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Efficient estimation of population
variance of a sensitive variable
using a new scrambling response
model

Iram Saleem?, Aamir Sanaullah?™?, Laila A. Al-Essa3, Shakila Bashir* & Aned Al Mutairi?

This study introduces a pioneering scrambling response model tailored for handling sensitive
variables. Subsequently, a generalized estimator for variance estimation, relying on two auxiliary
information sources, is developed following this novel model. Analytical expressions for bias, mean
square error, and minimum mean square error are meticulously derived up to the first order of
approximation, shedding light on the estimator’s statistical performance. Comprehensive simulation
experiments and empirical analysis unveil compelling results. The proposed generalized estimator,
operating under both scrambling response models, consistently exhibits minimal mean square error,
surpassing existing estimation techniques. Furthermore, this study evaluates the level of privacy
protection afforded to respondents using this model, employing a robust framework of simulations
and empirical studies.

Information regarding complex characteristics for example family income, induced abortions, criminal activities,
etc. may cause refusal bias, response bias, or both. The randomized response technique (RRT) was introduced by
Warner! to overcome such a difficult situation where the response is qualitative. In RRT, the information attained
ensures the privacy of the respondent. This work was extended to quantitative response models with scrambling
responses. Pollock and Bek? presented the theory of additive and multiplicative scrambling randomized response
(SRR) technique. On the choice of scrambling mechanism, many researchers made an effort to develop models
such as Himmelfarb and Edgell3, Eichhron and Hayre*, Gupta et al.®, Diana and Perri®, Hussain and Khan’,
Zaman et al.8, and Azeem’. Besides, developments by different survey researchers are made to the estimation
stage using additive models. Sousa et al.'” first presented ratio-type estimators estimating the population mean of
the complex study variable using the non-delicate auxiliary variable. Additionally, Koyuncu et al.'’, Gupta et al.’?,
Saleem et al.'®, Shahzad et al.', Sanaullah et al.">!¢, Saleem and Sanaullah'’, Khalid et al.’® and Juarez-Moreno
et al.”? presented various estimators for the population mean of the complex variable using different RRT models.

In human regular life, variation remains existent everywhere. Naturally, not the two individuals or things are
identical. In all fields, we necessitate estimating the population variance, such as the climate factors from place
to place, the degree of blood pressure, etc. The medical researcher needs a suitable understanding of the level of
variation of a particular HIV treatment dose curing or affecting from person to person to be able to plan whether
to reduce or change the treatment for a particular person. Practically, several situations can be seen where the
estimation of population variance can be observed for complex issues. In survey sampling, the auxiliary variable
is used to intensify the precision of population variance estimators at the stage of estimation. The work on the
estimation of population variance for the non-sensitive variable of interest was done by countless statisticians
such as Gupta and Shabbir®, Asghar et al.”!, Sanaullah et al.?, Niaz et al.”® and Zaman and Bulut*. Singh et al.®
first introduced a new estimator to estimate the population variance of the sensitive variable of interest centered
on a multiplicative scrambled response model using auxiliary information. They presented different procedures
for estimating variance using Das and Tripathi®® and Isaki?” estimators. Later, Gupta et al.?® presented three vari-
ance estimators under Diana and Perri’s® RRT model using two scrambling variables. Aloraini et al.* proposed
some separate and combined variance estimators using stratified sampling following the strategy presented by
Gupta et al.®,
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The present study follows the methodology of Gupta et al.?® and suggested a new generalized exponential
estimator, to estimate the variance of the finite population which is complex in nature. The jargon of the bias and
the mean square error of the proposed estimator originated up to the first order of approximation. The outline
of the article is organized as follows: In “Sampling strategy for scrambled response model” section the sampling
strategy for the scrambled response model presented by Diana and Perri® is discussed. “The proposed estimator
and its class of estimators” section, displays the proposed generalized estimator for two auxiliary variables under
the existing model along with the expressions of bias and MSE. In “The proposed RRT model and estimator-
IT” section, we also propose a generalized randomized response model. The unbiased variance estimator, ratio
estimator, and proposed generalized estimator are modified under the proposed model in the same section. The
privacy protection measure for the models are discussed in “Privacy levels” section. To support the proposed
methodology a simulation study is presented in “An application of the proposed model” section and some con-
cluding interpretations are given in “Simulation study” section.

