
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18343  | https://doi.org/10.1038/s41598-023-45393-9

www.nature.com/scientificreports

Empirical determination 
of the effective solid modulus 
in organic‑rich shales
K. Larkin Spires *, John P. Castagna  & Sheyore John Omovie 

Calculating the change in the saturated bulk modulus of a saturated rock with new fluid properties 
requires a priori selection of an effective bulk modulus of the solid constituents. When the rock 
constituents have similar mineral moduli, the theoretical bounds on the solid modulus are close 
to each other. However, when solid properties vary greatly, as in organic‑rich shales, the actual 
effective solid modulus of a physical rock may vary significantly between the bounds which results in 
uncertainty in the predicted change in the saturated bulk modulus of the rock. We use a semi‑empirical 
rock physics model utilizing the Brown–Korringa equation for mineralogically heterogenous rocks and 
introduce three parameters to estimate the pore space compressibility, the dry frame compressibility, 
and the fractional position of the effective solid modulus relative to the Reuss and Voigt bounds. We 
optimize for these three parameters in seven organic shale formations and find that the Reuss bound 
for the effective solid material modulus best fits the data when organic content is high. Furthermore, 
we use this model to fluid substitute to 100% brine saturation and find Gassmann’s equation using 
the Hill average predicts similar saturated moduli to the semi‑empirical Brown–Korringa rock physics 
model when volume fraction of solid organic matter is less than 5%. However, at higher organic 
contents, we find that the error using the Gassmann–Hill approach increases, and the semi‑empirical 
Brown–Korringa model better fits the data.

Fluid substitution using Gassmann’s  equations1,2 is a frequently used procedure in the petroleum industry for 
applications such as direct hydrocarbon detection (e.g.3) through forward modeling, carbon sequestration (e.g.4) 
in determining the brittleness of seals and modeling CO2 plume migration in storage sites, source rock evalu-
ation (e.g.5), and elastic moduli and brittleness estimation in unconventional shale reservoirs (6,7).  Gassmann1 
expresses the bulk modulus of a fluid saturated rock as a function of the porosity, the bulk modulus of a single 
solid constituent, the pore fluid modulus, and the bulk modulus of the rock frame (skeleton).  Gassmann1 assumes 
a homogenous solid and does not address what effective solid material bulk modulus to use when the composite 
is an aggregate of minerals with different moduli. In practice (e.g.3,8,9) the Reuss and Voigt bounds of the constitu-
ent moduli are averaged to form the Reuss–Voigt–Hill effective solid material  modulus10. The wider the range of 
constituent moduli, the more opportunity for non-linearity and use of the  Hill10 average to introduce error into 
Gassmann fluid substitution. In organic shales containing highly compressible kerogen there can be an order 
of magnitude variation in the moduli of solid materials, so the question of how to properly average constituent 
moduli can be significant.

Berryman and  Milton2 deal with two mineral constituents by relating the modulus of the porous composite 
frame to the moduli of the minerals and the porous monomineralic frames of each of the two minerals. Unfortu-
nately, the individual mineral porous frame properties are generally not known for practical applications involv-
ing in situ rocks. Furthermore, for more than two minerals, the mathematics becomes unwieldy. Despite this lack 
of an explicit theoretical formulation for the effective solid, there is still the need to perform fluid substitution 
in situ for rocks encountered in a borehole containing both hard and soft solid constituents..

Thomsen11 points out an error in Gassmann’s derivation of the fluid substitution equation and indicates 
that the Brown and  Korringa12 formulation is correct. Furthermore, the Brown and Korringa equation allows 
for compositional heterogeneity in the solid constituents, while there is no theoretical basis for doing so via 
Gassmann’s equation. Unfortunately, Brown and Korringa introduce two elastic constants that are conceptually 
poorly understood and often not readily available for practical applications (see Eq. (2), below) which adds an 
additional unknown modulus to the fluid substitution problem. Our literature search only produced examples 
applying Brown and Korringa to laboratory samples or numerical models.
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The purpose of this paper is to apply Brown and Korringa fluid substitution to subsurface data without labora-
tory calibration for the missing Brown and Korringa moduli. In the absence of explicit theoretical guidance, we 
gave particular emphasis on the effective solid material compressibility to use for fluid substitution in organic 
shales having a wide range of solid constituent moduli. We do so by optimizing coefficients to empirical equa-
tions for seven different unconventional reservoirs with varying composition and hydrocarbon content including 
organic shales from the Wolfcamp, Cline, Bakken, Eagle Ford, Woodford, Avalon, and Spraberry  formations7,9,13, 
and finding empirical moduli relationships that best fit all the data in each formation.

Muller and  Sahay14 introduce an additional unknown in the fluid substitution process, which is the coefficient, 
n. In this paper, we assume that n = 1 to limit the number of degrees of freedom in fitting the data and to reduce 
the fluid substitution problem exactly to the Brown and Korringa formulation. We will treat variation of this 
parameter, if any, in future research. Furthermore, as a first step, we deal only with velocities measured normal to 
bedding. Further work would then be required to apply our results to velocities measured with other orientations.

