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Languages with more speakers 
tend to be harder to (machine‑) 
learn
Alexander Koplenig * & Sascha Wolfer 

Computational language models (LMs), most notably exemplified by the widespread success of 
OpenAI’s ChatGPT chatbot, show impressive performance on a wide range of linguistic tasks, thus 
providing cognitive science and linguistics with a computational working model to empirically study 
different aspects of human language. Here, we use LMs to test the hypothesis that languages with 
more speakers tend to be easier to learn. In two experiments, we train several LMs—ranging from very 
simple n-gram models to state-of-the-art deep neural networks—on written cross-linguistic corpus 
data covering 1293 different languages and statistically estimate learning difficulty. Using a variety of 
quantitative methods and machine learning techniques to account for phylogenetic relatedness and 
geographical proximity of languages, we show that there is robust evidence for a relationship between 
learning difficulty and speaker population size. However, contrary to expectations derived from 
previous research, our results suggest that languages with more speakers tend to be harder to learn.

It has long been taken for granted that there is no relationship between the structure of a language and the 
environment in which it is spoken1,2 leading to long-standing and largely unquestioned assumptions in modern 
linguistics that all languages are equally complex3–11 and equally difficult to learn12. Yet, depending on how you 
count, there are between 6000 and 8000 different languages and language varieties on the planet13–15 that vary 
widely in their structural properties16,17. A growing body of cross-linguistic research has begun to document that 
the natural and social environments in which languages are being used and learned drive this diversity18–21, that 
language structure is influenced by socio-demographic factors such as the estimated number of speakers18,21–23 
and that the long-held belief in a principle of "invariance of language complexity"24 may be incorrect25.

In this article, we examine another long-held assumption that, to our knowledge, has never been system-
atically tested: the assumption that all languages are equally difficult to learn. The main obstacle to such an 
endeavour was already pointed out by a pioneer of modern linguistics, Henry Sweet, in 1899: “it is practically 
impossible for any one who has not an equally perfect knowledge of all languages to test this”12. In this context, 
cognitive scientists and computational linguists have pointed out that computational language models (LMs), 
most notably exemplified by the widespread success of OpenAI’s ChatGPT chatbot, provide a computational 
working model for empirically studying various aspects of human language26,27. Recent research27–30 shows that 
computational models can learn core structures that are present in natural language from observed training input 
alone, something that was long thought to be impossible without innate linguistic knowledge31. In this sense, 
we train LMs on written text data in different languages. The LM learns to make predictions about subsequent 
linguistic material by finding a short encoding of the training material to which it is exposed28,32. With increasing 
input, the LM gets better at predicting subsequent data32. We measure how fast the LM learns to make optimal 
predictions and treat this as a measure of learning difficulty. We then statistically analyse this measure across 
different languages to test the above assumption.

Recent research using LMs in this way has indirectly suggested that languages with more speakers may be 
easier (i.e. faster) to learn: in a large-scale quantitative cross-linguistic analysis, Ref.25 trained an LM on more than 
6500 documents in over 2000 different languages and statistically inferred the entropy rate of each document, 
which can be seen as an index of the underlying language complexity28,33–35. The results showed that documents 
in languages with more speakers tended to be more complex. Furthermore, documents that were more complex 
tended to be easier and faster for the LM to learn. These findings indirectly suggest that we should expect docu-
ments in languages with more speakers to be easier for the LM to learn. In this article, we first use part of the data 
used by Ref.25 to explicitly test this hypothesis. Since the LM used by Ref.25 is rather simple, we train two more 
sophisticated LMs that use machine learning and deep learning on the data and compare the results. We then 
discuss some potential limitations of the multilingual text collection used by Ref.25. To rule out that the results are 

OPEN

Leibniz Institute for the German Language (IDS), Mannheim, Germany. *email: koplenig@ids-mannheim.de

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-45373-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18521  | https://doi.org/10.1038/s41598-023-45373-z

www.nature.com/scientificreports/

driven by these limitations, we create two fully balanced and parallel multilingual corpora, which we use to train 
seven different LMs—ranging from very simple n-gram models to state-of-the-art deep neural networks—and 
measure how difficult it is for each LM to build an adequate probabilistic representation of the input.

