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The inverse design of novel molecules with a desirable optoelectronic property requires consideration 
of the vast chemical spaces associated with varying chemical composition and molecular size. First 
principles-based property predictions have become increasingly helpful for assisting the selection 
of promising candidate chemical species for subsequent experimental validation. However, a brute-
force computational screening of the entire chemical space is decidedly impossible. To alleviate 
the computational burden and accelerate rational molecular design, we here present an iterative 
deep learning workflow that combines (i) the density-functional tight-binding method for dynamic 
generation of property training data, (ii) a graph convolutional neural network surrogate model for 
rapid and reliable predictions of chemical and physical properties, and (iii) a masked language model. 
As proof of principle, we employ our workflow in the iterative generation of novel molecules with a 
target energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied 
molecular orbital (LUMO).

Molecules are central to the chemical sciences and play an important role in many fields of materials science 
applications, such as  pharmaceuticals1–3, light-emitting  diodes4, photovoltaic  materials5, molecular  dyes6, and 
redox flow  batteries7. Advancement of these technologies requires a thorough understanding of principles of 
chemical and physical properties, assessment of unexplored materials and experimental synthesis followed by 
characterizations of candidate compounds. A fundamental understanding of quantitative structure-property 
relationships (QSPRs)8 is therefore highly desirable to accelerate the discovery of new molecules with superior 
properties. However, traditional experimental approaches are insufficient to efficiently examine the vast chemical 
space of potential candidate molecules due to the high cost and time requirements associated with synthesis and 
 characterization9, 10. Modern QSPR approaches are therefore frequently relying on physics-based predictions of 
property data and machine learning utilizing molecular  fingerprints11 and/or quantum chemical  descriptors12. A 
key problem then becomes how to create and select “reasonable”, i.e. potentially synthesizable molecular struc-
tures with sufficient chemical diversity for which the target properties can be calculated. Generative algorithms 
for this task were previously rule-based automatic model  builders13, 14 or utilized genetic  algorithms15–17, but 
have recently advanced with the broad application of machine learning (ML) algorithms to include generative 
adversarial networks (GANs)1, 3, 18, 19, deep neural  networks20, recurrent neural  networks21, transformer-decoder-
type language  models22, 23, or combinations of genetic algorithms with masked language modeling (MLM)24, 25, 
to name a few. The predominant application area for molecular structure generation methodologies has been 
drug discovery, with other areas such as  catalysis26 and  optoelectronics27 following suit. As an example, one of 
the largest molecular datasets for drug discovery was constructed by enumerating organic molecules with less 
than 17 non-hydrogen atoms based on chemical stability and synthetic feasibility and is comprised of more than 
166 billion  molecules28. To measure the performance of generative algorithms for molecular structure genera-
tion, benchmark data sets have been developed such as the Molecular Sets (MOSES)29 and  GuacaMol30 data sets.

When the goal of computational inverse molecular design involves optimizing chemical characteristics for 
target properties that are related to the molecular electronic structure properties, it is necessary to employ 
computationally expensive quantum chemical calculations such as density functional theory (DFT) or ab initio 
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correlated quantum chemistry methods. In this work, we focus on the inverse design of molecules with specific 
optoelectronic properties, in particular the gap between the highest occupied molecular orbital (HOMO) and the 
lowest unoccupied molecular orbital (LUMO). This so-called “HOMO-LUMO gap” (HLG) is a useful electronic 
property that can be exploited in molecular electronic applications, to estimate the kinetic stability of a molecule 
e.g. in drug discovery applications, or serve as a measure of the lowest electronic excitation energy. The latter 
is usually a transition of an electron from the HOMO to the LUMO, and it was shown previously that the HLG 
is directly proportional to the energy of the lowest excited  state31, 32, relevant in the design of chromophores.

While generative models can provide millions or even billions of new molecules in a short time, the most 
computationally expensive components of the design workflow are the computations of molecular properties 
with reliable quantum chemical calculations. Rapid prediction of molecular properties is crucially important 
for accelerating the candidate screening and inverse design process, as the rapid increase in the number of can-
didate molecules with the number and type of constituent atoms represents a combinatorial explosion problem. 
This challenge has been tackled by recent advances in ML surrogate models trained on electronic structure 
calculations performed in high-throughput workflows on high-performance computing (HPC)  architectures33. 
Surrogate models developed for the prediction of DFT HLGs have been previously reported and are based on a 
variety of ML algorithms, such as random  forests34, deep neural  networks35, graph convolutional neural networks 
(GCNNs)36 or kernel ridge regression (KRR)37. These ML surrogates are typically orders of magnitude faster 
relative to the quantum chemistry methods used to create the training HLG data.

