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A prognostic model for ovarian 
neoplasms established 
by an integrated analysis of 1580 
transcriptomic profiles
Yanjiao Hua 1, Du Cai 2,3,4, Cole Andrea Shirley 5, Sien Mo 1, Ruyun Chen 5, Feng Gao 2,3,4 & 
Fangying Chen 6*

Even after debulking surgery combined with chemotherapy or new adjuvant chemotherapy paired 
with internal surgery, the average year of disease free survival in advanced ovarian cancer was 
approximately 1.7 years1. The development of a molecular predictor of early recurrence would allow 
for the identification of ovarian cancer (OC) patients with high risk of relapse. The Ovarian Cancer 
Disease Free Survival Predictor (ODFSP), a predictive model constructed from a special set of 1580 
OC tumors in which gene expression was assessed using both microarray and sequencing platforms, 
was created by our team. To construct gene expression barcodes that were resistant to biases caused 
by disparate profiling platforms and batch effects, we employed a meta-analysis methodology that 
was based on the binary gene pair technique. We demonstrate that ODFSP is a reliable single-sample 
predictor of early recurrence (1 year or less) using the largest pool of OC transcriptome data sets 
available to date. The ODFSP model showed significantly high prognostic value for binary recurrence 
prediction unaffected by clinicopathologic factors, with a meta-estimate of the area under the receiver 
operating curve of 0.64 (P  =  4.6E-05) and a D-index (robust hazard ratio) of 1.67 (P  =  9.2E-06), 
respectively. GO analysis of ODFSP’s 2040 gene pairs (collapsed to 886 distinct genes) revealed the 
involvement in small molecular catabolic process, sulfur compound metabolic process, organic acid 
catabolic process, sulfur compound biosynthetic process, glycosaminoglycan metabolic process and 
aminometabolic process. Kyoto encyclopedia of genes and genomes pathway analysis of ODFSP’s 
signature genes identified prominent pathways that included cAMP signaling pathway and FoxO 
signaling pathway. By identifying individuals who might benefit from a more aggressive treatment 
plan or enrolment in a clinical trial but who will not benefit from standard surgery or chemotherapy, 
ODFSP could help with treatment decisions.

Ovarian cancer (OC) has the fourth highest morbidity and the third highest death among gynecological neo-
plasms globally. Despite the fact that the prevalence of OC has been declining, it still has the second highest 
death rate, which is on the rise. The mean year of disease free survival (DFS) in advanced ovarian cancer was 
about 1.7 years1, even after debulking surgery paired with chemotherapy or novel adjuvant chemotherapy along 
with internal surgery. After the current standard treatment, approximately 70% of patients achieve complete 
remission (CR); nevertheless, 30–40% of these patients relapse within 12 months2,3. Moreover, it is standard 
practice to administer adjuvant chemotherapy for 6–8 cycles following surgery in patients with ovarian cancer4. 
This treatment regimen typically spans a duration of around six months. If the tumor relapses within 6 months 
after completing the last cycle of chemotherapy, it is classified as platinum-resistant, indicating a lack of response 
to platinum-based chemotherapy. The identification of nonresponders and patients with primary platinum 
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resistance (recurrence within 6 months after the last chemotherapy cycle) is crucial for improving the overall 
survival of individuals with serous ovarian carcinoma. It also has implications for subsequent treatment plans, 
including the choice of alternative chemotherapy agents and targeted therapies5.

Following the widespread application of high-throughput next-generation molecular profiling methods, mul-
tiple researches have uploaded transcriptome profiles of OC to the public medical database6. These gene expres-
sion profiles were evaluated using a variety of statistical methods in order to identify differentially expressed 
genes (DEGs) in various subgroups and create predictive models or progression stage classifiers based on DEG 
expression levels7–12. While the biological relevance of these reported classification systems is supported by 
overlap between these models, their prognostic utility has not been optimized.

Previous studies 13–15 established predictive biomarkers and prognostic models using numerous heterogene-
ous independent datasets, most with small samples and without appropriate validation. A meta-analysis of data 
sets from several cohorts was used to construct a predictive model for chemotherapy resistance16. Its therapeutic 
use was limited by the inherent bias resulting from variability between included research and the vast number of 
selected genes. In addition, the prognostic model lacked comparisons to established clinicopathological factors 
and did not account for clinical pathological features.

