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A study of the wave dynamics 
of the space–time fractional 
nonlinear evolution equations 
of beta derivative using 
the improved Bernoulli 
sub‑equation function approach
Anamika Podder 1, Mohammad Asif Arefin  1, M. Ali Akbar 2 & M. Hafiz Uddin  1*

The space–time fractional nonlinear Klein-Gordon and modified regularized long-wave equations 
explain the dynamics of spinless ions and relativistic electrons in atom theory, long-wave dynamics in 
the ocean, like tsunamis and tidal waves, shallow water waves in coastal sea areas, and also modeling 
several nonlinear optical phenomena. In this study, the improved Bernoulli sub-equation function 
method has been used to generate some new and more universal closed-form traveling wave solutions 
of those equations in the sense of beta-derivative. Using the fractional complex wave transformation, 
the equations are converted into nonlinear differential equations. The achieved outcomes are 
further inclusive of successfully dealing with the aforementioned models. Some projecting solitons 
waveforms, including, kink, singular soliton, bell shape, anti-bell shape, and other types of solutions 
are displayed through a three-dimensional plotline, a plot of contour, and a 2D plot for definite 
parametric values. It is significant to note that all obtained solutions are verified as accurate by 
substituting the original equation in each case using the computational software, Maple. Additionally, 
the results have been compared with other existing results in the literature to show their uniqueness. 
The proposed technique is effective, computationally attractive, and trustworthy to establish more 
generalized wave solutions.

Fractional calculus (FC) has applications in diverse and widespread fields of science such as electromagnetics, 
biological population models, solid-state physics, optics, chemical kinematics, earthquake simulation, rocket 
motion, plasma physics, nuclear explosion, control theory, signals processing, fluid flow and other areas1–3. It 
is still a powerful tool for understanding complex systems, particularly in engineering and physical sciences. 
It is a more advanced version of the classical order integration and differentiation. It is interesting that explicit 
traveling wave solutions for non-linear fractional partial differential equations (NLFPDEs) are applicable in the 
contemporary context. Any real-world problem may be explained in terms of its physical importance using ana-
lytical solutions to NLFPDEs. Researchers have increasingly concentrated on analytical and numerical solutions 
of nonlinear partial differential equations, including integer and fractional orders, because software-based sym-
bolic instruments like Maple, MATLAB, or Mathematica have quickly advanced in computer science. In recent 
generations, various analytical and semi-analytical techniques, such as the new generalized (G′/G)-expansion 
approach4, the extended tanh-function method5, the Hirota’s bilinear method6, 7, the Riccati-Bernoulli sub-ODE 
method8, the new extended direct algebraic method9, 10, the modified direct algebraic method11, 12, the extended 
sinh-Gordon equation expansion method13–17, the improved Bernoulli sub-equation function method18–20, the 
extended Fan sub-equation method21, and the generalized exponential rational function method22–24 have been 
studied, and also employed for finding the new exact solutions of the famous NLFPDEs that developed in applied 
sciences. The improved Bernoulli sub-equation function (IBSEF) method is a straightforward, substantial, and 

OPEN

1Department of Mathematics, Jashore University of Science and Technology, Jashore  7408, 
Bangladesh. 2Department of Applied Mathematics, University of Rajshahi, Rajshahi  6205, Bangladesh. *email: 
mh.uddin@just.edu.bd

http://orcid.org/0000-0002-2892-1683
http://orcid.org/0000-0003-3725-5472
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-45423-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:20478  | https://doi.org/10.1038/s41598-023-45423-6

www.nature.com/scientificreports/

sophisticated algebraic approach for finding reliable and trustworthy solutions to NLFPDEs. This IBSEF approach 
was first originated from the Bernoulli sub-equation function method (BSEFM)25.

