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Empagliflozin induces 
the transcriptional program 
for nutrient homeostasis in skeletal 
muscle in normal mice
Ryo Kawakami 1,3, Hiroki Matsui 2,3, Miki Matsui 1, Tatsuya Iso 1, Tomoyuki Yokoyama 2, 
Hideki Ishii 1 & Masahiko Kurabayashi 1*

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) improve heart failure (HF) outcomes across 
a range of patient characteristics. A hypothesis that SGLT2i induce metabolic change similar to 
fasting has recently been proposed to explain their profound clinical benefits. However, it remains 
unclear whether SGLT2i primarily induce this change in physiological settings. Here, we demonstrate 
that empagliflozin administration under ad libitum feeding did not cause weight loss but did 
increase transcripts of the key nutrient sensors, AMP-activated protein kinase and nicotinamide 
phosphoribosyltransferase, and the master regulator of mitochondrial gene expression, PGC-1α, 
in quadriceps muscle in healthy mice. Expression of these genes correlated with that of PPARα and 
PPARδ target genes related to mitochondrial metabolism and oxidative stress response, and also 
correlated with serum ketone body β-hydroxybutyrate. These results were not observed in the heart. 
Collectively, this study revealed that empagliflozin activates transcriptional programs critical for 
sensing and adaptation to nutrient availability intrinsic to skeletal muscle rather than the heart even 
in normocaloric condition. As activation of PGC-1α is sufficient for metabolic switch from fatigable, 
glycolytic metabolism toward fatigue-resistant, oxidative mechanism in skeletal muscle myofibers, 
our findings may partly explain the improvement of exercise tolerance in patients with HF receiving 
empagliflozin.

Empagliflozin and dapagliflozin, two members of sodium-glucose cotransporter 2 inhibitors (SGLT2i) which 
promote urinary glucose loss, profoundly reduce the risk of hospitalization for heart failure (HF) across broad 
range of patient  characteristics1–3. The physiological and biomolecular mechanisms responsible for this benefit are 
under intense investigation. One intriguing hypothesis that has recently emerged is that SGLT2i promote stress 
resistance and autophagic flux by upregulating nutrient-deprivation signaling in tissues including  heart4. This 
mechanism has been proposed as a unifying hypothesis to explain the observed effects in randomized clinical 
trials and experimental evidence derived from rodent model of diabetes and HF, which are invariably associated 
with dysregulated energy homeostasis.

The nutrient-deprivation signaling by SGLT2i may be relevant to diabetes patients who are mostly overnutri-
ent, and may account for mild ketosis and erythropoiesis, which are associated with SGLT2i  therapy5,6. However, 
it is important to note that SGLT2i consistently benefit HF patients irrespective of diabetes, established or risk of 
cardiovascular disease, or renal  function7,8. Given the catabolic state in patients with HF, it is difficult to imagine 
that the favorable effects of SGLT2i on heart failure are due to the potentiation of nutrient-deprivation signaling 
in the energy-starved failing heart. Instead, an induction of nutrient-deprivation signaling by SGLT2i may be 
secondary to the improvement of pathophysiological conditions of HF such as adiposity and insulin resistance, 
among others. In this regard, it remains unknown whether SGLT2i induce the nutrient-deprivation signaling 
under the physiological conditions where organ systems are not bioenergetically challenged.

Skeletal muscle accounts for ~ 40% of body mass in non-obese subjects, and has ~ 30% of the resting meta-
bolic  rate9. Skeletal muscle possesses a robust capacity to remodel its metabolic machinery and can dynamically 
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adapt to a wide range of physiological circumstances, such as exercise, fasting, and changes in hormonal profile, 
through structural, functional and metabolic  plasticity10. For example, physical exercise, even a single bout of 
exercise, evokes transcriptional signaling pathways to coordinate the activity of multiple enzymatic cascades as 
a means to tightly couple gene expression with metabolic need and nutrient  availability11,12. Intuitively, these 
forms of mechanistic plasticity of skeletal muscle are suitable to determine whether SGLT2i have the impact on 
energy metabolism in tissues under physiological circumstances.

