitively decided based on observations, which may not be optimal to maximize monitoring per-
formance. Recently, S.H. Park and K.S. Kwon proposed the use of a statistical method to improve the decision-
making process through scatter plots of a large number of  data25. However, the approach was also based on 
observations, and further algorithm improvement is necessary. In this paper, we propose the use of machine 
learning to classify the jetting status of the nozzles, which can improve the decision criteria for selecting good 
jetting nozzles for printing.

Recently, efforts have been made to apply artificial intelligence (AI) and machine learning (ML) techniques to 
manufacturing, especially in the field of additive  manufacturing27–30. Note that ML is considered to be a subset of 
AI techniques. The use of ML and AI techniques is expected to make the manufacturing process more intelligent. 
In inkjet printing, AI and ML have been also applied to improve the printing process. However, the main focus 
has been on understanding  jetting31,  selection32, and visualization-based jetting  detection33,34, which are mainly 
based on drop visualization by scanning whole nozzles or specific target nozzles. However, utilizing visualized 
jet images for AI and ML applications in the detection of whole nozzle jet failures carries inherent limitations 
when applied to inkjet monitoring, primarily due to the lengthy scanning time required, making it unsuitable 
for real-time applications. To overcome the previous problems, this study proposes the utilization of machine 
learning as a tool for detecting misfiring nozzles based on piezo self-sensing. According to the authors’ best 
knowledge, this work is the first published work that uses modern ML techniques to determine nozzle jetting 
status for multi-nozzle inkjet printhead based on self-sensing signals.

In our methodology, we have customized machine learning algorithms to discern between "normal-jetting" 
(or simply "jetting", where nozzles consistently maintain a jet status aligned with a reference status) and "non-
jetting" (where there are significant deviations from the reference). This classification ensures the optimal selec-
tion of nozzles for the printing process. It’s worth noting that nozzles may encounter other types of failures, 
such as misdirection or slow jetting. However, in this study, our specific focus is on the non-jetting case, as it 
represents a significant deviation from the reference status and has a serious impact on the printing process. 
Also, we presume that jetting parameters, such as ink or waveforms, are already ideally adjusted for specific 
applications. The primary emphasis is on nozzle jetting quality rather than the morphology of the printed pat-
tern. Printed morphology is influenced by factors such as the drying and spreading of droplets, which are distinct 
from jetting and non-jetting issues.

To determine the jetting status, we extracted two features, namely, phase and magnitude differences, from the 
self-sensing signals of the nozzles, which contain jetting information. Then, the extracted features were used as 
inputs to train the models (classifiers) to separate jetting nozzles from the non-jetting ones.

Additionally, an improved image processing method was proposed to analyze jetting images. This image 
processing method was used to label the jetting and non-jetting status for the self-sensing signals. The proposed 
ML models showed more than 99.6% accuracy in classifying the jetting status of each nozzle when the prepared 
data were used for verification.

Finally, we have developed a ’hybrid monitoring’ methodology that integrates self-sensing based ML models 
with jet visualization. This approach employs prediction probability thresholds to determine whether a nozzle 
is jetting, non-jetting, or requires additional visualization for confirmation. In this way, the overall performance 
of the monitoring process can be enhanced.

The following sections include the proposed methodology, monitoring system and experiment setup, visuali-
zation and image processing algorithm, self-sensing signal acquisition and processing, and modeling of nozzle 
jetting status using machine learning approaches. Later, the results of the approaches are presented and discussed 
for possible use in industrial purposes.

Methodology
Monitoring system and experiment setup
This study used a printing system with self-sensing and drop-watching capabilities for jet monitoring (Fig. 1). 
Figure 1A shows the overview of the printing and monitoring system. In the system, a printhead with 1024 noz-
zles (SG1024XSA, Fujifilm Dimatix, USA) was used for printing and examination. The printhead consisted of 8 
rows with 128 nozzles per row. Each row has an independent driver, which controls the jetting of each nozzle. 
A drop visualization system was developed to inspect the nozzles through the visualized droplet images, and an 
in-house developed self-sensing module was used to scan and collect the self-sensing signals of the entire nozzles. 
As shown in Fig. 1A, self-sensing data acquisition and jet visualization are triggered by the jetting trigger signals 
from the inkjet head driver. An in-house software was developed to control the entire system, including jetting, 
printing patterns, and monitoring. By using the developed system and software, the signals and images of nozzle 
jetting were collected and saved for further processes. Figure 1B illustrates the implementation of the system.