To address these difficulties, we developed the Ovarian Cancer Disease Free Survival Predictor (ODFSP) 
model using the top-scoring pair (TSP) algorithm. TSP algorithm classifies phenotypes according to the relative 
expression of a pair of genes17. Thus, it is resistant to potential batch effects, profiling platforms, and normali-
zation approaches and has been tested as the feature selection method for various machine learning models18. 
The ODFSP model employed a unique sample of 159 ovarian serous neoplasms that were profiled using both 
microarray and sequencing methods. Using an independent set of ovarian transcriptome profiles from 1580 
primary resected patients, we show that ODFSP is a reliable single-sample predictor of early recurrence—1 year 
or less—after surgery. This could be used as a tool to aid doctors in their decision-making.

Materials and procedures
The meta-analytical pathway for developing the ODFSP model and assessing its predictive usefulness is shown 
in Fig. 1.

Collection of datasets
We reviewed the literature and selected 6 data sets from the public domain that contained 1580 patients with 
ovarian cancer and transcriptome data for ovarian cancer (Data Supplement S1). We selected samples using the 
criteria of the availability of disease free survival (DFS) and no loss of follow-up within one year (Fig. 2), prior 
to dichotomizing patients into high- and low-recurrence groups on the basis of a DFS threshold of 1 year. The 
various cohorts presented with similar clinical symptoms and had interventions of curative surgery followed by 
adjuvant chemotherapy (Data Supplement S1 and S2).

Establishment of predictive model
We used gene expression patterns from 159 samples from patients with ovarian carcinoma of the International 
Cancer Genome Consortium (ICGC) cohorts to build a robust predictor for early recurrence. In the ICGC 
cohorts, both microarray and sequencing technologies were employed to tumors. As previously reported8,9,19–21, 
human research ethics permission was given. Approximately 50 percent of the patients in the training cohort 
eligible for surgery relapsed within a year, thus a one-year threshold was set to distinguish which patients with 
ovarian neoplasms had a high risk of recurrence.

We converted the original gene expression profiles into binary gene pair barcodes to make the training and 
validation sets’ gene expression profiles comparable. In the SwitchBox package (version 1.2.0), we implemented 

Figure 1.   Pipeline demonstrating the development of the Ovarian Cancer Disease Free Survival Predictor 
(ODFSP).
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the k-Top score disjoint pairs classifier predictor utilizing the Wilcoxon rank sum technique as a filtering 
function22. Two permutation tests were used to see if the ODFSP model’s predictive value could be attained just 
by chance (Appendix A1 and A2).

Comparison of the performance of the ODFSP
For examination and statistical comparison of the ODFSP performance, meta-analysis was done on the sequenc-
ing cohorts, array-based cohorts, and overall combined cohorts of OC. Depending on the outcome variable—
recurrence within a year or less—patient samples were divided into two groups. Samples of lost to follow-up 
within a year were excluded from meta-estimate of the area under the receiver operating characteristics curve 
(AUROC). The AUROC plots sensitivity versus 1-Specificity and is used as a metric for the assessment of the 
model’s discriminatory ability23. The AUROC curve estimate was calculated using the pROC package (version 
1.18. 0)24, and the P value was calculated applying the Mann–Whitney test statistics to determine whether the 
AUROC curve estimate is significantly different from 0.5 (random classifier). The random effect model25 imple-
mented in the survcomp package (version 1.42.0)26 was used to calculate the AUROC meta-estimate.