The present study explores the effects of empagliflozin on the expression of the genes involved in the energy 
sensing, mitochondrial biogenesis, oxidative phosphorylation, mitochondrial respiration, and oxidative stress- 
resistance in skeletal muscle in healthy mice. In addition, we examined the effects of empagliflozin on these genes 
in the heart. Further, we analyzed the correlation between the expression of these genes and serum concentra-
tions of metabolites.

Results
Effects of empagliflozin on the transcripts of the genes for key nutrient sensors
AMP-activated protein kinase (AMPK) is a prime nutrient sensor monitoring intracellular AMP levels and 
coordinates adaptive responses to fasting and exercise acutely through phosphorylation of metabolic enzymes, 
and chronically via transcriptional  regulation13. Another metabolic sensor is  NAD+-dependent deacetylase sir-
tuin  SIRT114.  NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT) is the nutrient-
responsive gene that increases mitochondrial  NAD+  levels15, and is required and sufficient for the activation 
of  SIRT116. To determine whether empagliflozin alters the transcription of these nutrient-sensing genes, we 
examined the transcripts for AMPKα1, NAMPT and SIRT1 in quadriceps muscle in mice treated with either 
vehicle or empagliflozin via intragastric administration of 10 mg/kg/day for 28 days under ad libitum feed-
ing. The results of quantitative real-time PCR (qPCR) showed that both AMPKα1 and NAMPT transcripts 
significantly increased in empagliflozin-treated mice as compared with those in vehicle-treated mice (p = 0.021 
and p = 0.043, respectively) (Fig. 0.1A). In addition, Pearson’s correlation analysis revealed that the transcripts 
levels of AMPKα1 and NAMPT strongly correlated each other (r = 0.77, p = 0.002). This result is consistent with 
the previous finding that the NAMPT gene transcription is induced by activated  AMPK17. SIRT1 transcripts 
were comparable between the two groups (p = 0.255), but strongly correlated with AMPKα1 transcript (r = 0.72, 
p = 0.006) (Fig. 1B). These results suggest that empagliflozin activates the transcription of the genes required for 
cellular energy sensing in skeletal muscle.
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Figure 1.  Effects of empagliflozin on energy sensing gene expression in quadriceps muscle. (A) Relative 
transcript levels of AMPKα1, NAMPT and SIRT1 in quadriceps muscle from vehicle-treated and empagliflozin-
treated mice. Values represent mean ± SD (vehicle-treated, n = 6; empagliflozin-treated, n = 7). (B) Correlations 
between AMPKα1, NAMPT and SIRT1 gene expression. Relative transcript levels for AMPKα1, NAMPT and 
SIRT1 are shown in the x- and y-axis. A linear regression line, Pearson’s correlation coefficient and p-value are 
shown.
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Effects of empagliflozin on the PGC-1α transcripts
Peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α) is a master regulator of meta-
bolic programs for mitochondrial biogenesis and  function18. Results of qPCR showed that PGC-1α transcripts 
significantly increased in empagliflozin-treated mice as compared with control mice (p = 0.045) in quadriceps 
muscle (Fig. 2A).

Correlation between the nutrient sensors and the PGC-1 α transcripts
We next evaluated the coordinated regulation of AMPKα1, NAMPT, SIRT1 and PGC-1α expression. Pearson’s 
correlation analysis showed that the transcripts of the PGC-1α and AMPKα1 genes significantly correlated 
(r = 0.61, p = 0.026) (Fig. 2B). This observation is consistent with the previous data showing that the expression of 
PGC-1α gene is transcriptionally induced by AMPK  activation19. PGC-1a transcripts were also highly correlated 
with NAMPT transcripts (r = 0.84, p < 0.0001) while the correlation between PGC-1α and SIRT transcripts was 
not statistically significant (r = 0.45, p = 0.121) (Fig. 2B). These results suggest that the expression of the AMPKα1, 
NAMPT and PGC-1α genes are closely linked together.