In the experiments, the model fluid from the printhead manufacturer (XL-30, Fujifilm Dimatix, USA) was 
used for the jetting experiment, and the printhead temperature was maintained at 30 °C to stabilize the ink 
conditions. Ink can be one of the important parameters as it can affect the jetting characteristics. However, we 
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do not consider other ink properties to focus on algorithms and methodologies without loss of generality. Here, 
two different trapezoidal waveforms (described in Fig. 1C) were used for jetting (100 V) and sensing (60 V). 
Note that using a lower voltage (60 V) for sensing has advantages since actual jetting is not required to monitor 
the jetting status.

Machine learning modeling to classify nozzle jetting status
In this study, machine learning models have been developed and customized to classify the nozzle jetting status 
by using the acquired self-sensing signals, which were labeled (jetting or non-jetting status) by the jetting image 
analysis as shown in Fig. 2. For this purpose, more than 150,000 jetting samples were collected. The labeling, 
data processing, and training processes are described in the following sections. After training, the models can 
be used to monitor the jetting status as well as to select the jetting nozzles for printing.

Figure 1.  Jet monitoring system for multi-nozzle printhead inkjet. (A) Hybrid jet monitoring system capable 
of jet visualization and self-sensing, (B) photo of the implemented system, and (C) waveforms for jetting and 
sensing.

Figure 2.  Modeling process for nozzle jetting classification.
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Jet visualization and gradient‑based image processing for labeling of nozzles according to jet‑
ting status
A CCD camera (Basler, acA1300-60gm, Germany) and a 2 × telecentric lens (TL20-65, Myutron, Japan) were 
used for jet visualization. The strobed illumination with respect to the jetting signals was used to acquire frozen 
jetting images from the camera. An imaging analysis algorithm was developed to determine the jetting status 
and label the sensing signal for the modeling process, as shown in Fig. 3.

To obtain accurate labels for each self-sensing signal (jetting status), images of nozzle jetting and their cor-
responding sensing signals were acquired almost simultaneously. Note that the obtained droplet images had 
different brightness levels for different locations of the jetting nozzles. It can be difficult to analyze a large num-
ber of images automatically when there are differences in brightness and contrast. To suppress those effects, 
the backgrounds (images acquired at the nozzle locations without jetting) (Fig. 3A.2) were subtracted from the 
original images, and the images were filtered to achieve uniform brightness (Fig. 3A.3). Finally, the images were 
converted to binary form (Fig. 3A.4) for further processing.

After pre-processing to get the binary jet images, the nozzle status was determined as illustrated in Fig. 3B. 
Consider each image to be an I
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)

 matrix with a dimension of m rows × n columns:

Here, 0 represents the background, and 255 represents the value of the droplet images. Then, define the sums 
by rows, S1 , and columns, S2 , as:

And the corresponding gradients:

(1)I
(

x, y
)

=

{

0− dark
255− brigth

.

(2)

{

S1
(

y
)

=
∑n−1

x=0 I(x, y)

S2(x) =
∑m−1

y=0 I
(

x, y
)

.

(3)

{

D1

(

y
)

=
∂S1
∂y

D2(x) =
∂S2
∂x

.

Figure 3.  Image analysis method to determine the jetting status. (A) Pre-processing of images to obtain binary 
images, and (B) The pixel-gradient method to determine jetting status.
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The illustration of S1, S2,D1, and D2 are shown in Fig. 3B. Note that the brightness values saturate at 0 and 
255, and the values of S1 and S2 are only 0 or 255. As a result, the gradients had peaks as shown in Fig. 3B. Those 
peaks could be used to determine almost possible jetting nozzle states (Supplementary Information Sect. S1).

Self‑sensing data acquisition and feature extraction
Figure 4A describes the driving scheme for jetting control and self-sensing in this study. To drive the inkjet 
head, an electronic power driver applies a waveform to a group of nozzles (one row, 128 nozzles). At the same 
time, the on–off digital signals are also used to select the jetting nozzles. When a nozzle is selected for printing, 
it is set to the on-state at the printing position so that the driving waveform can be applied to the corresponding 
piezo-actuator. Once a driving waveform is applied to a nozzle, the piezo-actuator vibrates and creates a pressure 
wave for jetting. Since the pressure wave behavior also affects the sensing signal from the piezo, this signal can 
be measured to monitor the jetting  behavior23. In this case, the signal from only one nozzle is sensed at a time 
for monitoring. A scanning scenario developed in our previous study was used to maximize sensing  efficiency22.