Importantly, previous research21,36–42 has shown that cross-linguistic (and cross-cultural) studies that seek to 
analyse potential statistical associations between language features and external factors must take into account 
Galton’s problem, which refers to the potential confounding of linguistic and cultural similarities by phyloge-
netic relatedness and geographical proximity. To address this issue, we take a comprehensive approach, using 
both established analytical methods41 and novel quantitative techniques developed in the field of econometrics 
that leverage machine learning43,44 and spatial autoregressive models45. In a series of tests, we show that there is 
stable evidence for an association between learning difficulty and speaker population size across LMs—but in the 
opposite direction to that expected from previous research, suggesting that languages with more speakers tend 
to be harder to (machine-)learn. We argue that this finding challenges the popular linguistic niche hypothesis18, 
which suggests that languages with larger communities of speakers should be easier, not harder, to learn.

Results
First study
We first highlight some key points so readers can interpret our analyses more easily, see the “Methods” section for 
in-depth details. In our first series of quantitative analyses, we use part of a large-scale database of written multi-
lingual texts comprising a variety of different text types compiled by Ref.25. In total, we analyse 3853 documents 
contained in 40 different multilingual corpora covering 1293 different languages and ranging in length from a 
few tens to several hundreds of millions of words. Figure 1 illustrates how learning difficulty is assessed using 
a shape parameter, b, which quantifies how difficult it is for an LM to learn to make optimal predictions46 (see 
Supplementary Fig. 1 for a further illustration). Since lower b-values are indicative of higher learning difficulty, 
we should expect a positive statistical relationship between b and speaker population size, if indeed languages 
with more speakers tend to be easier to learn.

Figure 1.   Illustration of measuring learning difficulty in Study 1. Circles represent observed bits-per-symbol 
that are needed (on average) to encode/predict symbols based on increasing amounts of training data for 
different (hypothetical) documents in different (hypothetical) languages, each with a source entropy of 5. Lines 
represent fitted values based on an ansatz function that has three parameters: the limiting entropy rate h, which 
quantifies how difficult it is to predict, a proportionality constant and a parameter b, which quantifies how 
difficult it is to learn to predict by describing the shape of the curve and can thus be used to quantify learning 
difficulty (see “Methods” for details). The blue circles illustrate a document for which learning is more difficult: 
to learn to make optimal predictions, the LM needs comparatively more training data and convergence to 
the underlying source entropy is rather slow. The orange circles, on the other hand, represent a document 
that is easier to learn—convergence is much faster: after comparatively little training data, the LM has already 
generated an adequate representation of the statistical structure of the input that can be used to make optimal 
predictions. The fitted lines show that this difference in learning difficulty can be quantified by b, where higher 
values indicate faster convergence and thus lower learning difficulty.
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We first focus on prediction by partial matching (PPM)47, which is based on a variable-order Markov LM (see 
“Methods” for details). To this end, we use estimates for b measured for both words and characters as information 
encoding units provided by Ref.25. On both levels (words/characters), we run separate multilevel mixed-effects 
linear regressions (LMER) with b as the outcome. We include fixed effects for the (log of) speaker population 
size and, to account for document- and corpus-specific characteristics, the entropy rate h, the text length L and 
the interaction between h and L. To account for the potential non-independence of data points described above, 
we include (crossed) random intercepts for the following groups: corpus, language family, language, macro area, 
country and writing script. In addition, we include random slopes (i.e. we allow the effect of population size 
to vary across different groups) for all groups except language (since population size does not vary within lan-
guages). Given the absence of clear theoretical or empirical reasons to determine which covariates to include, we 
adopted a multi-model inference approach48 by subsetting the full model, i.e. we generated a set of models with 
all possible covariate subsets, which were then fitted to the data. In total, we ran 4860 different sub-models (see 
“Methods” for details). As a means of selecting between models, we use Akaike’s information criterion (AIC)49 
where lower values indicate a more apt model. A comparison of reduced models without a fixed effect (and 
potential random slopes) for speaker population size with full models where speaker population size is included 
reveal that in all 2430 possible model pairs, for both words and characters, the model that includes speaker 
population size has a lower AIC (median difference between reduced and full models ΔAICmed = 46.55 for words 
and ΔAICmed = 71.16 for characters, see Supplementary Table 1 for numerical results). This result clearly points 
towards a statistical association between learning speed and population size. However, Fig. 2a shows that all 
β-coefficients, βLMER, estimated for speaker population size are negative for both words and characters indicating 
that larger population sizes are associated with lower values of b and thus higher learning difficulty. To account 
for the uncertainty in the model selection process, we compute a frequentist model averaging (FMA) estimator50 
(see “Methods” for details), βFMA