Effects of empagliflozin on the PPARα, PPARδ and KLF15 transcripts
Much of the altered metabolic programming driven by PGC-1α is achieved by its binding to multiple transcrip-
tion factors including nuclear receptors such as peroxisome proliferator-activated receptors (PPARs)20. PPARs 
are lipid-activated nuclear receptors involved in the regulation of mitochondrial enzymes involved in fatty acid 
metabolism and electron transport. We examined the effects of empagliflozin on the transcripts of PPARα and 
PPARδ. qPCR showed that PPARδ transcripts in skeletal muscle tended to be increased in empagliflozin-treated 
mice (p = 0.079) while PPARα transcripts were similar between the two groups (p = 0.533). The transcripts of the 
Krüppel-like factor 15 (KLF15), a critical regulator of lipid metabolism in skeletal  muscle21, were also comparable 
between the two groups (Fig. 2A).

Correlation between PGC-1α and mitochondrial gene transcripts
Skeletal muscle is a major user of fatty  acids10. PPARs are fatty acid-activated transcription factors belonging 
to the nuclear receptor  superfamily22. Consistent with the established role of PGC-1α-PPARδ complex in fatty 
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Figure 2.  Effects of empagliflozin on the expression of transcription factors and coactivator in quadriceps 
muscle. (A) Relative transcript levels of PGC-1α, PPARα, PPARδ, and KLF15 in quadriceps muscle 
from vehicle-treated and empagliflozin-treated mice. Values represent mean ± SD (vehicle-treated, n = 6; 
empagliflozin-treated, n = 7). (B) Correlations between PGC-1α and energy sensing gene expression. Relative 
transcript levels for AMPKα1, NAMPT and SIRT1 are shown in the y-axis while those of PGC-1α are shown in 
the x-axis. A linear regression line, Pearson’s correlation coefficient and p-value are shown.
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acid  catabolism23, Pearson’s correlation analysis showed that the transcripts of PGC-1α significantly correlated 
with those of many genes involved in fatty acid oxidation and oxidative phosphorylation such as acyl-CoA 
dehydrogenase long chain (ACADL), r = 0.55, p = 0.046; carnitine-palmitoyl transferase-1b (CPT1b), r = 0.56, 
p = 0.048; adenine nucleotide translocator 1 (SLC25a4), r = 0.64, p = 0.018; cytochrome c, somatic (CYCS), r = 0.78, 
p = 0.001; ubiquinol-cytochrome c reductase, Rieske Iron-Sulfur polypeptide 1 (UQCRFS1), r = 0.74, p = 0.004 
(Fig. 3). In addition, expression of the mitochondrial transcription factor A (TFAM) gene, which is involved 
in mitochondrial  biogenesis24, significantly correlated with that of PGC-1α (r = 0.59, p = 0.034). These results 
are consistent with the previous reports that PGC-1α controls the expression of genes related to mitochondrial 
biogenesis and function in skeletal  muscle25,26.

Effects of empagliflozin on transcripts of the genes for oxidative stress response
Uncoupling protein 2 and 3 (UCP2 and UCP3), the mitochondrial anion carriers that partially uncouple res-
piration from ATP synthesis, are expressed in skeletal  muscle27. Fatty acids and superoxide activate UCP2 and 
UCP3 expression and the primary role of UCP2 and UCP3 has been suggested to be the protection against 
reactive oxygen species (ROS) produced during fatty acid  oxidation28. qPCR showed that UCP2 transcripts were 
significantly increased (p = 0.003) in empagliflozin-treated group, although an increase in UCP3 transcripts did 
not reach statistical significance (p = 0.10) (Fig. 4A). Given a key role of PGC-1α in transcriptional induction of 
UCP2 gene expression 29, it is conceivable that the inducible expression of UCP2 by empagliflozin is at least partly 
due to the increased PGC-1α expression. Indeed, we found that the UCP2 transcripts significantly correlated 
with the AMPKα1 (r = 0.69, p = 0.009), NAMPT (r = 0.67, p = 0.012), and PGC-1α (r = 0.61, p = 0.002) transcripts.