Consider the nozzle j on rows i (for rows i = 1, .., 8 , nozzle order j = 1, . . . , 128 ), the acquired signal can 
be written as:

where ai is the driving voltage amplifier’s characteristics, sij is the self-sensing signal, dij is the influence of the 
driving signal, and nij is the random noise. The influence of the driving signals can be investigated by measuring 
the signals when the entire nozzles are off, or sij ≈ 0 . Then, the measured signals do not contain pressure wave 
information as:

where doffij  and noffij  are the influence of the driving signal and random noise in the off-state. Assume that dij ≈ d
off
ij  , 

we could remove the driving signal from the data by comparing the two signals:

with vij being the final signal for analysis. Since uoffij  helps to remove the influence of the driving signal, it can 
be considered as nominal data of the nozzle, and the process of removing the nominal data (Eq. 6) is called 
normalization in this research. For printing, eight drivers are used to control eight rows of nozzle arrays in the 
printhead. In the case of sensing signals, two driver circuits are combined into a single sensing module, i.e. rows 
1 and 2 are paired into a single sensing module, the same with rows 3, 4, and so on. Therefore, the measurement 
circuit was designed to eliminate the driving  voltages22,23 so that the effect of the driving voltages dij and doffij  
could be much smaller than the actual values. However, the influences of driving signals were still significantly 
high. Therefore, the signals were further removed according to Eq. (6) to obtain more informative self-sensing 
signals. Then, the self-sensing signals were filtered within the frequency range of 80–400 kHz to suppress the 
noise and enhance the information about the jetting nozzle. Sensing data were collected by a FPGA module with 
a sampling rate of 1 MHz, as shown in Fig. 4B.

Accordingly, features were determined by comparing the normalized jetting signal of each nozzle ( vi ) with 
a reference signal, vi,ref  . The objective here is to detect significant deviations in jet behavior from the reference 
status. Note that the initial reference status is the most important, as the judgment of jet status is based on it.

Note that different features can be chosen as long as the jetting information is  conveyed25. In this study, we 
used two simple features: the signal phase differences (or phase score – ��i ) and signal amplitude differences 
(or amp. score – �Vi ) of a nozzle, i, in comparison with the corresponding reference signals as:

(4)uij = ai ∗
(

sij + dij + nij
)

,

(5)u
off
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d
off
ij + n

off
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,

Figure 4.  Data acquisition module for self-sensing (A) Driving schemes for inkjet, and (B) FPGA module for 
self-sensing signals acquisition.
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Here, k is the sampling time index. Consequently, we denote x as the input vector for the model, and the input 
of an individual nozzle i included its scores:

Machine learning approaches
The self-sensing signal of normal jetting nozzles is close to its reference signals. In such cases, the scores in Eqs. 
(7) and (8) are close to zeros. To classify the nozzle jetting status, a boundary must be determined to separate the 
scores of jetting nozzles from those of non-jetting nozzles in the feature space. In this study, machine learning 
was used to improve the classification process, allowing the use of more additional features, or can be general-
ized when scatter plots are not available.

Here, two features are used for the modeling process (phase score and amp. score), and the modeling process 
becomes a 2D classification problem. Three popular classification models were investigated as shown in Fig. 5. 
The models determine the hyperplanes to separate regions of failure (non-jetting) nozzles and good (jetting) noz-
zles in the feature space. The problem can be simplified by assuming that the features have a linear relationship, 
and a linear support vector machine was used. Additionally, a multilayer neural network was used to compensate 
for the non-linearity of classification. Furthermore, considering that the features can be independent of each 
other, the Gaussian naïve Bayes method was also investigated. Table 1 shows the basic parameters of the ML 
methods used in this study. Note that the Gaussian naïve Bayes method requires no parameters because only 
simple calculations are performed on the data. The details of the methods can be referred to the Supplementary 
Information (Sect. S2).