Theory
Bounding equations and the Hill average for effective solid moduli
The widest possible bounds for a zero-porosity isotropic polycrystalline assemblage of randomly oriented and 
distributed isotropic constituents are given by the Reuss (lower bound) and Voigt (upper bound) averages cor-
responding to volume weighted reciprocal (Reuss) or linear (Voigt) averages of the constituent moduli  (see8). In 
the special case of equal constituent shear moduli, the  Hill10 arithmetic average of the Reuss and Voigt bounds 
is exact, as the bounds coincide in that specific case. Figure 1 shows the Reuss and Voigt bounds of the mineral 
modulus of two numerical rocks with zero porosity along with the calculated Hill average. The vertical scales of 
the graphs are the same which clearly shows the difference between the Reuss and Voigt bounds when varying 
from 100% quartz to 100% kerogen (Fig. 1a) and to 100% illite (Fig. 1b). When constituent bulk moduli are simi-
lar as in Fig. 1b, the bounds are narrow, and the Hill average is a good approximation; even when shear moduli 
are unequal. However, when constituent moduli differ by an order of magnitude as in Fig. 1a, the bounds are 
wide, and the Hill average is likely to be incorrect by a significant amount; in the vicinity of ± 8 GPa in a binary 
mixture of about equal amounts of quartz and kerogen (see Fig. 1a). According to Mavko and  Mukerji15, use 
of the Hill average is only appropriate in Gassmann fluid substitution when the ratio of the bulk moduli of the 
softest components to the stiffest is greater than 0.3.

It is possible to invoke tighter theoretical  bounds16. However, these Hashin–Shtrikman bounds for solid bulk 
modulus require knowledge of both bulk and shear moduli of all solid constituents. In application to organic 
shales, this requires knowledge of the shear modulus of kerogen, which is highly variable with depth and degree 
of maturity, and usually poorly known. It is not clear that the Hashin–Shtrikman bounds would be applicable 
in an anisotropic finely laminated medium, as shales can be. Furthermore, it is possible for the effective mineral 
modulus in the Brown-Korringa equation to violate bounding equations if not all solid constituents are “par-
ticipating”12 in structural support of the rock frame. Rather than invoking a particular averaging scheme, in this 
paper we will optimize a rock physics model, based on the Brown and  Korringa12 fluid substitution formulation 
(which is applicable for composites with multiple solid constituents), for the local Brown and Korringa moduli 
relationships that best fit the observations in various organic shale formations.

In addition to the case of constant shear modulus, there are two relevant situations where the exact theoretical 
effective zero-porosity solid modulus is known:

(1) As the shear modulus of an interpenetrating medium surrounding the other constituents goes to zero, the 
effective modulus of the resulting “suspension-like material” approaches the Reuss  bound17. This could 

Figure 1.  Examples of Reuss–Voigt bounds and the Hill average in zero-porosity mineral composites (a) 
quartz–kerogen mixture with almost an order of magnitude difference in bulk moduli between bounds, and (b) 
quartz–illite mixture with tight bounds. The closer the constituent moduli, the tighter the bounds and the better 
the Hill average is as an estimate of the modulus of the composite.
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be relevant where total organic content is high and continuously distributed throughout the composite, 
as kerogen typically has a relatively low shear modulus on the order of 3  GPa18 (compare with the other 
minerals in Tables 2 and 3).

(2) If the constituents are individually arranged to form a series of very thin single constituent isotropic lay-
ers (each of which is a small fraction of a wavelength in thickness) and wave propagation is normal to the 
bedding, this also corresponds to the Reuss  bound8. Both situations may be approached to some extent in 
shales with high organic content.

In this paper, we use velocities acquired normal to bedding and ignore anisotropy in the fluid substitution 
process. This procedure, although common in the literature, is open to criticism, c.f.  Thomsen11. We use it here 
nonetheless since the logs do not provide enough information to describe the anisotropy adequately. Given 
sufficient information, further improvement in our model may be possible using the Brown and Korringa fully 
anisotropic fluid substitution equations.

Fluid substitution
Gassmann1 considers the mechanical dependence of the static bulk modulus of a fluid-saturated porous isotropic-
composite ( Kud ) on the bulk modulus of the fluid ( KF ) the bulk modulus of the solid mineral ( KS ) the bulk 
modulus of the “dry”  frame ( Kfr ), and the porosity ( φ ) (e.g.,8):

Another outcome of Gassmann’s theory is that the shear modulus is independent of the fluid  modulus2.
The use of the adjective “dry” to describe the frame modulus is somewhat of a misnomer, as it is the drained 

frame modulus in the presence of the wetting fluid, and thus the term “dry” ignores physico-chemical solid–fluid 
interactions that may cause the modulus to change with saturating fluid. Furthermore, the act of drying a rock 
can change the frame properties. We use the term “frame” modulus to be consistent with Thomsen’s  publication11. 
 Biot19 used the term “skeleton” to describe this modulus. In our application, the frame modulus is that which is 
in contact with the wetting fluid, which we assume will remain so as fluid saturation changes.