The measure of heterogeneity of various cohorts
The dissimilarity index (D-Index), a robust estimate of the classic Cox hazard ratio, was used to estimate the prog-
nostic value and statistical significance of the survival difference between the predicted groups. The fundamental 
advantage of D-index over hazard ratio (HR) is that it provides a scale-free measure of separation between two 
independent survival distributions that can be interpreted under the proportional hazards assumption27. In a 
meta-analysis situation where it is imperative to account for the heterogeneity of multiple cohorts, the D-index 
is a good approximation of prognostic value and a high D-index reflects a strong separation between the survival 
distributions of different groups. We also utilized the concordance index (C-index), which measured the ability 
of the predictor to order the events by estimating the fraction of correctly ordered pairs out of all comparable 
pairs in the dataset28.The survcomp package was used to calculate the D-index and C-index. Using the random 
effect model implemented in the survcomp package, we estimated the meta estimate of the D-index and C-index 
for the OC sequencing cohorts, the OC array-based cohorts, and the combined ovarian serous cancer sequenc-
ing and array-based cohorts. The median DFS score was used to divide patients into low- and high-risk groups. 
The survminer package (version 0.4.9)29 in R was used to plot Kaplan–Meier curves, and the P values from the 
log-rank test were reported.

Early recurrence prediction model based on clinicopathologic features
We developed the clinical model by fitting a logistic regression model to age and FIGO stage data from ICGC 
sequencing, ICGC array, The Cancer Genome Atlas (TCGA), Levine cohort, Mayo Clinic cohort, Niigata Uni-
versity, and Medical University of Vienna cohorts.

Other classifiers
Although some studies published multiple biomarkers for the recurrence of ovarian cancer, there were no pre-
diction models for DFS of OC. Hu et al. used the LASSO Cox regression model in the TCGA database to create 
a multi-gene signature for 1-, 3-, and 5-year overall survival. We used the reported coefficients of the 8 classifier 
genes as weight factors in the sig.score function in the genefu R package (version 2.24.2) to generate the Hu 
signature scores30. Also, using the scikit-learn package in Python 3.7, machine learning approaches such as the 
logistic regression algorithm were evaluated in constructing a DFS prediction model. We used five validation 
cohorts to calculate the C-index and D-index for the three classifiers, ignoring the cohorts used for training by 
ODFSP and other classifiers in comparison. Furthermore, we used the survcomp package (version 2.13.0) to 
construct ODFSP for comparison of meta-estimates between each classifier’s C-index at P < 0.05 (one-sided t test).

Figure 2.   Flowchart outlining the requirement for enrolling samples for ovarian cancer (OC) samples. Six data 
sets were combined to create a total of 1580 OC samples. After samples were dichotomized into groups with a 
high and low risk of recurrence, they were filtered based on the availability of DFS and clinical information. The 
filtering criteria were met by a total of 1274 samples, of which 159 samples were utilized for training and 1115 
samples for validation.
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Analysis of gene set enrichment
GO enrichment and KEGG analyses were performed using the ClusterProfiler package (version 4.2.2) in R31. 
RunGSAhyper function in the piano package (version 2.8.0) was used to perform gene set enrichment analysis 
to categorize genes in ODFSP32.

Results
Predictive model for DFS
159 microarray and sequencing transcriptome profiled ICGC cohort samples were adopted to train the ODFSP 
model to identify patients who relapse within a year. We looked at the ODFSP score’s predictive significance in 
two different sequencing cohorts: the TCGA Ovarian Cancer and Levine cohorts, as well as three independent 
array-based cohorts: Mayo Clinic (MC), Niigata University (NU), and Medical University of Vienna (MUV). 
We initially calculated the AUROC for each data set separately to see if early recurrence had any predictability. 
The ROC curve was shown in Fig. 3A and the exact count of samples predicted in ODFSP in each cohort was 
displayed in Data Supplement S3. ODFSP was significant overall (AUROC, 0.64, P = 4.6E-05), but it was higher 
in data sets generated using sequencing platforms than in data sets generated using microarrays (AUROC, 0.72 
v 0.60 for sequencing and array data sets, respectively), proposing that RNA sequencing may be a more suited 

Figure 3.   Predictive value of the Ovarian Cancer Disease Free Survival Predictor (ODFSP) for early recurrence.
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assay for ODFSP than microarray platforms. In all cohorts, ODFSP was substantially associated with early recur-
rence (AUROC ∈ [0.57, 0.74], P < . 05; Fig. 3A).