Expression of other antioxidant defense genes including NADPH Oxidase 4 (NOX4), superoxide dismutase 2 
(SOD2), and nuclear factor-erythroid-related factor (NRF2) did not significantly differ between the two groups. 
However, Pearson’s correlation analysis revealed that the expression of NOX4, SOD2 and NRF2 significantly 
correlated with that of PGC-1α (r = 0.73, p = 0.004; r = 0.63, p = 0.022; r = 0.59, p = 0.032, respectively) (Fig. 3). 
Additionally, the expression of NOX4 and NRF2 also significantly correlated with that of NAMPT (r = 0.65, 
p = 0.017 and r = 0.63, p = 0.020, respectively). These results suggest that the expression of energy-sensing genes 
is closely linked to that of the genes for oxidative stress response.

Quantitative relationships between serum β-hydroxybutyrate (bOHB) and the transcripts of 
the nutrient-sensors and PGC-1α
To understand the upstream signals which potentially induce nutrient-sensing genes, we measured circulating 
metabolites. Serum glucose, triglyceride and FGF21 were comparable between the two groups, but serum bOHB 
and free fatty acid (FFA) were tended to be higher in empagliflozin-treated mice (p = 0.086, p = 0.063, respectively) 
(Fig. 5B). bOHB is increasingly appreciated to have cellular signaling functions in a variety of physiological 
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Figure 4.  Effects of empagliflozin on the expression of oxidative stress response genes in quadriceps muscle. 
(A) Relative transcript levels of UCP2, UCP3, NOX4, SOD2, and NRF2 in quadriceps muscle from vehicle-
treated and empagliflozin-treated mice. Values represent mean ± SD (vehicle-treated, n = 6; empagliflozin-
treated, n = 7). (B) Correlations between UCP2 and the expression of the genes for nutrient sensors and PGC-1α. 
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UCP2 are shown in the y-axis. A linear regression line, Pearson’s correlation coefficient and p-value are shown.
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Figure 5.  Body weight and serum parameters in vehicle- and empagliflozin-treated mice. (A) Body weight 
at day 0 and day 28 after vehicle or empagliflozin treatment. Values represent mean ± SD (vehicle, n = 6; 
empagliflozin, n = 7). (B) Serum concentrations of glucose, triglyceride, FGF21, bOHB, and FFA at day 28 
after vehicle or empagliflozin treatment. Values represent mean ± SD (vehicle, n = 6; empagliflozin, n = 7). 
(C) Correlations between bOHB and the expression of the genes for nutrient sensors and PGC-1α. Relative 
transcript levels for NAMPT, PGC-1α, AMPKα1 and SIRT1 are shown in the y-axis while serum bOHB 
concentrations are shown in the x-axis. A linear regression line, Pearson’s correlation coefficient and p-value are 
shown.
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contexts, including fasting and  exercise30. Notably, both NAMPT and PGC-1α transcripts positively and signifi-
cantly correlated with serum bOHB (r = 0.57, p = 0.043 and r = 0.60, p = 0.030, respectively) (Fig. 5C). Although 
it does not reach statistical significance, it may be important to note 3.4-fold increase in bOHB when compar-
ing the means although it does not reach statistical significance. Taking these into consideration, an increased 
production of bOHB may be upstream of or associated with an increased expression of nutrient sensors and 
PGC-1α in empagliflozin-treated mice.

No correlation was found between serum FFA and the transcripts of the nutrient sensors and PGC-1α (Suppl. 
Fig.S1A). FGF21, a metabolic hormone mainly produced from liver, has been proposed to increase adipose tissue 
lipolysis and hepatic ketogenesis in response to  fasting31,32. In the present study, serum FGF21 was comparable 
between the two groups, and no correlation was found between serum FGF21 and expression of nutrient sen-
sors (Fig. 5, Suppl. Fig.S1B).

Effects of empagliflozin on myogenic gene transcripts
Having the multi-dimensional role of energy metabolism in the regulation of muscle function, we next sought 
to determine the effects of empagliflozin on the myogenic gene expression (Suppl. Figure S1). The transcripts of 
the genes for master regulators of myogenesis, MyoD and MEF2 family (MEF2A and MEF2C), did not change 
between the two groups (data not sown). However, the gene encoding myocardin, a potent coactivator for serum 
response factor (SRF) that binds to the sequence [CC(A/T)6GG] termed a CArG box or serum response element 
(SRE)33, increased significantly in empagliflozin-treated mice (Suppl. Fig. S2A). In addition, Pearson’s correla-
tion analysis revealed that the myocardin transcripts highly correlated with the AMPKα1 (r = 0.77, p = 0.002), 
NAMPT (r = 0.81, p = 0.001) and SIRT1 (r = 0.67, p = 0.011) transcripts (Suppl. Fig. S2B). While the myocardin 
expression has been reported to be restricted to cardiac and smooth muscle, the myocardin-related transcription 
factors MRTF-A and MRTF-B genes are broadly  expressed34. But neither MRTF-A nor MRTF-B gene expression 
changed in empagliflozin-treated mice (data not shown). These results suggest that empagliflozin transcription-
ally induces the myocardin expression in association with the expression of the nutrient sensors.