The specified space–time fractional nonlinear Klein-Gordon (NLKG) equation and space–time fractional 
modified regularized long-wave (mRLW) equation are important models in physics and engineering. Those 
equations play a substantial role in mathematical physics and have many scientific applications such as solid-state 
physics, nonlinear optics, quantum field theory, shallow water waves, and plasma waves. The spinless ion is cor-
rectly described by the space–time fractional NLKG equation, which also characterizes the relativistic electrons in 
atom theory26. The space–time fractional mRLW equation is employed in oceanography to understand long-wave 
occupancy dynamics in the ocean, including tsunamis and tidal waves, which are essential for coastal hazard 
assessment and maritime safety27. It is also used in coastal and ocean engineering to model the propagation of 
water waves in shallow water, accounting for dispersion and dissipation effects. This is how we consider these two 
models for solving in this research to explain above mentioned phenomena properly. The space–time fractional 
NLKG equation has been examined using a number of different techniques such as Ege and Misirli28 solved this 
equation using the modified Kudryashov method related to Jumarie’s modified Riemann- Liouville derivative. 
Sadiya et al.29 assessed this equation by the extended tanh-function method with conformable derivative and 
the (G′/G, 1/G)-expansion method was used to interpret this equation by Yasar and Giresunlu30. The (G′/G) and 
(w/g)—expansion31 approaches, the Riccati expansion32 method, are also applied to find the exact solutions of 
the space–time fractional NLKG equation. On the other hand, the space–time fractional mRLW equation was 
solved by the Ansatz method with Jumarie’s derivative developed by Guner and Bekir33. Uddin et al.34 studied 
this equation based on the exp-function and double (G′/G, 1/G) method with conformable fractional derivative. 
Kaplan et al.35 found the solution of this equation using the modified simple equation method with the modi-
fied Riemann–Liouville derivative. It is notable to observe that the stated models have not yet been examined 
by the IBSEF technique. As a consequence, the objective of this study is to improve the precision of possible 
solitons solutions to the space–time fractional NLKG and mRLW equations utilizing the IBSEF technique with 
beta-derivative. The contour, 3D, and 2D plots are used to describe the graphical representations of the solutions 
that were found with specific values for the free parameters. The proposed method is effective in constructing a 
variety of soliton solutions, quicker for simulating, and flexible.

The rest of this paper is scheduled as: The Atangana beta-derivative is introduced in section “Atangana 
beta-derivative”, and in section “Outline of the IBSEF method”, the IBSEF method has been described. In sec-
tion “Analysis of closed form solutions”, the wave solutions for the space–time fractional NLKG equation and 
space–time fractional mRLW equation are outlined and physical explanations & graphical descriptions are 
briefly mentioned in section “Results discussion and physical explanation”. In section “Results comparison”, a 
comparison is made between the obtained solutions and the existing solutions. Finally, the conclusion is pre-
sented in section “Conclusion”.

Atangana beta‑derivative
For modeling intricate systems and processes, fractional derivatives offer a more flexible and precise tool. Clas-
sical integer-order derivatives are unable to effectively capture the non-integer-order behavior of many real-
world phenomena. Such systems can be more effectively represented using fractional calculus. The definition 
of a fractional derivative, which has been studied on by several academics, includes the Jumarie-modified Rie-
mann–Liouville, conformable, and Caputo fractional derivative36–38. The beta-derivative is a newly proposed 
fractional derivative introduced by Atangana et al.39 as follows:

The abovementioned definition (1) satisfies the following characteristics:

Based on previously mentioned features, the beta-derivative can easily convert the NLFPDEs into an ordinary 
differential equation that is non-linear with an integer order. Many researchers use the beta-derivative in various 
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physical applications due to its flexibility, well-posedness of mathematical properties, and ability to generalize 
classical derivative to fractional order making it an effective tool in a wide range of scientific and engineering 
problems. Among all the definitions of fractional derivative that have been introduced so far, the Atangana beta 
derivative is more reliable.

Outline of the IBSEF method
The BSEFM has been extended to derive the IBSEF method21, which will be detailed in this section.