Equation (1) ignores dispersion and is strictly valid only at zero frequency. However, Omovie and  Castagna13,20 
argue and present empirical evidence that Gassmann’s equations are not violated by observations in low perme-
ability shales and that no statistically significant dispersion between their core and well log measurements is 
observed. Gassmann assumes fluid pressure equilibration between the pores, so the porosity can be taken to be 
the acoustically connected porosity, with any disconnected porosity assigned to the solid  matrix12,21. Fluid pres-
sure equilibration can be achieved, even in disconnected pores, if pores under compression strain to the same 
degree. For example, perfectly spherical disconnected pores under compression will obey Gassmann’s equation 
in a monomineralic  rock22,23. Similarly, if the medium has aligned flat pores parallel to bedding, as might be 
expected to a large extent in a shale for wave propagation perpendicular to bedding, one would expect similar 
strain in the aligned “cracks”. Omovie and  Castagna13,20 also reason that, according to the general  Biot19 theory, 
acoustic measurements fall well below the critical frequency calculated for shales and that dispersion can be 
safely ignored. Thus, it is feasible that Eq. (1) is applicable to shales in particular circumstances.

In performing Gassmann’s fluid substitution in practice, the measured or otherwise known in situ variables 
Kud, KF, KS, and f are used to solve for Kfr, then the derived Kfr, new KF, and original KS and f are used to calculate 
the predicted Kud with the new fluid. Smith et al.3 provides a detailed tutorial of the fluid substitution process.

As the mineral modulus is unknown when there are multiple solid constituents, it is common practice to use 
the  Hill10 average of constituent moduli (e.g.3,8,15,24) as the effective solid constituent modulus. We refer to this 
approach as Gassmann–Hill fluid substitution.

Alternatively, the Brown and  Korringa12 approach assumes an arbitrary mixture of mineral constituents and 
is written in terms of the compressibilities. Specifically,

in which cφ is the compressibility of the pore space with constant differential pressure as fluid pressure varies, 
cfr is the compressibility of the dry rock frame, equal to 1/ Kfr, the mean compressibility cM = (1− φ)cS + φcφ , 
where  cS is the effective compressibility of the mixture of solid material comprising the solid rock matrix,cud is 
the compressibility of the undrained saturated rock, and cF is the compressibility of the fluid. There is no general 
theoretical expression to calculate cS from the solid constituent moduli, as it will depend on the constituent 
micro-geometry as well as the contrast in  moduli15,25. In practice, the  Hill10 Voigt–Reuss–Hill average is used 
for the mineral bulk modulus with little error when constituents have similar  moduli15. However, in organic 
shales with an order of magnitude range of mineral moduli, and absent detailed microstructural information or 
laboratory calibration to associate with logging measurements, and with insufficient theoretical constraint, we 
must resort to empirical methods.

Empirical rock physics model
Given the porosity and the compressibility of the saturated composite ( Cud ) and pore fluid ( CF ), there are three 
unknowns in Eq. (2): CS , Cφ , and Cfr . Assuming the effective solid material bulk modulus, KS = 1/cS , must lie 
between the Reuss ( KReuss ) and Voigt ( KVoigt ) bounds, we introduce an arbitrary empirical parameter ξ, which 
specifies any allowable value of KS as a weighted average of the bounds:

(1)
Kud

KS − Kud
=

Kfr

KS − Kfr
+

KF

φ(KS − KF)

(2)
1

Cud − CM
=

1

Cfr − CM
+

1

φ(C F − Cφ)
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When ξ = 1 , the effective solid modulus is equal to the Reuss bound. Similarly, when ξ = 0 the effective solid 
modulus is equal to the Voigt bound, and when ξ = 0.5 it is the Hill average. As ξ is a continuous variable that 
can take on any value, it is readily optimized to empirically fit data. In the data presented here, we did not find 
optimized values outside the range 0 to 1 although that is theoretically  possible12.

Following Kachanov et al.26, the pore space compressibility in a monomineralic solid is given by

where p is the “pore shape factor”, which we extend here to a heterogenous material and treat as a strictly empiri-
cal coefficient, again optimized by fitting the data.  Vernik27 describes the theoretical relationship between p and 
pore shape which will be discussed further below. In the Brown and Korringa  formulation12, the pore space 
compressibility is at constant differential pressure as pore pressure is varied as opposed to the dry rock pore 
compressibility. We must emphasize, therefore, that in our application of Eq. (4) we view p only as an empirical 
coefficient that may possibly be only loosely related to pore shape at the average composition of the rocks for 
which it is optimized.

We add an additional degree of freedom to relate the dry frame compressibility to the effective solid compress-
ibility by using the Nafe and  Drake28 empirical relation:

where m is a locality dependent empirical coefficient. Presumably, at a given locality and associated pressures, 
the exponent m could vary with degree of lithification/cementation, pore shape, and composition (especially 
clay content and total organic carbon).