Effects of empagliflozin on transcripts of nutrient sensors and PGC-1α in the heart
Finally, we examined whether empagliflozin has a similar effect on the transcriptional program in the heart. qPCR 
analysis showed that empagliflozin did not affect the expression of the AMPKα1, NAMPT, and PGC-1α genes 
and that it significantly decreased the SIRT1 expression (p = 0.012) (Fig. 6). The myocardin expression, which 
is abundant in the heart, was not affected. These results suggest that empagliflozin has little, if any, effect on the 
transcriptional program related to metabolism in the heart, and thus, the heart is less susceptible to empagliflozin 
than skeletal muscle in a healthy state.

Discussion
We report that empagliflozin significantly and coordinately induces the expression of the genes for nutrient 
sensors, AMPKα1 and NAMPT, and their downstream target PGC-1α in skeletal muscle in normal mice under 
ad libitum feeding. Increasing numbers of studies showed that SGLT2i increased the activation of these media-
tors of mitochondrial metabolism in a variety of experimental models such as diabetic mice, high-fat diet-
induced obese mice, Dahl-sensitive rats, cultured cardiomyocytes exposed to lipopolysaccharide, doxorubicin 
or angiotensin II (see  reviews4,35). In addition, it is well established that AMPKα1, NAMPT, and PGC-1α form 
a molecular network that plays an important role in cellular energy homeostasis in skeletal  muscle36. Therefore, 
the coordinated induction of these genes is not surprising. However, because our mouse model does not have 
confounding metabolic abnormalities, this study provides novel evidence that empagliflozin activates the tran-
scriptional programs for energy homeostasis as a physiological response in the skeletal muscle, not a secondary 
response to the alleviation of underlying metabolic derangements.
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Figure 6.  Effects of empagliflozin on the expression of the genes for nutrient sensors, PGC-1α, and myocardin 
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empagliflozin-treated, n = 7).



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18025  | https://doi.org/10.1038/s41598-023-45390-y

www.nature.com/scientificreports/

Which factors are responsible for the activation of nutrient-sensing genes by SGLT2i in skeletal muscle? 
SGLT2i cause weight loss, although substantially less than expected from the urinary glucose  excretion37. In this 
study, the change in body weight after empagliflozin treatment for 28 days was almost identical with that in vehi-
cle-treated controls, suggesting that empagliflozin-treated mice were likely to compensate for glycosuria-induced 
caloric loss by increasing food intake (hyperphagia), as reported by Devenny et al. who used dapagliflozin-treated 
diet-induced obese (DIO) rat  model38. Therefore, the activation of nutrient-sensing genes by SGLT2i in skeletal 
muscle is weight independent.

We reason that in empagliflozin-treated mice, urinary caloric loss is compensated by overeating, but glucose 
loss is only partly compensated by carbohydrate in the standard chow, and therefore, glucose available to the 
energy-demanding organs including skeletal muscle is relatively reduced compared with control mice. It is well 
documented that glucose restriction activates AMPK independently of any changes in intracellular AMP/ATP 
and ADP/ATP ratios in mouse embryo fibroblasts (MEFs)39,40. Likewise, glucose restriction induces AMPK 
activity and NAMPT transcription even under the conditions where fatty acid oxidation is increased in skeletal 
 myoblasts25. Fast skeletal muscle including quadriceps preferentially metabolize glucose and is expected to be 
more susceptible to glucose restriction compared with slow skeletal muscle. In fact, Otsuka et al. demonstrated 
that canagliflozin tended to increase AMPK phosphorylation in fast skeletal muscle preferentially over slow 
skeletal muscle in nondiabetic  mice41. Taking these into consideration, we assume that a reduced glucose avail-
ability may underlie the empagliflozin-induced activation of nutrient-sensing genes in quadriceps muscle (Fig. 7).