We previously reported a proof-of-principle study for the inverse design of photoactive or optoelectronic 
molecules with low  HLG38. For this purpose we integrated the HydraGNN surrogate  model39 trained on quantum 
chemical  HLGs36 with an MLM-based generative model developed for drug discovery  applications24. Despite the 
fact that this MLM was not re-trained, we were able to obtain new organic molecules with considerably lower 
HLGs (<1.7 eV) and thereby demonstrated the possibility of generating and screening new molecules with user-
specified electronic properties, such as the  HLG38. However, since the HydraGNN surrogate was only trained 
on HLGs computed for molecules containing only up to 9 non-hydrogen atoms from the GDB-9 dataset of 
 molecules40, the surrogate model was less reliable for the predicted low-HLG organic molecules, since they con-
tained more atoms and strained structural units such as three- and four-membered rings that were hardly present 
in the training dataset. We concluded that the performance of the surrogate model needs to be re-evaluated for 
the newly generated molecules since the structural characteristics of the designed molecules can be very different 
from the starting molecular structure distribution. However, we envisioned that the ultimate molecular design 
workflow would comprise an iterative sequence for the prediction of new molecules that approach the target 
molecular property with each  step38. In such an iterative design process it must be ensured that the performance 
of the surrogate model remains at consistently high levels. To address this problem, we have applied a deep 
learning workflow to ensure high performance of the surrogate model from iteration to iteration by examining 
the generalization error and providing additional molecular data for training. In the following, we report the 
performance of our iterative inverse design workflow for molecules derived from the original GDB-9 molecular 
dataset as published in ref.41 with low HLGs by creating six generations of new molecules. Our workflow includes 
surrogate performance evaluation and retraining for each generation.

Methods
Workflow for iterative design and surrogate deep learning
Our previous proof-of-principle  work38 reported the inverse design of low organic molecules with reduced HLG 
in a single iteration, producing molecules with gaps as low as 0.75 eV in large quantities, whereas the lowest HLG 
from the original GDB-9 dataset was 0.98 eV. In this work we also reported that the surrogate GCNN model 
for the prediction of the HLGs did not perform as well for the newly generated molecules as compared with the 
original molecules from the GDB-9 dataset: the mean absolute error (MAE) had increased from 0.11 eV for 
the original molecule population to 0.45 eV for the newly generated molecules. These errors must be viewed 
from the perspective that even the most accurate quantum chemical methods have typical errors on the order 
of 0.1 eV for the prediction of band or  HLGs37 and that an MAE significantly greater than this threshold will 
affect the accuracy of the inverse design workflow. Our finding implied that the surrogate training for HLGs 
for molecules only from the GDB-9 data set is insufficient for predictions for general organic molecules, in par-
ticular molecules with more than 9 non-hydrogen atoms or those having highly strained cyclic structures such 
as three- or four-membered rings, and/or molecules with a high frequency of functional groups in particular 
when placed in vicinal position. An important conclusion in our previous work was that the surrogate model 
needed to be improved in subsequent iterations of the generative process by adding more training data from the 
newly generated molecules to cover a larger chemical space. We surmised that a deep learning process of the 
HLG surrogate model would allow a generally applicable, unbiased inverse design workflow to efficiently find 
novel molecules with desired properties that share little similarity with the original chemical molecular structure 
space from which they are derived.

In the workflow in Fig. 1, the starting molecular data was the GDB-9 data which was fed into the density-
functional tight-binding (DFTB) quantum chemical  method42–44 to compute the molecular properties, in our 
case the HLG. DFTB is an approximate DFT method roughly two to three orders of magnitude faster than 
conventional DFT, with comparable accuracy. The DFTB-computed HLGs were used as ground truth and the 
HydraGNN surrogate model, featuring a graph convolutional neural network (GCNN), was trained to predict 
these HLGs purely based on the knowledge from the Simplified Molecular Input Line Entry System (SMILES) 
 string45 of the molecules. Data selection rules were applied to identify molecular structures for surrogate retrain-
ing and to limit the molecular size as described below. After training the surrogate model, we used a pre-trained 
and validated masked language model (MLM)25 to generate new molecules by mutating the selected molecular 
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structure data. Each iteration of the workflow was then concluded by adding ALL newly generated molecules 
to the molecular database. It should be noted that the surrogate training can be accomplished on the order of 
hours depending on available computational resources, and that it is agnostic to the ground truth method chosen. 
Our reasoning to select the DFTB method here is to explore sufficiently large chemical diversity in the initial 
and generated molecular datasets in a proof-of-principles type work. Clearly, with appropriate computational 
resources available, higher levels of theory such as first principles and ab initio methods could be employed using 
the exact same workflow with minimal changes to its code.