Step I. Let’s consider the following equation for the fractional differential equation:

where u = u(x, t) is a function which is not defined, and γ ∈ (0, 1] is the order of beta-derivative.
Using the following wave transformation

where m and k are the wave number and velocity respectively and 0 < γ ≤ 1 indicates fractional-order. It can 
be converted Eq. (8) into nonlinear ordinary differential equation (NLODE) based on the above transformation 
(9) as:

Step II. According to the IBSEF method, the trial solution in Eq. (10) can be expressed as

In accordance with the Bernoulli theory, we can assume the general form of Bernoulli differential equation 
for H′ as underneath:

where H = H(η) is the solution of Eq. (12)
Substituting the solution (11) into the Eq. (10) and making use of the Eq. (12), it gives the following poly-

nomial �(H) of H:

To determine the values of l,m and N  , where l  and m both are unknowns, we use homogeneous balancing 
technique of the largest order linear term with the highest order nonlinear term.

Step III. By setting the coefficients of �(H) to zero, we can obtain a system of equations:

We must solve the system in order to find the values of p0, p1, p2, . . . , pd and q0, q1, q2, . . . , qc.
Step IV. The following couple of outcomes that we obtain from solving nonlinear BDE reliant on the values 

of the parameters α and β:

Advantages: The approach has advantages over other methods, such as the exp-function method, tanh-
function method, basic 

(

G′/G
)

-expansion method, etc. The suggested approach offers further exact traveling wave 
solutions with extra free parameters. These precise solutions are essential for revealing the underlying principles 
of physical phenomena. When applicable, the IBSEF method can yield closed-form solutions to space–time 
fractional equations, which provide a clear mathematical expression for the behavior of the system. On the other 
hand, when dealing with reduced differential equations of third order or below, using symbolic computation 
software like Maple substantially enhances the possibility of obtaining useful solutions to the related algebraic 
equations. However, it gets more difficult to guarantee the existence of solutions for the resultant algebraic 
equations in general as the order of the equations rises. The capacity of the recommended approach to accom-
modate a greater number of arbitrary constants than other existing methods makes them particularly useful in 
such circumstances. This strategy can solve problems where other approaches could fail thanks to this quality.

Limitations: The method has a limitation that should be taken into account despite its many benefits. It 
occasionally creates solutions that are disguised versions of well-known solutions that may be found using other 
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techniques. Additionally, the approach cannot guarantee that there are solutions to the resultant algebraic equa-
tions when the balance number of the reduced ordinary differential equations is greater than four.

Analysis of closed form solutions
By using the definition of beta derivative, we determined some advanced, broad-ranging and further inclusive 
closed form stable soliton solutions to the space–time fractional NLKG equation and mRLW equation with the 
help of IBSEF method.

The space–time fractional nonlinear Klein–Gordon equation
In 1926, the famous physicists Klein40 and Gordon41 first introduced the space–time fractional NLKG equation. 
Now consider this equation as follows42:

where the constants a , ν and b are non-zero coefficients depending upon physical conditions of the system. These 
constants will be evaluated afterwards through the computational package Maple which will represent numerous 
phenomena of the solutions. Also, γ denotes a derivative whose order is fractional.

Applying the wave transformation

where m be the number of waves, k be the wave speed, and η represents wave transformation.
Substituting Eq. (18) into Eq. (17), then Eq. (17) can be transformed to an integer order NLODE as follows:

For the maximum order linear term V (ω) , the exponent of V  is ωN + d − c − 1 and for the maximum 
degree nonlinear term Vn whose exponent is n(d − c)+ 1 . Since, soliton solutions are being sought, and thus 
the exponent of the linear term is identical to that of the nonlinear term. After balancing43, 44 these two terms 
we obtain ωN + d − c − 1 = n(d − c)+ 1. From Eq. (19), we observe that V3(n = 3) is the nonlinear term of 
highest degree as well as the linear term of maximum order is V ′′(ω = 2) . Now, using these values of ω and n we 
get the relationship shown below:

Here N  and c are random parameters, selecting c = 1 and N = 3 , which leads to d = 3 . Therefore, the general 
solution is provided by the trial solution to Eq. (19) in the following way:

where H will be calculated from the IBSEF method.
Now, to determine V ′(η) and V ′′(η) , we can write as follows:
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, α  = 0,β  = 0. Eqs. (21 and 23) are used in Eq. (19) to produce a system of algebraic 
equations based on the coefficients of H polynomial. By solving the system of algebraic equations with the use 
of Maple 13, the constant values may be determined.
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where the constants a , b , m , k are non-zero.
Case 1b: When α = β

Using the values of the coefficients accumulated in (24) alongside (16) into the solution (20), we achieve the 
hyperbolic trigonometric function solution (HTFS) to the space–time fractional NLKG equation given below:

where the constants a , b , m , k are non-zero.
Set 2.

Case 2a: When α  = β.
If we take the Eq. (27) coefficients along with Eq. (15) in Eq. (20), we find the EFS to the NLKG equation 

given as following:

Case 2b: When α = β

If we take the Eq. (27) coefficients along with Eq. (16) in Eq. (20), we find the HTFS shown as:
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Case 3b: When α = β

Putting Eq. (30) along with Eq. (16) in Eq. (20), we acquire the HTFS to the NLKG equation given below:

All the general solutions to the space–time fractional NLKG equation presented here are valid and effective, 
and interestingly, all of these solutions have not been previously investigated.

The space–time fractional modified regularized long‑wave equation
The space–time fractional mRLW equation was initially deduced by Benjamin45 in 1972 that explains generally 
the one-way propagation of long waves in certain nonlinear dispersive systems. This equation is regarded as a 
substitute for the Korteweg–de Vries equation, which is designed to describe numerous physical phenomena 
like plasma waves and shallow waters in coastal oceans. The space–time fractional mRLW equation is taken into 
consideration as32:

where γ is a fractional derivative, and ζ , ε, and µ are arbitrary constants depend on the system’s physical proper-
ties. Following that, these constants will be assessed using the computational tool Maple, which will represent a 
variety of phenomena of the solutions. Using the complex fractional wave variable

where m be the number of waves, k be the wave speed, and η represents wave transformation. Then the space–time 
fractional mRLW Eq. (24) is transformed into an integer order NLODE as follows:

After integrating Eq. (25) with respect to η once then putting integrating constant = 0 , we get the equation 
of following form:

Rewrite Eq. (26) as

As the relationship among d , c , and N  is covered in detail in section “The space–time fractional nonlinear 
Klein–Gordon equation”, so it is not extensively outlined here. From Eq. (27), we observe that V ′′ is the largest 
order derivative term and V3 is the nonlinear term of height order. Consequently, a relationship for d , c , and N  
is obtained by balancing the above-mentioned two maximum order terms in Eq. (27), which can be expressed 
in this way:

Taking N = 3 , c = 1 gives d = 3 and putting these values into Eq. (11) which provides the trial solution of 
Eq. (27) in the ensuing structure:

where H is the root of Eq. (12)
Setting the solution (38), alongside with (12) into (37), yields a polynomial in H . A set of equations for the 

parameters can be obtained, and by solving the system of algebraic equations using Maple 13, the constant values 
can be determined.
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Category 1a: First, we assume α  = β , because the solutions to the IBSEF approach improved Bernoulli equa-
tion depend on these two variables.

By entering the listed parameters values in (39) along with (15) into solution (38) provides the EFS written as:
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After simplifying, from (40), we can write

Category 1b: Consider α = β

By entering the listed parameters values in (39) along with (16) into solution (38) provides the HTFS in this 
way:

Apply trigonometric formula in Eq. (32),

Family 2:

Phase 2a: We take α  = β

Substituting coefficients of Eq. (33) along with Eq. (15) into (38), we find EFS as follows:

Category 2b: We take α = β

Substituting coefficients of Eq. (33) along with Eq. (16) into (38), we find HTFS as follows:
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Category 3a: When α  = β

Using Eq. (34) along with Eq. (15) into (38), we find EFS as follows:

Category 3b: When α = β.
Using Eq. (34) along with Eq. (16) into (38), we find HTFS as follows:

Family 4.