Sampling strategy for scrambled response model
Let a simple random sample done without replacement (SRSWOR) of size n be drawn a finite population of
U={U,, U,,..., Uy}. Let Y be a true response of sensitive quantitative variables and X be the non-sensitive auxiliary
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Based on the Diana and Perri® RRT model Z=TY + S, Gupta et al.?® introduced basic variance and some
ratio-type estimators. The basic variance estimator is as
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The generalized ratio estimator is as,
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The proposed estimator and its class of estimators

The proposed estimator

In this section, a generalized exponential estimator is presented following Koyuncu et al.''. The form of the
proposed estimator is given by,
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o — {h(#)m o2 —2) +ks 022_522} {exp(u)} (72) @)
ot +1 (X x) (X x) o +sn o

where ki, k, k3, are the three optimizing and unrestricted constants which need to be estimated such that the
MSE of the estimator is minimum, and 4; and /, are the generalization constants which need to be placed with
some suitable values, known parameters, or function of known parameters to get different efficient and or existing
estimators. A few examples are shown in Table 1 by setting different values to the constants.

To obtain the Bias, and the MSE, we define the following error terms, rewriting Eq. (7), we have

02(1+48,) — 02 —02Z (1—|—e)2
fip = {h( £ - JS+1T | +ha(of —of (14 8) + k(0 — 05 (1+8:))
T

A A
of o (1 +8) o5 (14 68x2) '

(8)
, 5 NI 1 1
Bias(tip) = o, (k1 — 1) — kloyei 21§ 22(o22 — 1) — Z)~1(/L040 -y - Azi(lz — D(poos — 1)
— 2
+k020¥[ﬂ (a2 — 1) — 200 (tags — D] — —2-2T k18[Co + I iz — 2it12072]C
19 Z5 ) 11 (1220 2 (1202 @2+ D) 101C; + 2110120 12042]C2
yl )
— ko216 {*((Mow — 1) — Aa(po22 — 1)} 3050 {?1((#022 —1) — A2(1oos — 1)}-
)
The mean square error of the generalized estimator t,, is given by
MSE(tip) = oy (ki — 1)> + k10A1 + k30,40 (oa0 — 1) + k30,50 (1o0s — 1) w0

+ 2ki1kyo 19A2 — 2kikso 29A3 + 2k21k3 229(,u022 - 1.

Differentiate Eq. (10) with respect to k,, k,, and k;, and after the simplification optimum values of the con-
stants are given by,
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and utilizing the optimum values of the constants into Eq. (10), the simplified form of the minim MSE of the
estimator is given by
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Table 1. The class of estimators for different choices of constant’s values.
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Mathematical comparison of the proposed class of estimators with t,
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The above (i)-(vii) expressions the conditions under which the proposed class of estimators performs better
as compared to the estimators #.

The proposed RRT model and estimator-II

The proposed RRT model

Our scrambled randomized response model provides a combination of multiplicative, additive, and subtractive
models. Since Y is the sensitive variable of interest and hence subject to social desirability bias. S and R are the
two independent scrambling variables and are mutually uncorrelated with Y. We assume

Znp = g(Y +aS) + (1 — g)R(Y +a$), (12)

GZZNP =g (O’Y +a as) + (1 — )ZO‘R(O’Y +a US) (13)
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The proposed estimator under the proposed RRT model
The exponential estimator expressed in (7) can be generalized in the situation of two auxiliary non-sensitive
variables as,
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The expression of the bias and MSE of 1y to the first order of approximation is given by,
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Privacy levels
In the literature, many privacy protection measures are presented by different authors. For our study, privacy
measure due to Yan et al.*” is used to compute privacy for Diana and Perri’s® model, and the proposed randomized
response model.

The privacy protection measure presented by Yan et al. is given by,
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: . o A =EZi—Y)>.
Diana and Perri® model is given by,

Z =RY +S.

The privacy protection level is given by
Ap =E(Z; — Yi)*
:al% <,u%, + ay2> + USZ.
The proposed Randomized response model’s privacy protection mlevel is as,
Apy =E(Z; = Yi)?