Growing numbers of evidence indicate that bOHB acts as an endogenous inhibitor of class 1 histone dea-
cetylases (HDACs) activation, and increases the transcription of the genes encoding oxidative stress resistance 
 genes30. Consistently, serum bOHB correlated with AMPKα1, NAMPT, PGC-1α (Fig. 4B), and UCP2 expres-
sion (r = 0.698, p = 0.008). However, a ketogenic diet did not induce PGC-1α expression despite the induction 
of AMPK activity in the  liver42. Further, we did not find little, if any, effect of bOHB on the expression of the 
nutrient-sensing genes in differentiated C2C12 cells (Suppl. Fig. S3). These data argue against the notion that 
bOHB plays a role as a physiologically relevant mediator of the effects of empagliflozin on nutrient-sensing gene 
induction in skeletal muscle. Instead, both ketogenesis and nutrient-sensing gene expression may be induced 
by common factor(s).

Among many factors which facilitate hepatic ketogenesis by SGLT2i, primary determinant may be low 
 glucose5,43,44.The observed association between bOHB and nutrient-sensing gene expression in empagliflozin-
treated mice may be interpreted such that low glucose per se induces both ketogenesis in the liver and nutrient-
sensing gene expression in skeletal muscle independently. Previous studies showed that PPARα-FGF21 axis 
promotes fasting-induced  ketogenesis31,32, and canagliflozin increases fasting serum FGF21 which facilitates 
lipolysis in adipose tissue, and resultantly, increases bOHB production in diet-induced obese  mice45. However, 
we herewith find that empagliflozin has no effect on serum FGF21, and thus, FGF21 is unlikely to be a relevant 
mediator in our model.

Consistent with the well-defined role of PGC-1α-PPARs axis in the transcriptional regulation of the genes 
involved in fatty acid  metabolism46, Pearson’s correlation analysis revealed that the expression of the genes related 
to mitochondrial metabolisms such as fatty acid transport, its oxidation, electron transport, and mitochondrial 
biogenesis, significantly correlated with the expression of either PPARα or PPARδ. Nevertheless, the difference in 
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the expression levels of these genes between vehicle- and empagliflozin-treated mice was not statistically signifi-
cant. The lack of significant activation of the mitochondrial genes despite a significant increase in AMPKα1 and 
PGC-1α expression is likely due to the mouse model we used. To avoid cofounding factors including energetic 
stresses, we used healthy mice under ad libitum feeding. The significant correlation between nutrient-sensing 
genes and many genes related to mitochondrial metabolism led us to speculate that the activation of nutrient-
sensing genes could potentially translate to the upregulation of mitochondrial oxidation and anti-oxidative 
defense gene expression under the condition where muscle is subjected to profound energetic deficiency such 
as long-term fasting and endurance exercise.

In this context, it is worth noting that empagliflozin significantly induces the expression of UCP2 in parallel 
with AMPKα, NAMPT, and PGC-1α expression. This observation is consistent with the previous reports showing 
that the UCP2 gene is AMPK target in skeletal  muscle47. UCP2 is a mitochondrial protein that regulates mild 
uncoupling and activates in response to subtle mitochondrial ROS produced by the protonmotive force set up 
across the inner membrane by electron  transport28,48. Therefore, empagliflozin-induced UCP2 expression may be 
a transcriptional signature of the increased fatty acid oxidation and oxidative phosphorylation in skeletal muscle.

The clinical relevance of this study is two-fold. First, our data support the notion that SGLT2i induce the 
metabolic state similar to fasting, which could reverse the abnormality of nutrient-related signaling pathways in 
the heart and  kidney4. However, our findings that empagliflozin had no effect on the nutrient-sensing signaling 
in normal heart suggest that the activation of nutrient-deprivation signaling postulated in the failing heart may 
be a consequence of the amelioration of the underlying pathophysiology such as mitochondrial dysfunction, 
oxidative stress, and lipotoxicity.