LMER = − 0.050 for words and βFMA
LMER = − 0.030 for characters. This indicates that 

languages with more speakers tend to be harder for PPM to learn. Figure 2b shows the estimated β-coefficients 
and 95% confidence intervals for the best models, i.e. the models with the lowest AIC for both symbolic levels. 
In both cases, an increase in speaker population size predicts a decrease in b and thus higher learning difficulty 
(both parametric p-values < 0.05).

To test whether these results are specific to PPM, whose LM is relatively simple25, we trained two further LMs 
on all written data from Ref.25: (i) PAQ51, which employs several machine learning techniques for prediction52 
and (ii) LSTMcomp

53, which uses a deep learning model54 for prediction (see “Methods” for details).
The results obtained from these algorithms strongly support the results obtained from PPM. For PAQ, all 

models that include speaker population size as a covariate have a lower AIC than reduced models for words 
(ΔAICmed = 36.87) and 2422 out of all 2430 full models have a lower AIC than reduced models (99.67%) for 
characters (ΔAICmed = 37.76). For LSTMcomp, all models that include speaker population size as a covariate 
have a lower AIC than reduced models for both words and characters (ΔAICmed = 62.81 for characters and 
ΔAICmed = 54.84 for words). Figure 2c,e shows that for both algorithms, the estimated β-coefficients for speaker 
population size were consistently negative for both characters and words in all models. For PAQ, βFMA

LMER = − 0.043 

Figure 2.   Multilevel mixed-effects linear regression results (Study 1) for three different LMs—PPM, PAQ 
and LSTMcomp. (a), (c) and (e). Distribution of the estimated impact of speaker population size, βLMER, per 
LM and per symbol for a total of 2430 models that include a fixed effect (and potential random slopes) for 
speaker population size. To control for the non-independence of data points due to phylogenetic relatedness 
and geographic proximity, all models additionally include fixed covariates, random intercepts and random 
slopes (see “Methods” for details). (b), (d) and (f). Estimated βLMER (vertical line) and 95% confidence interval 
(horizontal line) for the model with the lowest AIC per LM and per symbol (see Supplementary Table 1 for 
numerical results and model specifications). Olive colour—words as information encoding units. Pink colour—
characters as information encoding units.
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for words and βFMA
LMER = − 0.035 for characters. For LSTMcomp, βFMA

LMER = − 0.059 for words and βFMA
LMER = − 0.023 for 

characters. Figure 2d,f visualises the estimated β-coefficients and 95% confidence intervals for the best models 
per symbol. For both LMs and on both levels (words/characters), the confidence intervals do not include zero. 
Supplementary Table 1 provides numerical details and shows that all four estimates are statistically significant 
at p < 0.005. In Supplementary Table 2, we show that the results hold when documents from comparable corpora 
are excluded and only fully parallel corpora are considered (see “Methods” for details).

To further estimate the potential effect of speaker population size on learning difficulty while controlling for 
potential confounding due to translation effects55 and pluricentism56 in addition to covariation due to phyloge-
netic relatedness and geographic proximity, we generated three sets of potential control variables. The small set, 
consisting of a total of Nc = 225 candidates, includes these variables:

	 (i)	 A set of indicator variables for the levels (categories) of corpus, language family, writing script, macro 
area and the Expanded Graded Intergenerational Disruption Scale (EGIDS)57;

	 (ii)	 To control for geographical proximity, third-order B-spline basis functions for both latitude and 
longitude43,58;

	 (iii)	 Several other continuous environmental variables in addition to h and L, such as the number of countries 
in which a language is spoken, geographical range, altitude and climate (see “Methods” for details).