Category 4a: When α  = β

Using Eq. (35) along with Eq. (15) into (38), we find EFS as follows:

Category 4b: When α = β

Using Eq. (50) along with Eq. (3.9) into (38), we find HTFS as follows:

The space–time fractional mRLW equation via IBSEF method are advanced, suitable, and more flexible and 
all the solutions are not presented in the earlier literature.

Results discussion and physical explanation
The attained travelling wave solutions are represented in three types of diagrams namely a three-dimensional 
plotline, a plot of contour, and a 2D plot for diverse values of the arbitrary constants with the help of Mathematica. 
The importance of graphical representations is that they can aid in improving our comprehension of solutions 
and analysis of complex data46. The diagrams depict a range of solutions namely kink wave solution, singular 
soliton solution, periodic soliton wave solution, bell shape, anti-bell shape, and single kink type. Now, we have 
shown a graphical illustration of the proposed equations.

The acquired results of the both selected equations for various parameter values are represented graphically in 
this section. For the values α = 3, β = 2, a = 1, b = 1 , solution V11(x, t) represents singular-kink shape wave 
featuring infinite tails in Fig. 1 within the duration 0 < x < 50 and 0 < t < 75 . The achieved solutions which 
represents in  V12(x, t) and V14 (x, t) indicates soliton shape wave within the duration 0 < x, t < 2 , 0 < x < 10 and 
0 < t < 15 with the same parametric values are displayed in Figs. 2 and 3. The other solution V13(x, t) embodies 
in Fig. 4 for the values of α = 3,β = 2, a = 1, b = 1 within the interval 0 < x < 0.005 and 0 < t < 1.5 signifies 
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one-sided-kink wave. A kink wave is a type of wave that either travels from one asymptotic position to another 
or rises and remains constant at infinity. It should be noted that the solution represents in V15(x, t) and V16(x, t) 
deliver the same types of soliton solutions but for state forwardness we discard from here.

In the space–time fractional mRLW equation the attained solutions V22(x, t) and V24 (x, t) are illustrated 
by the form of periodic soliton wave solutions designed for the ideals α = 3,β = 2, ζ = 1, ε = 1,µ = 1 in 

Figure 1.   The sketch of the singular-kink shape wave solution V11(x, t), representing the (i) three-dimensional 
plotline, (ii) contour plot, and (iii) 2D plot within 0 < x < 50 , 0 < t < 50.

Figure 2.   The sketch of the soliton shape wave solution V12(x, t), representing the (i) three-dimensional 
plotline, (ii) contour plot, and (iii) 2D plot within 0 < x < 2 , 0 < t < 2.

Figure 3.   The sketch of the soliton from solution V14 (x, t), representing the (i) three-dimensional plotline, (ii) 
contour plot, and (iii) 2D plot within 0 < x < 10,0 < t < 15.
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the interval 0 < x < 50 and 0 < t < 20 , 0 < x < 90 and 0 < t < 70 respectively are symbolized by Fig. 5 
and 6. The profile of Fig. 7 in solution V25(x, t) shows the wave shape namely compacton for the values 
α = 3, β = 2, ζ = 1, ε = 1, µ = 1 in the interval 0 < x < 5.5 and 0 < t < 12.5 . A compacton is a special 
type of soliton that has a compact spatial profile, meaning it is limited to a finite region. Remarkably, compac-
ton maintain their coherent shape after collisions, due to their soliton-like properties. The solution V26(x, t) 
for α = 3,β = 2, ζ = 1, ε = 1,µ = 1 which indicates singular anti-bell-shaped soliton wave solution has 

Figure 4.   The sketch of one-sided-kink from solution V13(x, t) , representing the (i) three-dimensional plotline, 
(ii) contour plot, and (iii) 2D plot within 0 < x < 0.005 , 0 < t < 1.5.

Figure 5.   The diagram of the periodic soliton from solution V22(x, t), representing the (ii) three-dimensional 
plotline, (ii) contour plot, and (iii) 2D plot within 0 < x < 50,0 < t < 20.