Equations (2)–(5) define a rock physics model, with empirical coefficients ξ , p , and m , that can be obtained 
by fitting well log compressional and shear-wave velocities and density in any specific locality, formation, and 
depth interval.

Data
The data used in this study come from vertical wells drilled in seven unconventional organic shale formations 
in the continental United States: the Spraberry, Avalon, Cline, Eagle Ford, Wolfcamp, Woodford and Bakken 
formations. Each well has a full well logging suite and volumetric analysis including total organic content and 
fluid saturation calibrated with core measurements along with reliable compressional and shear wave logs. These 
data were previously reported and fully described in Vernik et al.9 and Omovie and  Castagna7,13, including the 
logs as supplementary online data) and summarized in Table 1. Solid constituent volume fractions reported 
include kerogen, pyrite, calcite, dolomite, clay, and quartz. We loosely include all the solid organic matter in the 
kerogen volume fraction and feldspars are included in the quartz fraction. Mean velocities and derived moduli 
are only provided in Table 1 to describe where the data are clustered and are not meant to have strict physical 
significance. Tables 2 and 3 shows the solid and fluid properties used by formation.

Method
As shales are highly anisotropic for orientations that are not normal to bedding, the anisotropic Brown and 
 Korringa12 fluid substitution equations should be applied, and recalibration of empirical coefficients should 
be made according to orientation. In this study, as a first approximation and to keep the number of data fitting 
degrees of freedom small, we deal with only vertical velocities obtained in straight boreholes with only minor 
formation dip (bedding normal). To verify and simplify the fluid substitution approach, we consider only the 
vertical component with the understanding that extension to consider anisotropic effects is feasible with addi-
tional constraint or optimized parameters. The “isotropic parameters” thus constructed should be regarded as 
“effective” isotropic parameters.

In our approach to fluid substitution, the well log acoustic compressional-wave and shear-wave velocities 
and density are combined to extract the dynamic saturated modulus, Kud, at each well log depth. Core-calibrated 
well log volumetric analyses reported by Omovie and Castagna (7 with data provided online) provide porosity, 
solid constituent volume fractions, and fluid saturations. The effective solid Reuss and Voigt moduli, KReuss and 
KVoigt , are calculated given the constituent volume fractions and material properties in Table 1. Fluid moduli 
used are based on fluid composition and in situ conditions using the Batzle and  Wang29 equations. The effective 
fluid modulus, KF, at the well log water saturation, is calculated using the Reuss  bound17 with locality dependent 
fluid moduli given in Table 2.

Over a given well log depth interval in an organic shale, if empirical coefficients ξ, p, and m are assumed to be 
constant over the interval, then with potentially hundreds of well log observations the three unknown constant 
coefficients are readily obtained by exhaustive search. If the observed Kud values are reproduced with low mean-
squared error and pass statistical significance tests, then the optimized coefficients can be loosely interpreted as 
weighted average values for the interval of interest.

For each of the seven organic shale formations comprising the data used in this study, the three empirical 
coefficients were optimized by allowing them to vary over a specified range and minimizing the mean square 
error between the fitted Kud and the measured Kud. m was varied over a range from 1 to 20 in increments of 0.25, 
p was varied from 1 to 40 in increments of 0.5, while ξ was varied from 0 to 1 in increments of 0.05. For each trial 
combination of ξ , p , and m , the Brown and  Korringa12 compressibilities were calculated from Eqs. (3)–(5) and 

(3)KS = ξKReuss + (1− ξ)KVoigt

(4)cφ = pcS

(5)cfr =
CS

(1− φ)m
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Table 1.  Average rock properties from well logs for shale reservoirs studied here. Each formation is 
represented by a single well, so these values are not meant to be representative of the entire geographic extent 
of the formations. High water saturations (greater than 70%) and low TOC volume fractions less than 1% 
are excluded. Reported quantities are mean values for included depths. Depth is mean depth for included 
datapoints in each formation. Density is mean logged density. Vp and Vs are mean sonic compressional 
and shear-wave velocities. μ and k are derived shear and bulk moduli from mean velocities and density. Ro 
is percent vitrinite reflectance determined from cuttings and  Sw is mean decimal water saturation from log 
analysis. The  Xi are mineral solid volume fractions from volumetric log analysis such that ∑Xi = 1 for organic 
matter (XTOC), pyrite  (XPyrite), calcite  (XCalcite), dolomite  (XDolomite), clay  (XClay) and quartz plus feldspars 
 (XQuartz). TOC is weight percent of total solid organic carbon. XTOC is the volume fraction of solid organic 
carbon derived from TOC using the  Vernik27 relation. The depth range is the top and base of the logged 
interval. ϕTotal is total porosity using measured log density, fluid density, and grain density from solid volume 
 fractions7.