Density-functional tight-binding method
The low computational cost of DFTB methods, coupled with their reasonably good agreement with DFT for 
organic  molecules43, makes them well suited to generate large numbers of electronic structure data for the train-
ing of the surrogate  models46. In this work we selected the third-order self-consistent-charge (SCC)  DFTB47 
method, often referred to as DFTB3, in conjunction with the so-called “3ob” parameters for C, H, N, O, F, 
 S48. DFTB3 HLGs are in good agreement with those from the Perdew Berke Ernzerhof (PBE)49 first principles 
DFT  method44, 50, and thus suitable for our purposes here. In all DFTB calculations the electronic energy was 
converged with SCC Tolerance of 10−6 Hartree. Local geometry minimization of a molecule was achieved using 
Conjugate Gradient Driver when maximum forces of atoms were less than 5× 10

−3 Hartree/Bohr.
The molecular database contains molecular data in the form of SMILES string. These SMILES are converted to 

three-dimensional coordinates using the Merck Molecular Force Field (MMFF94s) as implemented in the RDKit 
 package51. These geometries are then re-optimized using DFTB3/3ob. All DFTB calculations were performed 
using the DFTB+  program52 through an interface with the Atomic Simulation  Environment53. Finally, three quan-
tities from the electronic structure calculations are collected: HOMO, LUMO and HLG energy. The optimized 
geometries of molecules were again converted to the SMILES string with the procedure suggested by Kim et al.54

Graph convolutional neural network model
The surrogate model to predict the DFTB3/3ob HLG for a given molecular structure is HydraGNN, an open-
source GCNN  implementation39, 55, 56 that effectively leverages HPC resources to achieve linear scaling of dis-
tributed training using large volumes of data demonstrated with 1024 GPUs. The HydraGNN architecture in 
this work is composed of a stack of GCNN layers that feeds into a set of fully connected layers to produce the 
predictions of the HLG. The GCNN layers ensure that the topological structure of molecules is used to construct 
effective deep learning descriptors that provide the fully connected layers with sufficient information to learn 
the dependence of the HLG on the molecular structure.

Figure 1.  The deep learning iterative workflow for inverse design of molecules with desired properties, namely 
a specific value of the HLG and high synthesizability. The starting molecular database (DB) in this work was 
the GDB-9 data set. The DFTB HLGs were taken as ground truth molecular properties. The GCNN surrogate 
was trained to accurately predict the relationship between molecular structure and HLG. Data selection rules 
were used to (i) identify newly generated molecules for which the surrogate model shows poor performance for 
predicting properties, and (ii) to limit the size of the molecule. The MLM mutated and generated new molecules 
with the trained surrogate model.
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The data pre-processing, i.e., conversion from molecular structures to graphs composed of nodes and graphs, 
has been performed so that the atom type, atomic number, aromatic (or not), hybridization types (i.e., sp, sp2 , 
or sp3 ), and number of hydrogen neighbors are used as features for each node, whereas the type of the covalent 
bond (e.g., single, double, triple, or aromatic) is used as the edge feature. The nodal feature is an 11-dimensional 
vector with the atom type and hybridization types represented with one-hot encoding and the others treated as 
scalars. It is important here to note that the GCNN node and edge information to construct the graph is based 
on the initial 3D Cartesian coordinates prior to the DFTB re-optimization step, since the purpose of the sur-
rogate is to avoid the quantum chemical calculation, especially in the case of computationally more expensive 
methods that could be used instead. We have ensured that SMILES created before and after DFTB optimization 
are identical. If they are different due to bond breaking or connectivity changes, the molecule in question is 
discarded and removed from the database.

The specific HydraGNN architecture used in this work is composed of six Principal Neighborhood Aggre-
gation (PNA)  layers57, each with a hidden dimension of 55, and 3 fully connected layers with 100, 50, and 25 
neurons, respectively. ReLU is used as activation function to trigger the nonlinearity of the model. The  AdamW58 
optimizer is used as stochastic mini-batched first order method for training with a learning rate equal to 1× 10

−3 
and the default parameter setting in  PyTorch59. The training has been performed for 200 epochs at each iteration 
of the workflow on 90% of the data, whereas the other 10% is equally split for validation and testing. The training 
of the HydraGNN model has been performed with distributed data parallelism (DDP) across 6 Nvidia 16 GB 
V100 GPUs on the  SUMMIT60 supercomputer at Oak Ridge Leadership Computing Facility (OLCF).