Secondly, our findings may explain the favorable clinical effects of SGLT2i on exercise performance in patients 
with HF as assessed by patient-reported symptoms and other measures of physical limitations and exercise 
 function49–51. Exercise intolerance is highly prevalent in patients with HF, and a fundamental component of 
the condition of this  disease52. A number of reports using biopsy specimens and in vivo measurements with 
phosphorus-31 magnetic resonance spectroscopy (MRS) demonstrated that percent of type I (oxidative) muscle 
fibers relative to type II (glycolytic) muscle fibers is reduced, and mitochondrial oxidative metabolism is impaired 
in skeletal muscle in patients with HF irrespective of left ventricular ejection  fraction53–55. Type II muscle fib-
ers, as in quadriceps muscle, can undergo switching to fatigue-resistant type I fibers in response to endurance 
exercise through the mechanisms involving AMPK and PGC-1α  activation19,47. Taken together, our findings 
raise the intriguing possibility that clinical benefits of SGLT2i are partly attributed to the activation of signal-
ing pathways involving AMPKα1, NAMPT, and PGC-1α in skeletal muscle which have been advocated as the 
molecular mediators of muscle adaptation to endurance  exercise12,56,57. To our knowledge, no prior studies have 
explored the effects of SGLT2i on the oxidative metabolism in the skeletal muscle in vivo using phosphorus-31 
MRS methodology. Further studies should be warranted to test this hypothesis.

Of note, empagliflozin had virtually no effects on the expression of genes for nutrient sensing network in the 
heart. But we should be aware that many cardiovascular medications exert their effects differently depending 
upon the underlying pathophysiological state. For example, statins prevent atherosclerotic events more strongly 
in patients with higher levels of plasma inflammatory markers (e.g., C-reactive protein) at  baseline58, and benefit 
of treatment with renin-angiotensin system (RAS) inhibitors or sacubitril-valsartan is larger in HF patients with 
reduced ejection fraction (HFrEF) than in those with preserved ejection fraction (HFpEF)59. Thus, we can envis-
age that empagliflozin primarily exerts its rescue effects on metabolism of failing heart, particularly in HFrEF, 
in which energy production is generally  compromised60. However, it is important to emphasize that the results 
in this study may help us understand the mechanisms by which empagliflozin consistently improve exercise 
tolerance in patients with HFpEF, in which a consensus on cardiac metabolic changes has yet been  identified61.

Limitation of study
Our study has several limitations. First, this study solely used qPCR and did not examine the protein expres-
sion levels of nutrient-sensing genes in skeletal muscle. Neither phosphorylation nor deacetylation activities of 
AMPK and SIRT1, respectively, were not examined. Further, the transactivation function of PGC-1α remains 
unanswered. As a result, we cannot confirm that components of nutrient-sensing network are activated at pro-
tein levels by empagliflozin. Obviously, however, the advantage of qPCR is to be able to reliably quantitate the 
expression of the genes that do not exhibit large change in transcription. Secondly, serum glucose levels were 
measured only once before sacrifice. Thus, we cannot conclusively state that empagliflozin lowered glucose levels. 
Nevertheless, because our mice model maintained a normal feeding and locomotor activity during the night-
time, and empagliflozin was administered at daytime, we expect that glycosuria-induced glucose loss is not being 
compensated by eating during the daytime when frequency of food intake is much less than that in night-time. 
Precise monitoring is required to detect the difference in serum glucose levels between the two groups when 
studying mice under ad libitum feeding. Thirdly, numbers of mice examined may be too small to substantiate 
the statistical analysis. Thus, we performed the correlation analysis of vehicle-treated and empagliflozin-treated 
groups, separately. Interestingly, Pearson’s correlation coefficients (r) among nutrient sensing network gene tran-
scripts (i.e., AMPKα1, NAMPT, SIRT1, and PGC-1α) remained larger than 0.60 in vehicle-treated group (Suppl. 
Fig. S4). These results suggest that there intrinsically exist positive correlations between the expression of each 
of nutrient sensing network genes in skeletal muscle. However, it is obvious that validation study using larger 
numbers of mice should be necessary. Fourthly, we did not explore the role of AMPK-NAMPT-PGC-1α pathway 
in the regulation of mitochondrial metabolism in the skeletal muscle. However, we investigated the effects of 
PGC-1α knockdown on mitochondria-related gene expression in vitro using C2C12 cells. Results showed that 
PGC-1α knockdown clearly reduced the expression of a broad array of genes involved in mitochondrial metabo-
lism. Of a particular interest, PGC-1α knockdown substantially reduced the expression of AMPKα1, NAMPT, 
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PPARα, and SIRT1 (Suppl. Fig. S5), suggesting that there seem to be feed-forward relationship among PGC-1α 
AMPKα1, NAMPT and SIRT1 gene expression. These results conform to the established notion that PGC-1α 
gene plays a key role in mitochondrial  metabolism56 and suggest the novel possibility that PGC-1α is required 
for the expression of nutrient sensing genes. Lastly, although we highlighted the positive effects on fast skeletal 
muscle, the effects on slow skeletal muscle remains speculative.