To determine if the ODFSP model’s early relapse predictive value can be attained fortuitously, we first pro-
duced AUROC meta-estimates by shuffling the class labels—early recurrence—1000 times and using the same 
training technique as the ODFSP model. Lower balanced accuracy (BAC) of random models showed not a single 
random model was capable of producing a prediction value greater than or equal to ODFSP (P < 0.001; Appendix 
A1a), indicating that gene expression profiles were strongly linked with recurrence. Upon random allocation of 
genes to the ODFSP, we tested whether the gene pairings nominated in the ODFSP model were robustly related 
with early recurrence events. It was discovered that the genes selected in ODFSP had significantly more predic-
tive efficacy than random gene models (P < 0.001; Appendix A1b), indicating that the ODFSP gene collection 
is biologically relevant.

The ODFSP model’s prognostic value
As measures for the degree of separation for models of survival data, C-index and D-index were generated using 
DFS data for all cohorts to assess the ODFSP model’s predictive efficacy. Overall, the C-index is significant (0.58; 
P = 3.2E-04; Fig. 3B), probably reaching 0.60 (P = 2.1E-17) if the clear deviating result in NU cohort was omitted. 
The ODFSP prognostic value was elevated for sequencing data sets compared to arrays (C-index, 0.61; P = 3.7E-10 
v C-index, 0.57; P = 1.0E-06, respectively; Fig. 3B), which was consistent with early recurrence prediction results. 
ODFSP D-index was strong and significant overall (D-index = 1.50; P = 2.2E02; if NU removed, D-index = 1.67; 
P = 9.2E-06, Fig. 3C) and stronger for sequencing data sets as compared to arrays (D-index, 1.77 v 1.42, Fig. 3C).

With division of patients into low and high-risk groups of early recurrence, Kaplan–Meier curves were 
plotted for each cohort to illustrate the prognostic value of ODFSP (Fig. 4A–E). In all sequencing cohorts and 
microarray cohorts (P < 0.05), DFS was significantly different between risk groups with a 7-month difference in 
median DFS (Fig. 4F).

DFS prediction using a clinicopathologic model
The early recurrence of patients with OC was predicted using a logistic regression model fitted using these 
clinicopathologic variables. Given that in the univariable analysis (Data Supplement S4), age and tumor stage 
were significant and were used to create a clinicopathological model, the dataset was removed from this part 
because the NU cohort excluded age variable. The clinicopathologic model was insignificant in the sequencing 
cohort (D-index, 1.06, P = 0.79) or the array data sets (D-index, 1.48; P = 0.21, Fig. 5A). The clinicopathologic 
model’s predictive value was compared to ODFSP in the Fig. 5B, C. ODFSP had a better predictive value than 
the clinicopathologic model (one-sided t test, P < 0.01; Fig. 5D).

Prognostic models that have been published
The prognostic value of ODFSP was compared to that of the logistic regression model and the lasso cox regression 
model, the latter of which was used in a study published in 202030 to predict the overall survival of OC. ODFSP 
outscored them significantly in all cases (P < 0.05; Fig. 6A–D).

Analysis of gene set enrichment for prognostic genes
Genes involved in small molecular catabolic process, sulfur compound metabolic process, organic acid catabolic 
process, sulfur compound biosynthetic process, glycosaminoglycan metabolic process, aminometabolic process, 
responded to unfolded protein were enriched in ODFSP at false discovery rate of less than 5% according to gene 
enrichment analysis for ODFSP signature genes (n = 886) (Fig. 7A, B, Data Supplement S5). KEGG analysis 
identified prominent pathways that included cAMP signaling pathway and FoxO signaling pathway (Fig. 7C). 
Figure 7D showed the counts of genes enriched in human MSigDB collections.

Discussion
OC is a heterogeneous and genetically complex disease, and classifying its molecular biological and morphologi-
cal characteristics can be a useful starting point for future therapeutic development. Based on a meta-analysis 
of 6 independent transcriptional datasets, we created ODFSP, a novel predictive model to highlight high-risk 
individuals for early recurrence. The meta-analysis employed the transcriptome profiles of 1580 OC patients, in 
which 1274 samples have recurrence information. The model was constructed using a unique tuple of 159 indi-
viduals who were evaluated using an array-based platform and a sequencing platform, and it was then confirmed 
using a summary of five different datasets containing 1115 patients. This meta-analysis framework maximizes 
model robustness and performance across cohorts for training and validating ODFSP. The ODFSP model has a 
high prognostic value for early recurrence (1 year or less) (P < 0.001).