=<M§/ + oyz + azasz) (1 + (1 —g)201%> - (u% + 0y2>.

Comparison of privacy protection levels for Diana and Perris®® model and proposed model.

Using (34) and (35), we have

Ay = Ap = (uf +07 )oggls —2) —o2 (1~ (14 (1 -g)"0}) | >0

052 [1 - a2(1 + 0’1%)]

o} (,u%, + (ry2> — azosza}%)

iffg(g —2) > (

An application of the proposed model
In this section, motivated by Saleem and Sanaullah'” a real-life application is presented to analyze the efficiency
of the proposed RRT model compared to the existing models.

(34)

(35)

(36)

A survey is organized to collect real data for the problem of the estimation of the true variance of the Grade

Point Average (GPA) of the students of the Department of Statistics, in Forman Christian College University
Lahore, who have studied the Course: Statistical Methods in Spring 2023. Ninety students registered in three
sections in this statistics course are considered as our population. In this application, the variable of interest Y
is the CGPA of students, and the two auxiliary variables i.e., X, is the weekly study hours, and X, is the number
of courses studied in recent semesters. For the scrambling variables, S is a normal random variable with a mean
equal to zero and a standard deviation equal to 2, and R is a normal random variable with a mean equal to 1 and
a standard deviation equal to 0.02. The following are some characteristics of the population:

N =90, ux, = 27.61; ux, = 19.88; ox, = 8.66; ox, = 18.83.

For model, Z = RY + S,

nz = 3.889; 07 = 2.59; pzx, = —0.053; pzx, = 0.017.

For model, Zyp = g(Y 4 aS) + (1 — g)R(Y + a$),

Z=RxY+$ Znp =g(Y +aS) + (1 — g)R(Y + aS)

n Estimators Mean MSE Estimators Mean MSE

fo 53726 |8.2592 | tnp1 73.5542 | 229.6445
20 tratio 7.9481 4.2433 NP2 107.2465 78.2292

tip 3.4357 3.3778 HN 47.0329 64.1311

to 5.3279 3.4451 NP1 73.5636 96.6005
38 tratio 6.4387 2.3176 NP2 87.7502 96.1805

tip 3.4072 1.4090 hN 47.0429 39.5865

Table 2. The MSEs of the estimators for real population.

Model Population I | Population II
Diana and Perri® 10.1472 7.1942
Proposed model 5.6528 4.9476

Table 3. Privacy level for two populations.
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The MSEs and PREs of the estimators for Population I with 02 = 0.5 using Z=YT +8.

Var(s) |N |Estimators |Mean(5}) |MSE |PRE |#
fo 12.6563 41872 | 100.00 |0.4126
tratio 12.7547 41573 | 100.72 | 0.4097
200 teratio 12.6568 41013 | 102.09 |0.4042
tp 12.0520 39767 |10529 |0.3919
02 fo 12.6540 1.2985 | 100.00 | 0.1280
tratio 12.6910 1.0253 | 126.65 |0.1010
200 teratio 12.6539 1.0065 |129.01 | 0.0980
tp 12.0586 02382 | 545.13 |0.0235
fo 14.6764 41979 |100.00 |0.4137
tratio 14.8676 40264 | 10426 |0.3968
200 teratio 14.6795 3.9598 |106.01 |0.3902
tip 13.0802 2.9901 | 14039 |0.0976
03 fo 14.7046 1.4063 | 100.00 | 0.1386
tratio 14.7376 1.0221 |137.59 |0.1007
200 toratio 14.7047 0.9945 | 141.41 | 0.0980
tip 13.0697 0.2428 |579.20 |0.0239
fo 13.1945 32376 |100.00 |0.3191
tratio 13.3712 32163 |100.66 |0.3170
200 teratio 13.1975 31964 | 10129 |0.3150
tip 12.0749 0.9605 |337.07 |0.0947
! fo 13.1984 1.3192 | 100.00 | 0.1300
tratio 13.2229 0.8057 | 163.73 | 0.0794
%00 teratio 13.1979 07942 | 166.10 | 0.0783
tip 12.0569 02420 |545.12 |0.0238
Table 4.
Var(S) |N Estimators | Mean (3}?) MSE PRE ?
to 8.1658 1.5367 | 100.00 |0.2136
tratio 8.2248 14245 | 107.88 | 0.1980
200 teratio 8.1710 1.3286 | 115.66 | 0.1847
tip 8.0373 11215 | 137.02 | 0.1559
02 o 8.1555 0.3809 | 100.00 | 0.0529
tratio 8.1822 03570 | 106.69 |0.0496
200 teratio 8.1582 03324 | 11459 |0.0462
tip 8.0517 02871 |132.67 |0.0399
fo 8.9991 2.1105 | 100.00 |0.2934
tratio 9.0607 1.8331 | 11513 | 0.2548
200 tgratio 9.0032 17227 |122.51 |0.2395
tip 8.0269 11276 |187.17 |0.1567
0> to 8.9905 05165 | 100.00 |0.0718
tratio 9.0144 04564 | 113.17 | 0.0634
>0 teratio 8.9923 0.4291 | 12037 |0.0596
tip 8.0471 02798 | 184.60 |0.0389
to 8.7447 27373 | 100.00 |0.3805
tratio 8.8042 2.6687 | 10257 | 03710
200 toratio 8.7519 25569 | 107.06 | 0.3554
tip 8.0489 1.1238 |243.58 |0.1562
! to 8.7367 0.6678 | 100.00 |0.0928
tratio 8.7636 0.6414 | 104.12 | 0.0892
200 teratio 8.7390 0.6144 | 108.69 |0.0854
tip 8.0495 02794 |239.01 |0.0388
Table 5.