Depth (m) Density (gm/cc) Vp (km/s) Vs (km/s) Vp/Vs (ratio) mu (GPa) K (GPa)
TOC (wt%) 
(percent)

Depth range 
(m)

Formation

 Spraberry 2007 2.56 3.74 2.17 1.72 12.04 19.68 2.88 1962–2046

 Wolfcamp 2350 2.54 3.73 2.16 1.73 11.84 19.74 3.71 2326–2374

 Avalon 2380 2.46 3.77 2.34 1.61 13.60 17.24 7.61 2337–2423

 Woodford 3193 2.52 3.51 2.11 1.66 11.25 16.02 5.58 3188–3200

 Eagle Ford 3886 2.55 4.06 2.39 1.70 14.60 22.67 2.88 3838–3928

 Cline 2807 2.52 3.70 2.24 1.66 12.64 17.82 6.07 2772–2831

 Bakken 3381 2.28 3.05 1.84 1.66 7.75 11.01 14.44 3371–3391

XTOC 
(decimal)

XPyrite 
(decimal)

XCalcite 
(decimal)

XDolomite 
(decimal)

XClay 
(decimal)

XQuartz 
(decimal) ϕTotal (decimal) Sw (decimal) Ro (percent)

Spraberry 0.05 0.03 0.09 0.00 0.33 0.49 0.10 0.54 0.80

Wolfcamp 0.07 0.03 0.11 0.00 0.27 0.51 0.08 0.44 0.80

Avalon 0.14 0.03 0.02 0.02 0.20 0.60 0.07 0.30 0.94

Woodford 0.11 0.02 0.00 0.00 0.35 0.53 0.04 0.47 0.98

Eagle Ford 0.06 0.01 0.60 0.00 0.10 0.15 0.08 0.49 1.80

Cline 0.12 0.03 0.03 0.01 0.32 0.48 0.06 0.55 0.98

Bakken 0.26 0.03 0.00 0.12 0.21 0.38 0.07 0.24 1.30

Table 2.  Average fluid properties by formation. Fluid properties are calculated from the Batzle and  Wang29 
equations for the formation fluid composition and in situ pore pressure and temperature.

Formation Hydrocarbon type KHC (GPa) ρHC (g/cc) KBrine(GPa) ρBrine(g/cc)
Mean temperature 
(°C)

Pore pressure 
(MPa)

Avalon Volatile oil 0.366 0.670 2.75 1.05 50 30

Bakken Oil 0.750 0.800 2.75 1.05 80 46

Cline Volatile oil 0.430 0.675 2.80 1.05 54 35

Eagle Ford Gas 0.130 0.250 2.80 1.05 93 53

Spraberry Volatile oil 0.375 0.675 2.75 1.05 45 21

Wolfcamp Volatile oil 0.434 0.677 2.73 1.05 49 28

Woodford Volatile oil 0.430 0.675 2.75 1.05 68 36

Table 3.  Mineral end member elastic moduli used for computing matrix bulk modulus for fluid substitution. 
Kerogen is from Vernik and  Landis27 and used to represent all solid organic matter.

Mineral ρ (g/mL) K  (GPa) µ (GPa)

Kerogen 1.300 5.53 3.20

Pyrite 4.930 147.63 129.04

Calcite 2.712 64.51 27.72

Dolomite 2.870 91.76 35.92

Clay 2.780 52.60 31.50

Quartz 2.649 38.00 41.77
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inserted into Eq. (2). The combination of ξ , p , and m that exhibited the minimum mean squared error between 
predicted and measured saturated moduli at in situ saturation was selected as the best combination for each 
formation. As the trials include all possible combinations of the coefficients, the result is a global minimum 
without any subjective interpretive bias guiding convergence towards a preferred outcome. The best combination 
was then used to perform fluid substitution for all depths in the interval via Eq. (2).

Results
The optimization by formation for ξ , p , and m is shown graphically in Figs. 2 and 3 as well as numerically in 
Table 4. In Fig. 2, the top panel shows the values derived per formation, the second panel shows mineralogic 
composition including kerogen, the third shows the in situ undrained bulk modulus calculated from sonic and 
density logs alongside the predicted value from the optimization, the fourth panel displays the calculated miss-
ing moduli from the parameters. Figure 3a the in situ undrained bulk modulus against the predicted. Figure 3b 
plots the hill average against the optimized effected mineral modulus showing that the Hill average is an over-
estimate. Table 4 contains the optimized values of ξ , p , and m broken down by formation along with the statisti-
cal measures of significance including RMSE, R, F-statistic, and p-value. Should the least mean-squared error 
minimum not be well defined, we would expect the inverted parameters to vary in an unstable manner between 