Masked language model
With the advances in natural language processing (NLP)  strategies61, large numbers of unlabelled data can be 
trained in an unsupervised way to build generalizable language models for the purpose of text generation and 
prediction. The process of Masked Language Models (MLM) training was described  before25 and occurs in two 
steps, namely pre-training and fine-tuning. The pre-training stage is entirely unsupervised and does not require 
any labeling or feature engineering, and thus they can be applied to a large amount of data to build the gener-
alizable pre-trained model. In this stage, the pre-training is carried out by a combination of tokenization and 
masking. In the tokenization step, a vocabulary is generated by listing the commonly occurring  sequences62, 63 and 
then converted to a sequence of integer tokens that are to be used as input. During mask prediction these tokens 
are then randomly masked and the model is trained to predict the original sequence of tokens as closely as pos-
sible based on the given context. Consequently, the model predicts a set of alternatives for a given masked token.

In the subsequent fine-tuning process, this pre-trained model is further trained for some specific tasks with 
typically a lower but more specific dataset, this time augmented with labeled data. In the case of the MLM uti-
lized here, this fine-tuning was performed for ligand-protein binding affinities as described in Blanchard et al.24.

By combining these two processes, our MLM can achieve state-of-the-art results for various applications. 
We have applied MLM in context of new molecule generation using SMILES text  representation64. One can 
represent a molecule in a sequence of characters using SMILES representation by taking into account respective 
atoms and their bonds. As described before the tokenization scheme is used to convert a given molecule into 
commonly occurring  sequences62, 63 and then to appropriate tokens. A masking scheme is then used to mask 
part of sequences so that the model can be trained to learn and predict the chemical structure of the molecule 
based on that particular context. Similar to our previous  works24, 25, 38 we have applied this technique to use pre-
trained models for generating new molecules with specific properties. In summary, the MLM in combination 
with scoring values computed by surrogate model when performed in an iterative manner is able to generate 
new molecules from an uncharted chemical space with user defined properties such as HLGs used in this work. 
These newly generated molecules are often larger in size than the molecules contained in the initial molecule 
population, indicating the MLM’s capability for exploration of new chemical spaces.

In this work, the MLM is pre-trained on the Enamine Real  database65 and is further  augmented24 to approxi-
mately 36 billion molecules. The complete dataset is trained using a WordPiece tokenizer. As mentioned  before24, 
DeepSpeed’s fused LAMB optimizer was used using data parallelism for mask prediction on 3 billion molecules 
on 1000 nodes of OLCF’s SUMMIT supercomputer. Each compute node of Summit has 6 Nvidia 16 GB V100 
GPUs. Data was evenly partitioned amongst the GPUs with 5× 10

5 molecules on each GPU. Our MLM is publicly 
 available66 and can be used directly with Hugging Face transformers  library67.

Data selection rules
In our previous work, the surrogate model exhibited poor performance in predicting the HLG for the newly cre-
ated molecules that were not included in the original GDB-9 data training  data38. The most straightforward way 
to improve the surrogate performance then is its re-training by adding all newly generated molecules to cover 
the wider chemical space. However, since the chemical space of even low organic molecules is vast, this task is 
neither trivial nor efficient to include all generated molecules. It is unclear how to best select novel molecular 
data for training the surrogate model. We define and apply three rules for data selection applied during efficient 
training of the surrogate model and expanding the size of molecular data to larger molecules containing more 
than 9 non-hydrogen atoms. These rules are outlined below.

Rule 1a: add molecules with large prediction errors
In general, machine learning models have larger errors for data which are distinct or not covered by the training 
data. The maximum error value of train/validation/test data at the end of surrogate model training was utilized 
to compare the prediction error for new molecules. We only accepted molecules with larger prediction errors 
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than the maximum error of train/validation/test data as the new training data assuming that the surrogate model 
sufficiently learned new molecules with lower prediction error.

Rule 1b: retain only unique molecules
To better train the surrogate model with more data, we merged the new molecules generated in the previous 
iteration into the database and utilized them as the training data for the surrogate model in the next iteration. 
The integrated database was also utilized as the initial population for the generation of molecules with MLM. We 
believe that the integrated database allows one to expand the chemical space of the molecules with mutations of 
the identical molecules to the new molecules at different iteration. Despite being a low possibility, MLM can gen-
erate a molecule which was already encountered in previous iterations. To efficiently train the surrogate without 
duplicates, we dropped these duplicate structures and only kept unique molecules for the integrated database.