Compared to other gene-related prognostic predictors, there is a lack of evidence supporting the efficacy 
of signatures initially designed for OC in predicting DFS, despite the abundance of prognostic signatures for 
overall survival (OS)33,34. In the context of DFS, ODFSP outperformed logistic regression and lasso cox regres-
sion models, both of which were trained on a small sample and never verified on larger datasets. In addition, 
when compared to other classifiers, the ODFSP can be utilized as a single sample predictor that is resistant to 
potential batch effects, profiling platforms, and normalization approaches. ODFSP model avoids batch impact 
by simplifying continuous expression space into binary pair barcodes. Based on the same reason, ODFSP also 
outperforms prevailing models in both microarray and sequencing platforms. In addition, the ODFSP model 
demonstrated cross-platform stability to various normalization methods.
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Figure 4.   Kaplan Meier overall survival curves for (A) The Cancer Genome Atlas (TCGA), (B) Levine cohort, 
(C) Mayo Clinic cohort (MC), (D) Niigata University (NU), and (E) Medical University of Vienna cohorts 
(MUV) show the P values from log-rank test. (F) Disease free survival of predicted low- and high-risk groups 
aare shown in the table.



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19429  | https://doi.org/10.1038/s41598-023-45410-x

www.nature.com/scientificreports/

Figure 5.   Comparison of the prognostic value of the clinicopathologic model and Ovarian Cancer Disease 
Free Survival Predictor (ODFSP). (A) Bar plot reporting the Area under the operating characteristics curve 
(AUC) for the clinical model and the ODFSP model. (B) The results of the test comparing the ODFSP and 
clinicopathological models for the meta C-index and meta D-index are shown in the tables. The Cancer 
Genome Atlas (TCGA), Levine cohort, Mayo Clinic cohort (MC), and Medical University of Vienna cohorts 
(MUV). (C and D) Forest plot reporting the (C) concordance index (C-index) and (D) D-index (robust hazard 
ratio) of validation cohorts computed using ODFSP and clinicopathologic model in the forest plot represent the 
point estimates, horizontal bars represent Confidence Interval (CIs), and the diamond is the meta-estimate.
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In contrast to known predictive clinicopathologic markers, the ODFSP model predicted recurrence better 
than the clinicopathologic model. The ODFSP model had considerable predictive significance even after cor-
recting for clinicopathologic factors (age, FIGO stage).

The ODFSP model contains 886 unique genes and 2040 unique gene pairs. Genes involved in small molecular 
catabolic process, sulfur compound metabolic process, organic acid catabolic process, sulfur compound biosyn-
thetic process, glycosaminoglycan metabolic process and aminometabolic process, was found to be enriched in 
a functional study of 886 genes. For KEGG analysis of ODFSP signature genes, cAMP signaling pathway and 
FoxO signaling pathway were identified, which were suggested in related with cAMP signaling pathway and 
FoxO signaling pathway in ovarian neoplasms35.

The 886-gene ODFSP model should be reduced for wider utilization in clinical setting. Therefore, we exam-
ined alternative feature set sizes for the k-Top scoring disjoint pairs models and assessed the performance of the 
reduced models. In AUROC, we achieved equivalent performance to the 886-gene ODFSP model by integrating 
only 177 unique genes (Data Supplement S5), indicating that smaller ODFSP-like models could be used in clinical 
situations (Appendix A2). The reduced ODFSP can be used to evaluate the prognosis of patients with OC before 
undergoing curative surgery, assisting doctors in selecting patients whom surgery is optimal and identifying 
high-risk progressing cases wherein surgery proves minimally beneficial36.