In addition to the variables of the small set, the medium set (Nc = 274) includes first order/two-way interac-
tions of the basis functions of (ii). In addition to the variables of the medium set, the big set (Nc = 2226) includes 
first-order interactions between the indicators of (i).

To estimate the effect of speaker population size on learning difficulty in such a high-dimensional setting, we 
use a technique called double selection43, which uses the lasso machine learning technique59 to select the relevant 
control variables from the candidate set (see “Methods” for details).

Figure 3a shows that all selected models have high predictive power60 explaining between 62.90% and 94.47% 
of the total variance in learning difficulty (median out-of-sample R2

OS = 89.23%) and between 77.95% and 79.68% 
of the total variance of speaker population size (median R2

OS = 78.82%). Note that the use of standard parametric 
tests may be questioned in this study, as the sample of languages for which we have available documents can-
not be considered a random sample of the population of all languages61,62. To address this issue, we used the 
selected relevant controls as input for Freedman-Lane permutation tests63 to compute non-parametric p-values 
(see “Methods” for details). 

Figure 3b–d shows that the β-coefficient for speaker population, βDS, size remains negative in all scenarios 
and passes the permutation test at p < 0.05 in all but one case. The exception is PPM on the level of words for 
the big candidate set. Supplementary Table 3, which contains numerical results, shows that in this case, p = 0.07. 
In Supplementary Table 4, we show that the results also hold when only fully parallel corpora are considered. 
Again, βDS remains negative in all scenarios and passes the permutation test at p < 0.05 in all but one case. To 
further assess the robustness of these findings, we employ a more computationally intensive technique known 
as cross-fit partialing-out (or double machine learning)44 to estimate the effect of speaker population size on 
learning difficulty and compute parametric p-values. This method has a less restrictive sparsity requirement 
and provides an additional validation of our results: Supplementary Table 5 shows that that the β-coefficient 
for speaker population is again negative and significant (at p < 0.005) in all cases. In Supplementary Table 6, we 
adopt a Bayesian perspective by using the lasso-selected controls as input for Bayesian linear regression models 
and show that, consistent with the results presented here, the probability of the coefficient of speaker population 
size being negative was estimated to be 1 across all compressors and both symbolic levels.

Second study
While the results presented in the previous section indicate that texts in languages with more speakers tend to 
be harder to learn, it is important to rule out that the results are mainly driven by several limitations inherent 
in the multilingual corpus collection used25: First, most of the texts in the database are rather short (median 
length = 150,188 words; first quartile Q1 = 3385; third quartile Q3 = 234,838). This can be a problem as LMs, 
especially more complex ones, typically require a lot of training input in order to achieve good performance27,64. 
Secondly, learning difficulty as defined by Ref.46 ultimately rests on an ansatz function that cannot be proven 
analytically65. Thirdly, the database is unbalanced at the language level: while there are more than 100 languages 
with at least 10 available data points, i.e. training documents, there are less than four available data points for 
most languages (~ 84%). This reflects the fact that for languages spoken by a small number of people, there are 
only very few documents available electronically66. This unbalancedness precludes the use of several approaches 
that have been discussed and successfully used in the literature41, but require balanced data as input.