Rule 2: limit the number of atoms
The MLM can generate new molecules by substituting a small fragment with a large fragment by insertion of 
chains and expansion of ring size leading to the increase of average molecular size. If unrestricted, the chemical 
space will grow exponentially with the number of atoms and chemical substructures. It has been estimated that 
the number of molecules to cover the complete chemical space for material discovery can be even larger than 
10

50 in the case of pharmacological  applications68—a number that is clearly impossible to tackle even with com-
putationally economical methods such as DFTB and supercomputer architectures. Hence, instead of allowing 
explicitly exploration of the vast number of possible new molecules, we must re-consider the ultimate goal of the 
surrogate model, which is to understand and predict QSPR for representative subspaces of all possible chemi-
cal space. Hence, it is desirable to keep the size of re-trained molecules relatively low, yet still allow coverage of 
a sufficiently large variety of combinatorial assemblies. In this rule, we added ALL new molecules containing 
less than 20 non-hydrogen atoms to the integrated dataset (“GDB-20”). The generated molecules larger than 
20 non-hydrogen atoms was separately used as a test data to monitor the prediction capability of the surrogate 
model. The number 20 was based on the fact that the largest size of molecules in the ENAMINE database was 
17 as it is based on the GDB-9  database28.

The rules 1a, 1b and 2 are applied simultaneously for each iteration to the newly generated molecules before 
adding them to the integrated database after successful DFTB calculations, as shown in Fig. 1. For simplicity, we 
trained the surrogate model from scratch at every iteration using the updated molecular dataset.

Results and discussion
This work aims to demonstrate the general applicability of our combined generative model and surrogate deep 
learning workflow for the inverse design of novel molecules with target properties, in this case specific values 
of the HLG. As in our previous work, we describe the results in detail for the case of HLG minimization, i.e. we 
aim to predict chemically reasonable molecules with lowest possible HLG. However, we also performed the same 
investigation with the aim to maximize the HLG, which not unexpectedly turns out to be a rather “uninspiring” 
task as the molecule with the highest HLG is tetrafluoromethane, CF4 , with a DFTB-predicted HLG higher 
than 20 eV. In general it can be expected that fully saturated molecules comprised of only single bonds should 
be associated with the highest HLGs, and their structure does not leave much room for chemical diversity. All 
respective data is therefore presented in analogous form to the low HLG study described below in the Support-
ing Information.

Deep learning iterations
Table 1 shows the evolution of the number of molecules over the deep learning iterations with newly “generated” 
molecules. Here, we indicate the individual data at each iteration with the label GEN-X (Generated at iteration 
X), where X is the iteration number between 1–6. During each iteration, new molecules were generated by the 
MLM from all molecules in the training data (e.g. 95,735 molecules from GDB-9 as the seed population to 
generate new molecules for the first iteration, 143,204 molecules for the second iteration, etc.). In each genera-
tion we aim to collect around 100,000 new molecules. The cumulative number of original and newly generated 
molecules is tabulated in Table 1 as “Generated data”. The three rules in the method section were simultaneously 
applied on the generated molecules ( ∼ 100,000 molecules) after calculating the molecular property using DFTB 
at every iteration. The number of generated molecules was reduced as a result of these selections, and became 

Table 1.  The number of molecules at each iteration for low HLG deep learning.

Iteration DB name Train data Generated data New train/test data

0 GDB-9 95,735 N/A N/A

1 GEN-1 143,204 99,748 47,469/52,279

2 GEN-2 155,495 99,435 12,291/87,144

3 GEN-3 167,000 98,978 11,505/87,473

4 GEN-4 180,372 98,876 13,372/85,504

5 GEN-5 191,557 98,283 11,185/87,098

6 GEN-6 203,901 98,118 12,344/85,774
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less than 100,000 accepting chemically valid molecules with appropriate valences and coordination numbers for 
each atom. The “New Train” data in Table 1 was the number of new molecules added to the training data for the 
next iteration applying the data selection rules described in the above section. The rest of molecular data was set 
aside as a test data. The test data includes molecules with low prediction errors (by rule 1a) and not restricted 
to have less than 20 atoms. We iterated the design loop 6 times for the deep learning process to obtain a sur-
rogate model consistent in performance with the expanded training data. The percentage of new training data 
accepted with the rules was the largest with ∼ 47% at the first iteration and then decreased to ∼ 12% in the rest 
of iterations. This implies that the chemical space was significantly expanded at iteration 1 and diversified for 
molecular structures with subsequent iterations.