The MSEs and PREs of the estimators for Population II with 0 = 0.5 using Z=YT +S.
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Population I Population IT

Var§) |N | Estimators |Mean(3?) |[MSE |PRE |9 Mean (32) |MSE | PRE |9
tp1 12.8756 3.3689 | 100.00 | 0.5960 |7.9867 13649 | 100.00 | 0.2759
200 | typz 13.0140 3.5686 | 9440 | 0.6313 |8.0386 12930 | 10556 | 0.2613
fy 11.0777 10035 | 33571 | 0.1775 | 7.0332 11664 | 117.02 | 0.2358
02 1 12.8432 0.8166 | 100.00 | 0.1445 | 7.5139 0.3972 | 100.00 | 0.0803
500 | twpz 12.8931 L1165 | 73.14 |0.1975 |7.5327 0.3666 | 108.35 | 0.0741
fiy 11.0683 0.2599 | 314.20 | 0.0460 |7.0452 0.2466 | 161.07 | 0.0498
NP1 13.4345 4.4759 | 100.00 |0.7918 | 8.0543 1.8112 | 100.00 | 0.3661
200 | twpz 13.5454 50172 | 8921 | 0.8876 |8.1007 15241 | 118.84 | 0.3080
N 12.0603 10186 | 439.42 | 0.1802 | 7.4002 11855 | 15278 | 0.2396
0> Inp1 13.4065 1.0886 | 100.00 | 0.1926 | 8.0695 04521 | 100.00 | 0.0914
500 | twpz 13.4385 12013 | 9062 | 02125 |8.0792 0.3813 | 11857 | 0.0771
fin 12.0664 0.2485 | 438.07 | 0.0440 |7.0388 0.2986 | 15141 | 0.0604
Inp1 13.9783 45249 | 100.00 | 0.8005 | 7.6827 19927 | 100.00 | 0.4028
200 | twpz 14.0973 48623 | 93.06 | 0.8602 | 7.7180 16920 | 117.77 | 0.3420
fin 13.0412 13838 | 32699 | 02448 | 7.1079 12108 | 16458 | 0.2447
! Inp1 13.9681 1.0967 | 100.00 | 0.1940 | 7.7117 0.5027 | 100.00 |0.1016
500 | tnp2 13.9922 1.3800 79.47 |0.2441 | 7.7162 0.4298 | 116.96 | 0.0869
fin 13.0686 0.3347 | 327.67 | 00592 | 7.0337 02945 | 170.70 | 0.0595

Table 6. The MSEs of the estimators for population I and II with o2 using the proposed model.

Mznp = 52.31; 07y, = 6.78; pzypx, = —0.044; pz,x, = 0.140.