In consideration of these issues, we used the Parallel Bible Corpus67, which is available in a very fine-grained 
parallel structure (in terms of book, chapter and verse) and that provides additional information regarding the 
genealogical classification of languages. We created two fully balanced and parallel multilingual training corpora: 
(i) a New Testament (NT) version consisting of 5000 parallel verses available in 504 different languages and (ii) 
an Old Testament (OT) version consisting of 15,000 parallel verses available in 138 different languages. While 
the “Methods” section provides detailed information, we again would like to highlight a few key points here to 
facilitate the interpretation of our analyses: per version (NT/OT), we randomly assigned each available verse 
to one of ten folds. Per language, we then conducted a tenfold rotation estimation where each fold served once 
as the test data and the remaining folds were used as training data resulting in 9 (data points per rotation) × 10 
(folds) = 90 data points per version and language. For example, if fold 10 serves as the test data, we will train an 
LM on one of the remaining folds (randomly selected). We then computed the cross entropy H, i.e. the average 
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number of bits per verse required to encode/predict each byte of fold 10 as a measure of the quality of the 
language model68. Next, we added another of the remaining folds to the training data, re-trained the LM and 
calculated H again. This process was repeated until all nine folds have been used as training data. Per version, we 
then use all the resulting data points to fit an LMER with H as the outcome and a fixed effect for f, the number 
of folds used for training. We include (crossed) random intercepts for the test fold and for language. Crucially, 
we include random slopes per language, i.e. we allow the relationship between H and f to be different for each 
language. As illustrated in Fig. 4, this random slope can be used as a measure of learning difficulty: the slope 
measures how much additional input improves the quality of the LM—for a language that is easy to learn, the LM 
has already generated an adequate representation of the input after the first (few) folds resulting in a slope that 
is comparatively less steep. For a language that is difficult to learn, the LM needs more input to learn to predict. 
The LM should therefore improve its quality more with more input, resulting in a comparatively steeper slope. 
In other words, the random slope parameter we are analysing here modulates the general relationship between 
H and f for all languages. The language-specific value of this random slope parameter is then indicative of a 
stronger or weaker relationship between H and f for that language.

As information encoding units, we estimate on two levels: on the level of words and, instead of estimating on 
the level of characters, we tokenize our text into sub-word units by byte pair encoding (BPE)69,70 which plays an 
important role in many state-of-the-art natural language model applications71,72 and provides strong baseline 
results on a multilingual corpus73. In total, we trained seven different LMs on the data—ranging from very simple 
n-gram models to state-of-the-art deep neural networks (Table 1).

Per LM, per version (NT/OT) and per symbolic level (words/BPE), we estimated language-specific random 
slopes, which serve as measures of learning difficulty as shown in Fig. 4. To test for a potential relationship 
between population size and learning difficulty, we first ran separate LMERs with learning difficulty, µ, as the 
outcome. Analogous to Study 1, we created a maximum model that contains a fixed effect of the log of speaker 
population size and (crossed) random effects and slopes for writing script, macro area, country, language family, 
language subfamily and sub-branch. We then computed LMERs for all possible covariate subsets (1456 models). 

Figure 3.   Double-selection lasso linear regression results (Study 1). (a) Prediction performance: out-of-sample 
R2 of learning difficulty against Out-of-sample R2 of speaker population size. In both cases, the out-of-sample 
R2 is computed for a sample distinct from the sample for which the control variables were selected by the lasso 
for the three different candidate sets. (b), (c) and (d) Bars—estimated coefficients, βDS, for the effect of speaker 
population size per LM and per symbol. (b) Candidate set: small (number of control covariates Nc = 225), 
(c) candidate set: medium (Nc = 274), (d) candidate set: big (Nc = 2226). *p < 0.05, **p < 0.01, ***p < 0.005. 
Statistical significance is determined based on non-parametric permutation tests (see “Methods” for details 
and Supplementary Table 3 for numerical results). Olive colour—words as information encoding units. Pink 
colour—characters as information encoding units.
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Figure 4.   Illustration of measuring learning difficulty in Study 2. Circles represent observed cross entropies 
H that are required (on average) to encode/predict the test data as a function of the number of training folds, 
f. We fit an LMER with the log of f as a fixed effect and random intercepts for the test fold and language. We 
include random slopes per language, which are represented by the different lines in the figure. The pink line 
corresponds to the estimated fixed effect of f, here a value of − 9.00. Using the LMER, we obtained language-
specific best linear unbiased predictions (BLUPs) of the random slopes, represented by the value of µ for each 
language. These BLUPs capture the interactions between f and language, with higher values of µ indicating faster 
learning and lower values indicating slower learning. As illustrated by the orange circles/line in the figure, some 
languages have higher values of µ, indicating that they are easier to learn. For these languages, the LM achieves 
better prediction quality with fewer training data points, resulting in a flatter slope of the regression line. The 
blue circles/line, on the other hand, represent languages that are more difficult to learn. These languages require 
more training data for the LM to achieve better levels of prediction quality, resulting in steeper slopes of the 
regression line.