Figure 6.   The diagram of the periodic soliton from solution V24 (x, t) , representing the (i) three-dimensional 
plotline, (ii) contour plot, and (iii) 2D plot within 0 < x < 90,0 < t < 70.
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cropped here in Fig. 8 within the range 0 < x < 0.1 , 0 < t < 2 . In addition, the solution V27 (x, t) illustrates in 
Fig. 9 depicts the compacton wave solution for α = 3,β = 2, ζ = 1, ε = 1,µ = 1 in the duration 0 < x < 70 , 
0 < t < 75 . Finally, the solution V28(x, t) in Fig. 10 indicates the singular bell-shaped wave solution within the 
specified interval 0 < x, t < 1 . The graphs with similar shapes for the other two solutions V29(x, t) and V210(x, t) 
are omitted to maintain simplicity.

Figure 7.   The diagram of the compacton from solution V25(x, t), representing the (i) three-dimensional 
plotline, (ii) contour plot, and (iii) 2D plot within 0 < x < 5.5 , 0 < t < 12.5.

Figure 8.   The sketch of the singular anti-bell-shaped soliton from solution V26(x, t) , representing the (i) three-
dimensional plotline, (ii) contour plot, and (iii) 2D plot within 0 < x < 0.1 , 0 < t < 2.

Figure 9.   The sketch of the compacton from solution V27 (x, t) , representing (i) three-dimensional plotline, (ii) 
contour plot, and (iii) 2D plot within 0 < x < 70 , 0 < t < 75.
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Results comparison
In this part, we compare our achieved results with other existing results in the literature with the other methods. 
Those suggested equations presented above were examined by earlier researchers using a variety of methods. 
The improved Bernoulli sub-equation function approach with beta-derivative has been used to solve the above-
mentioned equations and we attain several remarkable outcomes that are both more wide-ranging and relevant 
than those of the previous researchers. A comparison between existing solutions and our obtained solutions is 
presented in Tables 1 and 2.

We observe that the derived solution V11(x, t) and V15(x, t) of space–time fractional NLKG equation are 
similar to Ege and Misirli28 solutions. The others solution V12(x, t)− V14 (x, t) and V16(x, t)  attain in this study 
are completely new and innovative and also have not reported in the prior study.

Figure 10.   The sketch of the singular bell-shaped from solution V28(x, t) , representing the (i) three-
dimensional plotline, (ii) contour plot, and (iii) 2D plot within 0 < x < 1 , 0 < t < 1.

Table 1.   A comparison between the solutions obtained by Ege and Misirli28 and the solutions obtained by our 
study for the space–time fractional nonlinear Klein–Gordon equation using the IBSEF method.

Obtained solutions Ege and Misirli28

If α  = β , a = 1, b = 2, p0 = 1, q0 = 2, τ = 1, then (4.1.9) solution becomes:
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If α  = β , a = 1, b = 2, p0 = 1, q0 = 2, q1 = 1, τ = 1, then (4.1.15) solution becomes:
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If we put b = c = 1, in solution (39) then solution u5(x, t) becomes:
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

−1+ 2
1

1+e
ωx+

�√

−2+ω2
�

tα

Ŵ(1+α)



. If we put b = c = 1, in solu-

tion (42) then solution u5(x, t) becomes:

u7(x, t) =



−1+ 2
1

1+e
ωx−

�√

−2+ω2
�

tα

Ŵ(1+α)



.

Table 2.   A comparison between the solutions obtained by Uddin et al.34 and the solutions obtained by our 
study for the space–time fractional modified regularized long-wave equation using IBSEF method.

Obtained solutions Uddin et al.34

If α  = β , p2 = 1, q0 = 2, τ = 1, then (4.2.8) solution becomes:

V21 (x, t) =

α
2β

+
1






−

β
α +

1

e
2α

�

m
γ

�

x+ 1
Ŵγ

�γ
+

k
γ

�

t+ 1
Ŵγ

�γ �







2
.