The existing research had some fragilities. Foremost is the incorporation of bias-accumulating intrinsic tumor 
sample that were obtained from a variety of data sets, sampled at varying locations, and different hospitals having 
unparalleled standard of care. The MC cohort and NU data sets were macro dissected, while the TCGA/ICGC 
data sets profiled bulk tumors. Second, generation of transcriptomic profiles in our data compilation was achieved 
by using distinct microarray platforms (Agilent Technologies, Santa Clara, CA; Affymetrix, Santa Clara, CA; 
and Illumina) and distinct gene expression profiling methods were adopted for sequencing (Illumina HiSEqua-
tion 2000/2500; Illumina, San Diego, CA). Third, all samples were normalized using publicly available process-
ing methods that are dependent on the profiling platforms (Data Supplement S1). Furthermore, transforming 
expression data into binary barcodes may result in information loss in terms of co-expression and amount of 
differential expression between genes. However, the binary barcodes strategy has statistical advantages over 
predictions depending on continuous gene expression data. The binary barcode method generates single-sample 
predictions that are unaffected by monotonic transformations of gene expression data, which is especially use-
ful in meta-analyses of heterogeneous cohorts where continuous gene expression–based prediction approaches 
require data scaling for comparison across cohorts.

Figure 6.   Comparison of existing classifiers with Ovarian Cancer Disease Free Survival Predictor (ODFSP). 
(A and B) Forest plot reports the meta-estimate of the (A) concordance index (C-index) and (B) D-index 
(robust hazard ratio) for ODFSP and existing classifiers. Squares in the forest plot represent the point estimates, 
horizontal bars represent CIs, and the diamond is the meta-estimate. (C and D) The table shows the result of test 
of superiority between ODFSP and different classifiers for (C) Meta C-index and (D) Meta D-index.
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Despite these flaws, ODFSP produced consistent predictive value across varied data sets, implying that the 
gene expression barcode transformation is resistant to the unavoidable biases that plague massive meta-analyses. 
To improve the prediction accuracy of predictive models, more research into germline variants, epigenetics, 
copy number alterations, noncoding RNAs, protein abundance, and epidemiologic and environmental factors 
will be required. Our meta-analysis is further limited by the absence of available clinical treatment information, 
especially treatment, across cohorts, deterring us from delving into this source of heterogeneity. However, when 
comparing cohort-specific clinical information, there were no significant differences between cohorts (Data 
Supplement S2). The standard-of-care treatment for ODFSP at the time of sample collection was curative-intent 
surgery accompanied by adjuvant chemotherapy with platinum and taxane. Maintenance with bevacizumab, 
the antibody–drug combination mirvetuximab soravtansine co-administered with bevacizumab, has shown 
anti-tumor activity that leads to long-term responses in platinum “agnostic” (resistant/sensitive) casesy37. Many 
sites are also evaluating the effect of neoadjuvant chemotherapy and antibody–drug conjugates; consequently, 
therapeutic variability is expected within and between cohorts. It may be essential to test the ODFSP model with 
additional clinical cohorts or, ideally, randomized trials.

Finally, we employed the maximum possible set of OC transcriptomes to create ODFSP, a predictive model 
that detects OC-diagnosed participants who are at high risk of early recurrence and outperforms such models 
established on clinicopathologic characteristics or molecular subtypes. ODFSP could be used in the clinic as 
a single sample classifier to identify patients who are at a higher risk of relapsing early following surgery and 
adjuvant chemotherapy, thereby easing treatment decisions.

Data availability
The datasets generated and analysed during the current study are publicly available at https://​dcc.​icgc.​org, https://​
portal.​gdc.​cancer.​gov/​proje​cts/​TCGA-​OV, https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE10​2094, 
https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE14​0082, https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​

Figure 7.   Analysis of Gene Set Enrichment for Prognostic Genes. (A) GO enrichment analysis of Ovarian 
Cancer Disease Free Survival Predictor (ODFSP) signature genes. The color intensity of the bars represents the 
number of enriched genes. (B) GO enrichment analysis of ODFSP signature genes divided into BP, CC and MF. 
(C) KEGG enrichment analysis of ODFSP signature genes. (D) Counts of Genes Enriched in Human MSigDB 
Collections.

https://dcc.icgc.org
https://portal.gdc.cancer.gov/projects/TCGA-OV
https://portal.gdc.cancer.gov/projects/TCGA-OV
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE102094
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140082
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32062
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cgi?​acc=​GSE32​062, and https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE49​997. Our code is publicly 
available on https://​github.​com/​wanle​i1618/​ODFSP.
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