Conclusions
This study demonstrates that empagliflozin significantly and coordinately induces the expression of genes critical 
for low nutrient-sensing programs represented by AMPK-NAMPT-PGC-1α network in skeletal muscle, even in 
the absence of caloric loss. Notably, activation of these genes in metabolically healthy mice suggest that empa-
gliflozin enhances the intrinsic capability of skeletal muscle to adapt to changes in nutrient availability. These 
findings may open new possibility of expanding the targets of SGLT2i to skeletal muscle.

Materials and methods
An expanded methods section can be found in Supplementary material.

Animal care
C57BL/6 strain (WT) mice were purchased from CLEA Japan Inc. An 8–10-week-old mice were used. The Insti-
tutional Animal Care and Use Committee (Gunma University Graduate School of Medicine) approved all studies. 
Animal experiments conformed to the NIH guidelines (Guide for the Care and Use of Laboratory Animals). All 
authors complied with the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines. The mice 
were housed in a temperature-controlled room (20–26 ℃) with a 12 h light/12 h dark cycle and given unrestricted 
access to water and standard chow (CE-2, Clea Japan, Inc.): 12% of energy from fat, 29% of energy from protein, 
and 59% of energy from carbohydrate. Empagliflozin was suspended with 0.5% methylcellulose solution (Wako 
Inc.) and intragastrically administered to mice at a dose of 10 mg/kg. The same amount of methylcellulose solu-
tion was administered to control mice. Euthanization of mice was performed under 2% isoflurane anesthesia by 
intracardiac injection of 200 ml 5% potassium chloride to induce cardiac arrest.

RNA isolation and quantitative real-time reverse transcription (qPCR)
Total RNA was extracted from the mouse quadriceps muscle using ISOGEN regent (Takara Bio) according 
to the manufacturer’s protocol. One microgram of RNA was used for reverse transcription with the ReverTra 
Ace RT-PCR Kit (TOYOBO) and qPCR analysis was performed using the THUNDERBIRD SYBR qPCR Mix 
(TOYOBO) according to the manufacturers’ protocols. QPCR was carried out using a StepOne real time PCR 
system (Applied Biosystems). Delta Ct values were calculated using Nuclear single-copy housekeeping gene 36B4 
as a reference gene. All primer sequences are shown in Supplementary Table 1.

Statistical analysis
All statistical analyses were performed using Prism 8 (GraphPad Software). For comparisons of 2 intervention 
groups (vehicle- versus empagliflozin-treated mice) with 1 variable (n = 5, and n = 6, respectively), an F-test was 
applied to determine if variance between groups differed significantly. If variance did not differ significantly, a 
2-tailed unpaired Student’s t-test was applied. If F-test results showed significant difference in variance, a 2-tiled 
unpaired t-test with Mann Whitney U test was applied. Paired Student’s t-tests for body weight before and after 
intervention which have variances were used to calculate the p values. All continuous variables are presented as 
the mean ± standard deviation (SD). Two-sided p-value < 0.05 was considered statistically significant.

Data availability
All the data supporting the findings of this study are available from the corresponding author on reasonable 
request.
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