Results and discussion
Acquisition and pre‑processing of jetting images and self‑sensing signals
Figure 6 shows an example of determining the jetting status by the developed algorithm. However, in data sam-
pling experiments, poor jetting conditions such as low speed or poor jet direction are rarely observed. Therefore, 
in this study, only two jetting states were considered for self-sensing analysis: the (good) jetting and non-jetting 
status. For simplicity, we considered slow jetting as the (good) jetting status. Accordingly, the jetting status of 
each nozzle, yi , is quantified for calculation as:

(7)��i = acos





vi · vi,ref
�

v2i v
2
iref



(rad),

(8)�Vi =

∑

k

∣

∣vi[k]− vi,ref [k]
∣

∣(V).

(9)xi = [��i ,�Vi]
T

Figure 5.  Jetting nozzle detection using the classification of features extracted from self-sensing data. (A) 
Linear support vector machine, (B) multilayer neural network, and (C) naïve Bayes Gaussian method.

Table 1.  Customized parameters of the machine learning algorithms.

Method Parameters

Linear support vector machine  + Regulation constant C = 1

Multilayer neural network

 + Input: 2 × 1
 + Hidden layers: 2 layers
        Layer 1:100 nodes
        Layer 2:20 nodes
 + Active function: sigmoid
 + Loss function: log-loss
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The features xi (Eq. (9)) and its corresponding label yi (Eq. (10)) were used as the data for the training and 
verification of the models.

Figure 7 shows the acquired self-sensing signals. Since the rows are controlled by different controllers, the 
raw acquired signals vary from row to row as shown in Fig. 7A. Before feature extraction, the signals should 
be pre-processed. As shown in Fig. 7B and C, the pre-processed signals acquired from jetting and non-jetting 
nozzles are quite different in amplitudes and phases. After pre-processing, the features were extracted to have 
the final data for the modeling process shown in Fig. 8. Note that although the features of jetting nozzles vary 
according to the nozzle rows (sensing module) (Fig. 8), the row-dependent characteristics were not considered. 
Here, we aim to build the same model for all the jetting cases in the printhead as well as for different printheads.

(10)yi =

{

1, jetting
−1, non− jetting .

Figure 6.  Determination of jetting status with the developed image processing method. (Blue: Jetting, Red: 
Non-jetting, Green: Slow jetting).

Figure 7.  Acquired self-sensing signals. (A) Original self-sensing signals of all nozzles (B) Samples of 
consecutive nozzles with different conditions in row 4, and (C) pre-processed signals of the nozzles in (B).
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Jetting status modeling
To gain insight into the modeling results, we investigated the performance of model training and trained models. 
Here, the data (more than 150,000 jetting samples) were shuffled so that 80% was used for training (training 
data, ~ 120,000 samples), and the rest (test data, ~ 30,000 samples) was used to verify the models.

Figure 9 shows the performance of the models trained using the same training equipment and training. As 
shown in Fig. 9, all three models provided an accuracy of more than 99.6% with respect to the training data. In 
general, the multilayer neural network model showed the best training performance with the accuracy of about 
99.8%. The accuracy of the support vector machine model was slightly lower than the multilayer network. The 
naïve Bayes model had a slightly less accuracy of around 99.6%. However, Figs. 9D–F show that the naïve Bayes 
classifier trained 500 times faster than the other two methods because it only needed simple computations and 
not complex optimization. Compared to the multilayer neural network, the support vector machine trained 
faster when the number of training data was less than 6,000. However, the multilayer neural network model 
took less time if the amount of training data increased. Moreover, Fig. 9 shows that the support vector machine 
model required more data to stabilize accuracy with ~ 6000 training samples, whereas ~ 3000 data samples were 
sufficient to train the multilayer neural network and Gaussian naïve Bayes models. For details, the metrics of the 
models after training regarding training data and test data are presented in Table 2.

To better understand and evaluate the trained models, the classification results of the model were examined 
with the test data, as shown in Fig. 10. Note that the phase and amp. scores of the jetting and non-jetting noz-
zles overlapped (Figs. 8 and 10), possibly due to electronic noises during the measurement. Moreover, different 
nozzles have different characteristics, so the features (phase and amp. scores) of some jetting nozzles could be 
mixed with those of other non-jetting nozzles. Therefore, even though the classification was based on optimal 
models, there were still misclassified nozzles. Here, there are two types of misclassification: jetting nozzles are 
classified as non-jetting ones (case 1), and non-jetting nozzles are classified as jetting ones (case 2), as shown in 
Fig. 10D–F. Note that compared to case 1, case 2 (selecting the wrong nozzles for printing) is more critical in 
terms of printing quality. On the other hand, if some jetting nozzles are not selected (case 1), only the efficiency 
of the printing process may be reduced without deteriorating printing quality.