The prediction capability of the surrogate model was tracked by comparing the HydraGNN HLG prediction 
versus the DFTB HLG calculation (ground truth) for GDB-9 data and GEN-1–GEN-6. Fig. 2 shows the parity plot 
of two surrogate models which were the surrogate model at iteration 0 (Surrogate0) and the surrogate model at 
iteration 5 (Surrogate5). The Surrogate5 was trained with 191,557 molecules of GDB-9 and GEN-1–GEN-5 while 
the Surrogate0 was trained with 95,735 molecules of GDB-9. The colored points in Fig. 2 are the predictions by 
the Surrogate5 and the gray points on the same plots are the predictions by the Surrogate0. The mean absolute 
error (MAE) values of the Surrogate0 (first value, MAE1) and Surrogate5 (second value, MAE2) are included in 
each plot, indicating that the deviations of the re-trained surrogates at later iterations were decreased. The MAE 
from the Surrogate0 was increasing from 0.12 eV (GDB-9) to 0.91 (GEN-5) while the MAE from Surrogate5 
was consistently around 0.12 eV for all generations. By utilizing Surrogate5, the molecules generated for GEN-6 
(98,118) were only used as the test data, and its MAE was only slightly higher with 0.13 eV. Thus, we conclude that 
Surrogate5 represents a good improvement over Surrogate0 for all generated molecular datasets. The increasing 

Figure 2.  Parity plots for GDB-9 (A) and iterations 1 to 6 (C,E,G,I,K,M) of Low HL gap design. Error plots 
between surrogate models and DFTB predictions for each dataset (B,D,F,H,J,L,N) (colored points for the 
Surrogate5 prediction and gray points for the Surrogate0 prediction). Surrogate5 is trained with GDB-9 and 
GEN-1–GEN-5 dataset. MAE1 and MAE2 values in each plot are corresponding to the prediction errors of the 
Surrogate0 and Surrogate5, respectively.
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MAE of Surrogate0 values for later iterations indicates that new molecules with higher prediction errors have 
been added instead of generating comparable molecules.

Inverse design of molecular structures with low HLG
The DFTB-computed HLG distribution for the original GDB-9 dataset is shown in the top panel of Fig. 3. 
This distribution appears multi-modal corresponding to the different molecular classes (aliphatic molecules > 
olefinic molecules > conjugated molecules > molecules with double and triple bonds as well as strained rings). 
The distribution ranges from 0.98 eV as the lowest HLG to 19.8 eV as the highest HGL. The majority of mol-
ecules have gaps below ∼ 5 eV. It is the goal of the inverse design workflow to generate novel molecules with 
population maxima shifted towards lower HLGs. This is the task we have selected for the demonstration of our 
inverse design workflow. In the supporting information, a different exercise is documented in which we tasked 
the inverse design workflow to generate molecules with high HLGs. However, since all predicted molecules in 
this exercise are rather uninspiring being only aliphatic molecules with large numbers of halogens, we decided 
to focus in the main text only on the discussion of the HLG minimization which results in a larger variety of 
molecular characteristics.

Analysis of generated molecules
During the MLM-based generation process, the surrogate model instantaneously provides the HLG for the new 
molecules based on previous surrogate training. The inverse design of molecular structures for low HLG was 
accomplished by selecting new molecules based on their HLG value. The final low HLG molecules were selected 
also based on their HLGs among all, more than 1,000,000 generated molecules. For each generation, after sorting 
the molecules in ascending order by HLG value, the top 100,000 molecules were collected and accepted as new 
molecules for the next iteration. Figure 3 shows the distribution of the DFTB HLG for each iteration of newly 
generated molecules as tabulated in Table 1. By selecting lower gap molecules in the workflow, the gap distribu-
tion gradually shifted from iteration 0 (GDB-9) to iteration 6 (GEN-6) toward lower values, as shown in Fig. 3. 
The transition was most pronounced in the step from GDB-9 to GEN-1, but further shifts toward lower gap size 
were observed with increasing number of iterations. Further, the HLG distribution increased visibly in further 
iterations for molecules with ∼ 2 eV HLG and decreased for molecules with ∼ 3 eV HLG. The average HLG values 
per iteration are listed in Table 2 and further evidence the shift of the HLGs with increasing number of workflow 
iterations. Note that molecules in each generation were ensured to be unique by the rule 1b, even though the 
distribution of the gaps was comparable from iteration to iteration and only shifted gradually. It is worth noting 
that new molecules with gaps lower than the lowest HLG for the GDB-9 data (0.98 eV) were created, and their 
number increased with higher iterations.