Figure 2.  Concatenated optimization results plotted as logs for the seven formations. The horizontal axis is 
the sample number which is a proxy for depth. Measured and optimized well logs are sampled every half foot 
(0.1524 m) over the depth range given for each formation in Table 1. The formation names and ranges are given 
above the top panel. Sample numbers are 1–414 for the Spraberry, 415–715 for the Wolfcamp, 716–1269 for the 
Avalon, 1270–1319 for the Woodford, 1320–1830 for the Eagle Ford, 1831–1986 for the Cline, and above 1987 
for the Bakken. Top panel: optimized empirical coefficients m, ξ, and p for each formation. Second panel: the  Xi 
are mineral solid volume fractions from volumetric log analysis such that ∑Xi = 1 for organic matter (XTOC), 
pyrite  (XPyrite), calcite  (XCalcite), dolomite  (XDolomite), clay  (XClay) and quartz plus feldspars  (XQuartz). TOC is weight 
percent of total solid organic carbon. XTOC is the volume fraction of solid organic carbon derived from TOC 
using the  Vernik27 relation. Third panel: red curve—dynamically measured Kud from sonic and density logs. 
Blue curve—predicted Kud using the semi-empirical Brown–Korringa model (Eqs. (2)–(5)), volumetric well 
log analysis, and the optimized coefficients for each formation. Bottom panel: predicted Brown–Korringa bulk 
moduli using the optimized coefficients in each formation. Red curve—dry frame modulus, Kfr. Blue curve—
pore space modulus, Kφ. Green curve—effective solid constituent bulk modulus, Ks.
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formations. To the contrary, the coefficients vary in a reasonable way given the variable geological conditions. 
The predicted saturated bulk modulus using only the three free parameters ( ξ , p , and m ) for each formation is 
excellent (a root-mean-squared error of 2.59 GPa with a correlation coefficient of 0.84 for the entire dataset) 
and statistically significant relative to an alpha significance level of 0.05 (the F-statistic is 231 with a near zero 
p-value) It should be noted that the sampled data and predictions are non-Gaussian (multi-modal and skewed). 
This is expected of the data populations that span a variety of lithologies in each interval. Our statistical tests 
are thus not strictly accurate and should be viewed as indicators of significance only. The match observed in 
the third panel of Fig. 2 and crossplot in Fig. 3a is impressive given the limited number of free parameters and 
the fact that part of the mismatch can be attributed to experimental error in the velocities and densities used to 
extract the observed Kud and in the volumetric compositional analysis used as input to the rock physics model. 
As indicated in Table 4, when the coefficient optimization is performed with only three constant coefficients for 
the entire dataset, the goodness of fit is slightly reduced, but the F statistic increases to 1260 as all 2033 datapoints 
are fit with only three free parameters.

It is important to note that the best fit ξ parameter is at or close to unity in six of the seven formations—this 
suggests that, in contrast to standard fluid substitution practice using the Hill average, in organic shales the Reuss 

Figure 3.  (a) Dynamically measured Kud from sonic and density logs compared to predicted Kud using the semi-
empirical Brown–Korringa model (Eqs. (2)–(5)), volumetric well log analysis, and the optimized coefficients for 
each formation colored by formation. (b) Effective mineral modulus, Ks, obtained from the optimized ξ for each 
formation versus the Hill average, KHill. The Hill average is always greater than Ks in these organic shales.

Table 4.  Empirical coefficients optimized by formation and resulting indicators of goodness of fit to the 
measured dynamic bulk modulus, Kud. RMSE is root-mean-squared error in GPa, R is the correlation 
coefficient, F is the Fisher F-statistic, the p-value is the single tailed probability that a model with no 
independent variables fits the data as well as the applied rock physics model. The only statistical concern is the 
Bakken, where the correlation coefficient is low because the range of moduli is small and the prediction fails an 
alpha confidence level of 0.05, although the fit to the data is good and F exceeds unity. Combining the results 
for all the formations with the coefficients determined by formation (a total of 21 coefficients with 3 in each 
formation) yields good statistics. Optimizing for only 3 coefficients for all formations combined has slightly 
reduced goodness of fit but greatly increased F due to the large number of datapoints with very few degrees of 
freedom.

Samples Formation ξ m p RMSE R F statistic p-value

554 Avalon 0.55 12.00 3.5 1.92 0.93 1263 0

47 Bakken 1.00 9.25 4.0 1.42 0.31 1.56 0.21

156 Cline 0.85 11.75 2.0 1.35 0.91 239 0

511 Eagle Ford 1.00 8.75 4.0 2.76 0.69 158 0

414 Spraberry 1.00 7.75 4.0 2.42 0.56 63.0 0

301 Wolfcamp 1.00 8.00 4.0 2.96 0.54 40.0 0

50 Woodford 1.00 14.00 4.0 2.74 0.49 4.74 0.0055

2033 All—average over all formations N/A N/A N/A 2.59 0.84 231 0

2033 All—optimized as a single set 1.00 8.00 3.5 2.94 0.80 1260 0
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average of the constituent mineral moduli is usually a better choice than the Hill average in Brown–Korringa 
fluid substitution. Similarly, Wang et al.30 utilize an inclusion-based rock physics model and account for organic 
matter using the Backus average, which is virtually the Reuss bound. On the other hand, the Avalon formation 
has an optimized value of ξ = 0.55 , which is only slightly softer than the Hill average. This difference may be 
related to the microstructural arrangement of organic matter. Figure 3b shows that the best fit effective solid 
modulus, KS, using ξ is always less than the Hill modulus in all formations studied.