The success rate of nozzle classification is different depending on the models. Figure 10D–F show that the 
naïve Bayes model provided better results in the selection of jetting nozzles. According to the models’ confusion 
matrices (Fig. 10G–I), the naïve Bayes model had only six cases of non-jetting nozzles that were defined as jetting 
nozzle (case 2) out of 2059, compared to 26 and 16 cases for the support vector machine and multilayer neural 

Figure 8.  Data for modelling of jetting status. The data was labeled using the developed image processing 
method.
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network, respectively. However, among the models, it has the most cases such that jetting nozzles are classified 
as non-jetting nozzles (92 nozzles of case 1 misclassification), which may reduce the efficiency of the process. 
Besides, although the support vector machine classifier had significant misclassified nozzles of case 2, it showed 
the lowest misclassification of case 1. In other words, the support vector machine classifier tries to select as many 
nozzles as possible, while the naïve Bayes model ensures the selection of jetting nozzles. To ensure the quality of 
the printing, the naïve Bayes model is preferable. Furthermore, the naïve Bayes model had the fastest training 
time, which is suitable for online training (acquiring the sensing signals and updating the data simultaneously 
with training the model) in real-time.

Prediction probability characteristics and enhancement of prediction performance using 
hybrid monitoring method
To improve classification efficiency, it is necessary to understand how models process the data for classification. 
Initially, the classifiers used the predicted jetting probability of Pjetting = 0.5 (50% jetting–50% non-jetting) as 
the threshold for classifying the nozzle jetting states (Supplementary Information Sect. S2). Figure 11 shows the 
behavior of the models when the threshold varies.

At the threshold of Pjetting = 0.5, the naïve Bayes classifier seems to be more reliable for selecting jetting 
nozzles for printing, as it prevents non-jetting nozzles from being selected as jetting nozzles. On the contrary, 
the support vector machine classifier can increase printing efficiency by classifying the jetting nozzles as much 
as possible. However, non-jetting nozzles can be selected as jetting nozzles, which causes printing defects. The 
multilayer neural network model balances both cases.

In all cases, as the predicted jetting probability increases, fewer non-jetting nozzles are classified as jetting 
nozzles, but more jetting nozzles are misclassified as non-jetting (Fig. 11). In this case, we can customize the pre-
dicted jetting probability ( Pjetting ) threshold for our purposes. For instance, the predicted jetting probability 
threshold can be increased to ensure print quality, or the threshold can be lowered to increase the number of 
nozzles for printing. In our study, we proposed a hybrid monitoring approach combining self-sensing and jetting 

Figure 9.  Training performance of classification models. (A,D) Support vector machine, (B,E) Multilayer 
neural network, and (C,F) Gaussian naïve Bayes. The shade shows the standard deviation values.

Table 2.  Metrics of the models.

Training data Test data

Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

Support vector machine
Non-jetting 0.99536 0.9868 0.99106

0.99878
0.99608 0.98737 0.99171

0.9989
Jetting 0.99903 0.99966 0.99934 0.9991 0.99972 0.99941

Multilayer neural network
Non-jetting 0.99094 0.99257 0.99176

0.99887
0.99271 0.99223 0.99247

0.999
Jetting 0.99945 0.99933 0.99939 0.99945 0.999498 0.99946

Gaussian naïve Bayes
Non-jetting 0.94891 0.99823 0.97295

0.99619
0.95711 0.99709 0.97669

0.99683
Jetting 0.99987 0.99604 0.99795 0.99979 0.99681 0.9983
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monitoring (drop visualization), as described in Fig. 12, to reduce the incorrect selection of non-jetting nozzles 
for printing and improve printing efficiency.

In this method, a decision boundary with a single probability threshold is not used. Instead, we used two 
values, PH and PL , for thresholding the predicted jetting probability of the models to divide the feature space 
into three regions as shown in Fig. 13:

Here, the first high probability ( PH ) was used as a strict threshold to define a certain jetting region (for 
example, the predicted probability of jetting is greater than 95%). All the nozzles in this region are classified as 
jetting nozzles, and no additional jetting verification is required. Another lower probability threshold ( PL ) was 
used to determine non-jetting nozzles. This threshold may not be strict. The actual jetting nozzles in this region 
can be excluded without affecting printing quality. The nozzles in the region of doubt, PH ≥ Pjetting > PL , can be 
examined by a drop visualization (or test printing patterns) to confirm the jetting status. Note that the selection 
of PL and PH depends on the required level of rigor and printing efficiency.