Due to the large number of molecular structures in each iteration, it is unpractical to compare directly indi-
vidual molecular structure between iterations. We therefore resorted to analyze the different chemical space 
distribution with dimension reduction using the convolutional variational autoencoder (CVAE)69, 70 which 
converts 2048 bits one-hot encoding features of the Extended-Connectivity Fingerprints (ECFPs)71 into three 
dimensional chemical latent space mapping. To better visualize and understand the distribution of molecules, 

Figure 3.  Distribution and density of molecules generated in iterations for DFTB HLG prediction.
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we further reduced them to two dimensions using principal component analysis (PCA), indicating the dimen-
sion reduction two-dimensional chemical latent analysis as ECFP-CVAE-PCA. We then visualized 550,380 
molecules from the accumulated molecules from train and test dataset as shown in Fig. 4. The each dataset is 
visualized separately in two dimensional scattering plots with the coloring based on the HL gap values. (Fig. 4) 
The molecules of GDB-9 dataset are distributed widely with clear distinction of occupied space for low HL gap 
(0–5 eV) and middle HL gap (5–10 eV) molecules (Fig. 4A). The distribution of GEN-1–GEN-6 are close to 
the origin of PCAs and they are far more comparable as they occupy the same space with slightly deviate in gap 
values (by the color of each scatter). The quality of the chemical space exploration between GEN-1 and GEN-6 
is clearly similar indicating that the MLM generates similar types of molecules but each time with a gradually 
enhanced target property. A rough visual inspection of the molecular structures (Figs. S1–S6) associated with 
each generation indicates that novel molecules feature conjugated π−bonds, functional groups featuring =O 
and amines, as well as small, strained rings or anti-aromatic rings. Clearly, the iterative search for molecules 
generating and mutating molecules from the previous iteration leads to fine-tuning of the molecular structure 
in terms of these molecular characteristics.

Fig. 5 shows another straightforward statistical analysis of molecular structure, using structural properties 
such as the H/C ratio, the ratio between aromatic atoms and aliphatic atoms (marked as aromaticity), the double 
bond equivalent (DBE), and the number of atoms as a function of the DFTB HLG. Only HLG values between 0 
and 8 eV are plotted. Unfortunately, no significant relationship could be identified between HLG and the respec-
tive structural properties. As one might expect, there was only a weak relationship between the HLG values and 
the DBE number, as well as the number of atoms (or size of molecule). For example, the molecules with larger 
DBE number tend to have the lower HLG value. A similar trend was observed with the number of atoms for 
each molecule: The HLG was inversely proportional to the number of atoms of molecule. However, even if the 
molecular properties were more strongly related to their structure, connectivity and elemental composition, it 
would remain a non-trivial problem to suggest molecules characteristics for general guidance using only such 
quantities. Only the specific molecular structure prediction as demonstrated in our workflow seems to be suc-
cessful at inversely designing molecules with target properties.

Selection of novel molecules with low HLG
Here, we discuss selected molecules from GEN-X datasets with HLG lower than the lowest gap molecule 
(HLG = 0.98 eV) in GDB-9 data to investigate their molecular structures in greater detail. The number of such 

Table 2.  The average HLG calculated from the all molecules in each dataset..

Iteration DB name Average HLG (eV)

0 GDB-9 5.91

1 GEN-1 3.51

2 GEN-2 3.19

3 GEN-3 3.08

4 GEN-4 2.98

5 GEN-5 2.84

6 GEN-6 2.74

Figure 4.  Chemical space plots for GDB-9 and generated data (GEN-X, X = 1–6) obtained from three 
dimensional latent space dimension reduction using ECFP-CVAE. PCA was utilized to visualize the chemical 
latent space in two dimensions.
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molecules under this stringent condition at iteration 1 was only 4. The gradual shift to lower gap of molecules as 
observed in Fig. 3 suggested larger numbers of such molecules as listed in Table 3. Indeed, their number increased 
to 240 molecules at iteration 6 (see Fig. 6). We believe that there will be more molecules for more iterations and 
successfully generating more molecules from low HLG molecules from the iteration 6.

The new molecules included any molecules generated from MLM and contains 4–9 member rings in some 
molecules. Note that the new molecules with HLG < 0.98 eV composed of various substructures with strained 
ring structures with three- and four-membered rings and more than seven-membered rings as a substructure as 
well as commonly observed five- and six-membered rings. We assumed that molecules with ring substructures 
less than 5-membered rings or more than 6-membered rings experience high strains so that they are less stable 
even if observed in nature. In this regard, the subset of molecules of New data in Table 3 deemed chemically 
more stable were indicated as “Screened data” in Fig. 6, which were molecules composed mainly of 5-mem-
bered rings or 6-membered rings as well as alkane chains and functional groups. The six molecules from the 
smallest HL gap were provided together with the chemical latent space plot using ECFPs-CVAE-PCA analysis 
for 550,380 molecules collected from GDB-9 and GEN-1–6 dataset in Fig. 7. The molecules with low HL gap 

Figure 5.  DFTB HLG versus analysis for molecular characters (H/C ratio, aromaticity ratio, double bond 
equivalent (DBE), the number of atoms) with all training and test data of GDB-9 and GEN-X, X = 1–6 dataset. 
The normalized number of molecules (color bars) were counted and colored based on the relative populations at 
the each point.