The optimized p coefficient in Fig. 2 and Table 4 is equal to 4 or close to it in six of the seven formations, the 
exception being the Cline shale where p = 2, which, if a physically meaningful measure of pore shape, would 
indicate more equant  pores26, which may be unrealistic in a shale. Similarly, the more common values of 4 or near 
4 seen in the other formations would suggest an effective aspect ratio on the order of 0.2. The optimized p’s are 
consistent with reported values from Hart and  Wang31 for clay-bearing Berea sandstone. If the values reported 
here are physically interpretable, as opposed to being purely empirical coefficients, it would suggest that most 
of the porosity is more equant than crack-like. The total porosity could then be viewed as dominated by large 
equant pores while flat pores, like those occurring between clay platelets, with aspect ratios that can be less than 
0.1, could be incorporated into a “crack density” term; these pores are highly compressible but contribute little 
to the total  porosity27. It is possible that there is a tradeoff in the fitting between p and m with the crack density 
being accommodated by the m values. Irrespective of whether the formation optimized p’s can be interpreted 
directly in physical terms, their stability across formations is encouraging.

The optimized m coefficients are higher than values reported by Nafe and  Drake28 for high porosity shallow 
marine sediments. From Eq. (5), for a given porosity, the higher m, the more compressible the rock frame, sug-
gesting compressible pores. Indeed, the predicted pore space bulk modulus, Kφ , as shown in the bottom panel 
of Fig. 2 is usually less than or about equal to the predicted dry frame modulus, Kfr. This is an indication of the 
great importance of varied solid constituent properties. Conversely, one might expect the rock frame compress-
ibility at a given porosity to increase with clay content, due to lower aspect ratio pores, and possibly also with 
compressible organic content (although this may be accommodated entirely by the calculated effective solid 
modulus, Ks). The data could then possibly be better fit by allowing m to be a function of volume fraction of  clay27 
and perhaps that of kerogen by adding additional parameters at the cost of reduced statistical significance of the 
coefficients. We chose to simplify the optimization by holding m constant for each formation, thereby, letting it 
be representative of the average composition for each depth interval investigated. If more precise predictions are 
required, additional compositional and pore shape dependence of m could be considered. Our initial attempts 
to add such parameters resulted in reduced statistical significant however.

Nevertheless, the empirical rock physics model fits the measured saturated moduli well (Fig. 3b); the standard 
error being less than 3 GPa across all formations (see Fig. 2 middle panel and Table 4). Of course, this prediction 
uses coefficients optimized for each entire formation and could be further improved by zoning the coefficients 
into subintervals corresponding to distinct geological facies. Evidence of this possibility is seen in Fig. 2 in the 
Eagle Ford formation when there is a significant drop in percent of calcite and a corresponding gap between the 
predicted and measured Kud.

The excellent reconstruction of the modulus logs from only three average parameters combined with the 
sample-by-sample volumetric analysis is indeed encouraging; however, the fluid substitution problem usually 
does not require prediction of Kud, as it is dynamically measured with velocity logs and density. Rather, the 
reverse problem involves starting with measured Kud and predicting how it will change as fluid modulus changes 
using the optimized parameters. We ask the question: How do our semi-empirical Brown–Korringa model fluid 
substitution results compare to the Gassmann–Hill approach?

Comparison to Gassmann–Hill fluid substitution
Fluid substitution requires first using the in situ measurements to obtain the original saturated modulus, and then 
changing the fluid modulus corresponding to the new fluid type, saturation, and/or pressure and temperature 
conditions. Here we investigate the case of changing the water saturation from the in situ saturation to 100% 
brine using the Gassmann–Hill approach versus our semi-empirical Brown–Korringa model. In Fig. 4 we show 
that the Gassmann–Hill dry frame modulus from Eq. (1) goes non-physical in places, particularly in formations 
with high organic content. Figure 4a highlights that reasonable results for a 100% brine saturated undrained 
bulk modulus are still obtained even as the dry frame modulus takes on negative values in the second panel. 
Furthermore, Fig. 4b highlights the value differences between the dry frame modulus predicted from our semi-
empirical model and Gassmann-Hill. As the semi-empirical Brown-Korringa frame moduli shown in Fig. 2 are 
always physical and reasonable, this suggests that using the Hill average results in too high an effective mineral 
modulus. On the other hand, this error in frame modulus seems to be self-compensating to some extent in the 
Gassmann-Hill approach, as it results in reasonable 100% brine-saturated moduli. One can show by subtract-
ing Eq. (1) from itself with two different fluid moduli, that the dry frame modulus no longer appears explicitly

where Kud1 and KF1 or the original saturation and fluid modulus, and Kud2 and KF2 are the fluid substituted satu-
ration and modulus. The frame modulus is implicitly contained in the saturated moduli, but fluid substitution 
can be performed via Eq. (5) without explicitly solving for the frame modulus. Nevertheless, the non-physical 
frame moduli suggest a weakness in the Gassmann–Hill model which is not apparent in the semi-empirical 
Brown–Korringa model.