Figure 14 describes the instances of the doubt region for the models. The recommended thresholds are 1–5%, 
50–95%, and 50–90% for the naïve Bayes, support vector machine, and multilayer neural network, respectively 
in this study. As shown in Fig. 14, in this study, if the doubt regions were verified, the number of missed jetting 
nozzles (case 1) in the Gaussian naïve Bayes model reduced more than two times (from 92 to 38 cases) compared 
to the single threshold for probability discussed earlier in Fig. 10. Similarly, the number of misclassified non-
jetting nozzles (case 2) also reduced more than 3 and 2.5 times, from 26 and 16 to 6 cases, in the cases of support 
vector machine and multilayer neural network models respectively.

(11)







Pjetting (xi) ≥ PH , certain jetting
Pjetting (xi) < PL, certain non− jetting

PH > Pjetting (xi) ≥ PL, Doubt area

Figure 10.  Confusion matrices on test data and classifiers’ probability distributions of classification models.
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As shown in Fig. 14, the hybrid method had the best fit with the support vector machine model. However, the 
naïve Bayes model appeared stable in determining the jetting nozzles for printing (Figs. 11 and 14). Although 
the lower jetting threshold ( PL ) was reduced to 1%, and a few non-jetting nozzles appeared in the jetting region. 
Therefore, when only the ML model is used without additional verification (visual or print inspection) for the 
selection of jetting nozzles, the naïve Bayes classifier should be chosen. According to Figs. 10 and 14, we can 

Figure 11.  Model characteristics according to the probability of jetting.

Figure 12.  Hybrid monitoring using trained models and visualization.

Figure 13.  The use of two predicted jetting probability thresholds for hybrid monitoring.
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observe outliers in the jetting regions and non-jetting regions. The scores of some non-jetting nozzles (or jetting 
nozzles) are mixed with those of jetting nozzles (non-jetting nozzles), so the training performance and verifica-
tion cannot reach 100%. This may be due to the reliability of the nozzles, and the asynchrony of visualization and 
self-sensing during data collection for modeling. However, because the models were trained using very sparse 
error data, these outliers do not affect their generalizability.

Conclusion and future perspectives
In this study, we proposed the use of machine learning models to monitor the jetting status of multi-nozzle print-
heads (with more than 1000 nozzles) using self-sensing signals. The purpose is to automate the detection of the 
nozzles experiencing jet failure (non-jetting nozzles) and subsequently eliminate them from the printing process.

For this purpose, significant parameters (here, magnitude and phase differences) were derived by extracting 
the self-sensing signals of the piezo actuators of the inkjet heads. To label and subsequently verify the condition 
of the nozzles, an improved algorithm was developed for batch droplet image processing. Three ML models, 
including the support vector machine, the multilayer neural network, and Gaussian naïve Bayes, were investi-
gated, yielding accuracies of more than 99.6%. Here, the Gaussian naïve Bayes model is preferred due to its fastest 
training and higher reliability. This model exhibits fewer misclassifications of non-jetting nozzles, an important 
factor in ensuring print quality.

To enhance the accuracy of nozzle status determination, we introduced a combination of self-sensing 
detection and drop visualization for monitoring. Two thresholds for the probabilities of jetting detection were 
employed, allowing the categorization of nozzle status into three regions: certain jetting, certain non-jetting, 
and a doubt region. Within this doubt region, nozzle conditions can be verified through drop visualization (or 
printing) inspection, reducing misclassifications and improving printing performance.

While the machine learning approach proves applicable to the monitoring process, it comes with certain limi-
tations. Specifically, the results remain dependent on features extracted from signals, making them susceptible to 
noise and pre-processing parameters. This constraint hinders the detection of additional types of nozzle defects. 
For future perspective, the development of AI techniques, such as Convolutional Neural Networks (CNN) or 
Recurrent Neural Networks (RNN) for self-sensing signals, holds promise in bypassing pre-processing steps and 
enhancing the real-time and accurate detection of faulty jet behaviors.

Figure 14.  Hybrid monitoring methods for verifying nozzle status using two probability thresholds.
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Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
upon reasonable request.
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