Table 3.  The average HLG calculated from the all molecules in each dataset..

Iteration DB name New data Screened data

1 GEN-1 4 1

2 GEN-2 28 3

3 GEN-3 54 2

4 GEN-4 81 5

5 GEN-5 162 6

6 GEN-6 240 5
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in Fig. 7 show some similarities. They contained a single ring or fused rings as a substructure and often ketone 
functional groups connected by alkane chains. The ring substructures can be derived from benzene, cyclopen-
tadiene, indane or naphthalene molecules. A few molecules also had heterocycles with substitution of carbon to 
nitrogen or oxygen. Note that one of the low gap molecules generated in this work was obtained at GEN-3 with 
0.67 eV which is much lower than the lowest gap of the original GBD-9 data (0.98 eV), confirming the validity 
of the inverse design workflow but also indicating that it may not be necessary to perform six design iterations. 
Furthermore, we provide the  dataset72 of molecules that can be imported and analyzed using chemiscope.org73 to 
interactively visualize the molecular structures and their relative chemical latent space positions shown in Fig 7. 
All molecules in Table 2 are also included in a supplementary data with SMILES, gap information. Nevertheless, 
since the number of chemically reasonable structures increases with each iteration, an increase in the number 
of design cycles can provide larger numbers of viable suggestions for chemically viable species associated with 
the target property.

Figure 6.  The number of generated molecules with HLG < 0.98 eV in the GEN-X, X = 1–6 data. The screened 
molecules is the number of molecules with five-member ring or six-member ring component.

Figure 7.  The mapping of two dimensional chemical latent space using ECFPs-CVAE-PCA analysis for most 
low HL gap iteration data (550,380 molecules). Six lowest HL gap molecules are demonstrated together with 
their HL gap value and chemical latent space coordinates.
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Conclusion
In this work, we report an iterative workflow to design new molecules that possess lower HOMO-LUMO gaps 
(HLGs) that the molecules contained in the starting GDB-9 molecular database. The workflow utilizes a com-
bination of two ML models (generative and surrogate models) and paired with a data selection step to limit the 
size of newly generated data in each iteration. This iterative workflow not only gradually increases the number 
of viable predictions of molecular structure associated with the target property, but also ensures consistency of 
the surrogate model performance as the molecular structures are changing from one generation of molecules 
to the next by deep surrogate learning. The number of molecules contained in the training data after applying 
three data selection rules was the largest with ∼ 47% at the beginning of the workflow, and decreased to ∼ 12% 
during the later iterations. This, as well as the worsening performance of the surrogate for newly generated 
molecules, indicated that the GDB-9 data did not contain a sufficient variety of molecules to train the surrogate 
model for newly generated molecules. Addition of training data with generated molecules improved the surrogate 
performance in iterative deep learning, and we were able to search in this way for new molecules with the low 
HLG. Targeting to design of low HLG molecules, we demonstrated that the workflow provided a variety of new 
molecules with low HLG constructed from combinations of alkane chains and ring substructures. Molecules with 
HLG less than 0.98 eV were absent in GDB-9 dataset and this number was increased to 240 at the last iteration. 
Supporting information shows that the same workflow can be successfully used to design molecular structures 
with high HLGs. This work shows that the presented workflow is advantageous for exploring the vast molecular 
structure space and our analysis of newly predicted molecules indicates that it is difficult to pinpoint precise 
molecular structure possessing target properties by employing statistical relationships such as number of atoms, 
double-bond equivalents, number of aromatic atoms, etc. Therefore, we conclude that the inverse design work-
flow suggested here offers an effective pathway to reliably predict molecular structures with target properties.

Data availability
The dataset “ORNL_AISD_DL−HLgap” in this work are shared in the OLCF Data Constellation Facility. They 
can be accessed via Globus data transfer service with information posted in https:// doi. ccs. ornl. gov/ ui/ doi/ 449, 
as indicated by instructions in https:// docs. olcf. ornl. gov/ data/ index. html# data- trans ferri ng- data.
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