If α  = β , p0 = 1, q0 = 2, q1 = 1, τ = 1, then (4.2.20) solution becomes:

V29 (x, t) = 

1+
1

2







�

�

�

�

−
β
α +

1

e
2α

�

m
γ

�

x+ 1
Ŵγ

�γ
+

k
γ

�

t+ 1
Ŵγ

�γ �







1+
2

�

�

�

�

−
β
α +

1

e
2α

�

m
γ

�

x+ 1
Ŵγ

�γ
+

k
γ

�

t+ 1
Ŵγ

�γ �

.

If we put q0 = q1 = 1, in solution (4.15) then solution u22 (x, t) 
becomes:

u22 (x, t) = 

√

3υτ
(τ+2)

exp

[(

x− 2υ
τ+2

tα

α

)]

−

√

3υτ
(τ+2)

exp

[(

x− 2υ
τ+2

tα

α

)]

+1
.

If we set q0 = q1 = q−1 = 1, in solution (4.16) then solution u23 (x, t) 
becomes:

u23 (x, t) =
1+exp

[

−

(

x− 1

3
(3υ−1) t

α

α
)

)]

1+exp

[

−

(

x− 1

3
(3υ−1) t

α

α
)

)] .

If we insert q0 = q1 = q−1 = 1, in solution (4.17) then solution 
u24 (x, t) becomes:

u24 (x, t) = 

√

3υτ
(τ+2)

−

√

3υτ
(τ+2)

exp

[

−

(

x− 2υ
τ+2

tα

α

)]

1+exp

[

−

(

x− 2υ
τ+2

tα

α

)] .
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It is noteworthy to see that the consequent solution V21(x, t) and V29(x, t) of space–time fractional mRLW 
equation are analogous to Uddin et al.34 solutions. The other solutions V22(x, t)− V28(x, t) and V210(x, t) found 
in this study are completely fresh and cutting-edge and have not previously been reported.

It is important to note that the achieved solutions to the space–time fractional NLKG and mRLW equa-
tions are explain the relativistic electrons in atom theory, to understand the long-wave occupancy in the ocean, 
including tsunamis and tidal waves, the propagation of water waves in shallow water, accounting for dispersion 
and dissipation effects.

Conclusion
In this research, the space–time fractional NLKG equation and mRLW equation have been studied to the poten-
tial IBSEF method to develop some fresh and more universal closed-form traveling wave solutions of those equa-
tions in the sense of beta-derivative. We achieved exponential function solutions and hyperbolic trigonometric 
function solutions for numerous values of free parameters including bell-shaped, kink-shaped, single soliton, 
periodic soliton, compaction, and anti-kink-shaped. These solutions are demonstrated by three types of diagrams 
namely three-dimensional plotline, plot of contour, and 2D plot by using Mathematica. The acquired solutions 
can describe different types of phenomena like plasma waves in complex media, the propagation of water waves 
in shallow water, accounting for dispersion and dissipation effects, long-wave occupancy dynamics in the ocean, 
including tsunamis and tidal waves, which are essential for coastal hazard assessment and maritime safety, and 
understanding the behavior of spinless ion in relativistic particles. The accuracy of all solutions obtained was 
confirmed by substituting the original equation in each case using the computational software Maple and found 
them correct. This approach not only yields identical solutions, but it also has the potential to identify novel solu-
tions that have not been reported by other researchers. This study demonstrates that the proposed technique is 
a useful, effective, and compatible mathematical tool for solving a broad range of NLFPDEs that arise in various 
domains of mathematical physics and engineering. The implications are far-reaching, as the solutions acquired 
through this methodology not only open the doors to resolving immediate problems but also lay the foundation 
for comprehensive research exploration. We have studied the NLFPDEs having balance number one but there 
are lots of NLFPDEs whose balance number is two or more. The future research might get a gorgeous way in 
looking for solitary wave solutions to the other NLFPDEs by the suggested technique when the balance number 
is two or more.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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