The standard deviation of the discrepancy between Gassmann–Hill and semi-empirical Brown–Korringa 
saturated moduli at 100% brine saturation is 1.7 GPa for the entire dataset. This is notably less than the in situ 

(5)
Kud2

KS − Kud2
−

Kud1

φ(KS − Kud1)
=

KF2

φ(KS − KF2)
−

KF1

φ(KS − KF1)
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discrepancy between measured and predicted saturated moduli In Figs. 2 and 3 and Table 5. The discrepancy 
is even less when restricting data to less than 5% TOC (1.4 GPa) but increases to 1.9 GPa for TOC greater than 
10%. This can be viewed as validating the use of Gassmann-Hill in rocks with low or no organic content when 
substituting to 100% brine saturation. However, when operating in the reverse direction from fully-brine satu-
rated to gas saturated, the frame modulus dominates, and the discrepancy in frame moduli evident in Fig. 4a, 
b can be significant.

Conclusions and discussion
We present a novel semi-empirical rock physics model based on the Brown and  Korringa12 equation for fluid 
substitution in aggregates with solid constituents having a wide range of bulk moduli, with the idea that it could 
be better suited for use in shales containing highly compressible solid organic matter. The model also includes 
(1) the Kachanov et al.26 relation between pore compressibility and effective solid bulk modulus which defines a 
factor p which is theoretically related to pore shape, (2) a parameter ξ that relates the effective solid bulk modulus 
to the Reuss and Voigt bounds, and (3) an empirical relationship between dry frame modulus, effective solid 
modulus, and porosity used by Nafe and  Drake28 which contains solid fraction raised by a power m.

We test this model in seven different shale formations with a wide range of compositions and fluid properties. 
We find that optimizing for only three constant empirical coefficients (p, ξ and m) fits the measured dynamic 

Figure 4.  (a) Comparison of semi-empirical Brown–Korringa to Gassmann–Hill fluid substitution from in situ 
saturation to 100% brine saturation. Top panel: predicted saturated bulk modulus at 100% brine saturation for 
Gassmann–Hill (red curve) and semi-empirical Brown–Korringa (blue curve). Bottom panel: predicted dry-
frame bulk modulus, Kfr, for Gassmann–Hill (red curve) and semi-empirical Brown–Korringa (blue curve). The 
Gassmann–Hill dry modulus, Kfr, becomes non-physical in some cases with high organic content. (b) Crossplot 
of Kfr predicted by semi-empirical Brown–Korringa model and Gassmann–Hill. Gassmann–Hill yields non-
physical or otherwise unreasonable values.
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saturated bulk modulus remarkably well with apparently high statistical significance while yielding physical frame 
moduli in every case, unlike the Gassmann-Hill approach which goes non-physical at times.

Although the optimized parameters (p, ξ, and m) are stable and physically reasonable, we view them as sim-
ply empirical constants at this stage of model development. The optimized ξ parameter is always greater than 
0.5 suggesting that effective solid modulus is always less than the Hill average in organic shales. In most of the 
formations we find that ξ is close to 1, which corresponds to the Reuss bound, as opposed to the more commonly 
assumed Hill average. The factor p is 3.5 when fit to the entire dataset, which would imply more equant pore 
shape than we expect in shales and suggests to us that the coefficients p and m tradeoff to some extent. Future 
work will involve directly parameterizing the crack density in the rock physics model, which may allow better 
conceptual interpretation of the optimized parameters, and also optimizing for the effective stress coefficient, n.

When substituting to 100% brine saturation, the Gassmann–Hill approach and semi-empirical Brown–Kor-
ringa model predict similar saturated moduli, especially for low total organic content. The difference increases 
with increasing TOC. This may explain the Omovie and  Castagna13 observation that fluid substituting in situ 
organic shale measurements to 100% brine saturation using Gassmann-Hill produces results consistent with the 
Greenberg and Castagna (1992) fully brine-saturated inorganic shale compressional versus shear-wave velocity 
trend.

In this study, we relied heavily on the assumption that in a given formation at a particular location and over 
a limited depth interval, we could assume constant empirical constants. In fact, those constants could not have 
been optimized for in situ, without that assumption over some number of samples. That the data were stably fit 
well with only three parameters suggests that the assumption is for the most part correct to first order. However, 
as geological facies vary vertically or laterally, we expect the assumption to break down to some extent. Should 
significant variability in those parameters occur, it is certainly possible to refine the optimization by zone or 
geological facies if necessary for practical application.

In conclusion, we have developed a semi-empirical rock physics model that properly handles a mix of solid 
constituents with very different bulk moduli and have tested it in seven organic shale formations. We find that 
in every formation, the measured dynamic bulk modulus can be fit well with input compositional volume frac-
tions, constituent properties, and only three empirical coefficients.

Data availability
The data used in this paper is available for download as the supplemental information in Omovie and Castagna’s 
Relationships between Dynamic Elastic Moduli in Shale Reservoirs published in Energies at https:// www. mdpi. 
com/ 1996- 1073/ 13/ 22/ 6001 with the direct download link https:// www. mdpi. com/ 1996- 1073/ 13/ 22/ 6001/ s1? 
versi on= 16056 19595.
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