Table 2 shows the results for MSE estimates of the model given by Diana and Perri® and the proposed model.
The resuts are obtained byusing two different sample sizes n =20 and 38. One can notice that the proposed esti-
mator provides minimum and better results as compared to the other estimators under both models.

Simulation study
In this section, we conduct a simulation study to evaluate the performance of the proposed generalized expo-
nential-type estimators by comparing some existing variance estimators.

Population I:

10 3 2.9]
Y= |3 2 L1|,pxy=0.6817, pxzy = 0.6705.
129 1.1 2 |
Population II:
(6 3 297
YX=|3 2 L1|,pxy=0.8706, pxy = 0.8706.
129 1.1 2 |

For both populations, we ruminate three different samples of sizes 200, 300, and 500. The variance of S i.e.
Var (S) and variance of T, i.e.Var (T) choose different values for simulation.
Table 3 provides the privacy protection level of the RRT models discussed in this study, we follow Gupta
et al.’! unified measure of the estimator and is given by
SE(t;
Y = 7(1) x 100,
A
where i=0, ratio, 1D, NP1, NP2, 1; j=D and PN, MSE(t;) is the theoretical MSE of the various estimators
and A is the privacy level for Diana and Perri’s® model and the proposed model as discussed in “Privacy levels”
section.
Tables 4, 5 and 6 give the MSE and percent relative efficiency (PRE) results for the proposed estimator and
existing estimators discussed in this article. The following expression is implied to get the PRE,

MSE(ty)

PRE = ————
MSE(t)

x 100,

where i = ratio, gratio, and gep.
The results are presented in Tables 4, 5 and 6. The Tables 4 and 5 provides the numerical results of estima-
tors dicussed in “Sampling strategy for scrambled response model” and “The proposed estimator and its class
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of estimators” sections whereas the Table 6 presented the results of estimators discussed in “The proposed RRT
model and estimator-II” section based on proposed model. The values from Tables 4, 5 and 6 confirm that the
existing estimators presented by Gupta et al.?® are less efficient as compared to the generalized estimator. Also
while comparing the proposed model and existing model estimator results in these tables on mayobseve that the
proposed model provides more efficient MSE values as compared to the model presented by Diana and Perri®.
As we can see as the variance of S increases the MSE decreases.

A smaller value of ¥ is to be preferred. Tables 3, 4 and 5 presents the unified measure along with the PRE of
the estimators. It is observed that the proposed generalized estimator using two auxiliary variables efficiently
performs either using Diana and Perri’s model or the proposed RRT model. One can notice that the values of 1}
are smaller for the proposed generalized model.

Conclusion

This study addressed the estimation of population variance for sensitive study variables using a non-sensitive
auxiliary variable. A generalized exponential-type estimator, based on Diana and Perri’s® randomized response
model, was introduced and evaluated against estimators proposed by Gupta et al.?%, as detailed in Tables 4, 5
and 6. The comparative analysis indicated that the proposed estimator consistently demonstrated superior effi-
ciency in variance estimation. Additionally, we introduced a novel generalized scrambled response model and
applied it to conventional variance and ratio estimators, along with the proposed estimator. In “An application
of the proposed model” section, a real survey-based study was presented, applying the proposed RRT model.
The results, obtained under both our novel model and the model presented by Diana and Perri®, revealed that
the proposed estimator consistently outperformed conventional mean and ratio estimators in minimizing MSE.
Notably, as the sample size increased, the efficiency of the estimator further improved. Moreover, a simulation
study was conducted, and the findings are summarized in Tables 3, 4, 5 and 6, comparing expected variances,
MSE, and the precision (PRE). The results indicated that the generalized proposed estimator under the proposed
randomized response model consistently provided the minimum MSE for both populations, outperforming the
estimator’s MSE results using Diana and Perri’s® model. This research study contributes valuable insights into
variance estimation for sensitive variables. The proposed generalized estimator, underpinned by the innovative
scrambled response model, demonstrated robustness, scalability, and superior performance in both real and
simulated scenarios. These findings underscore the potential of this approach in advancing the precision and
reliability of population variance estimation in sensitive contexts.

Data availability
The data set used and/or analysed during the current study available from the corresponding author on reason-
able request.
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