Table 1.   Language models used in Study 2. The language models used in Study 2 are listed along with their 
implementation techniques, source, and time (in seconds) required to train each model on a median length 
document. The first three models are relatively simple, while the remaining four are more complex. The first 
four models were trained on 231,480 documents while the last three were trained on 115,740 documents 
due to the significant increase in training time, i.e. we only used the first five folds as test folds for the last 
three LMs, resulting in 45 data points per version and language, whereas all ten folds were used as test folds 
for the first four LMs, resulting in 90 data points per version and language. Further details on training and 
implementation are provided in the “Methods” section.

LM Technique/algorithm Source Time

PPM2 N-gram modelling74, prediction by partial matching47, number of previous symbols: 2, memory: 2000 megabytes
Ref.75,76

0.1

PPM6 N-gram modelling74, prediction by partial matching47, number of previous symbols: 6, memory: 2000 megabytes 0.1

LZMA Dictionary encoding77, dictionary size 1536 megabytes Ref.76 0.2

PAQ Context mixing52,78, gated linear network79, ~ 1.7 million weights, parameters ~ 3800 Ref.51,80 60.7

LSTMcomp Long short term memory54, parameters ~ 0.5 million Ref.53 149.2

NNCPsmall Transformer64, parameters ~ 2.24 million
Ref.81

146.0

NNCPlarge Transformer64, parameters ~ 6.45 million 431.9
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Figure 5a,b shows that with the exception of the small transformer model for the NT version, all computed FMA 
estimates for all N = 728 models that include a fixed effect for speaker population size (and potential random 
slopes) are negative for both corpus versions and both symbolic levels. For the NT version, βFMA

LMER = − 0.0022 
for words and βFMA

LMER = − 0.0007 for BPE for PPM2 as LM, βFMA
LMER = − 0.0019 for words and βFMA

LMER = − 0.0016 for 
BPE for PPM6, βFMA

LMER = − 0.0019 for words and βFMA
LMER = − 0.0011 for BPE for LZMA, βFMA

LMER = − 0.0014 for words 
and βFMA

LMER = − 0.0009 for BPE for PAQ, βFMA
LMER = − 0.0008 for words and βFMA

LMER = − 0.0011 for BPE for LSTMcomp, 
βFMA
LMER = − 0.0002 for words and βFMA

LMER = − 0.0001 for BPE for NNCPsmall and βFMA
LMER = − 0.0005 for words and 

βFMA
LMER = − 0.0007 for BPE for NNCPsmall. For the OT version, βFMA

LMER = − 0.0032 for words and βFMA
LMER = − 0.0010 

for BPE for PPM2, βFMA
LMER = − 0.0033 for words and βFMA

LMER = − 0.0020 for BPE for PPM6, βFMA
LMER = − 0.0028 for 

words and βFMA
LMER = − 0.0014 for BPE for LZMA, βFMA

LMER = − 0.0024 for words and βFMA
LMER = − 0.0011 for BPE 

for PAQ, βFMA
LMER = − 0.0021 for words and βFMA

LMER = − 0.0015 for BPE for LSTMcomp, βFMA
LMER = − 0.0013 for words 

and βFMA
LMER = − 0.0016 for BPE for NNCPsmall and βFMA

LMER = − 0.0015 for words and βFMA
LMER = − 0.0017 for BPE for 

NNCPsmall. Figure 5c,d visualizes the estimated β-coefficients and 95% confidence intervals for the models with 
the lowest AIC per version, LM and symbolic level. There is a significant negative impact of population size on 
learning difficulty (p < 0.005) for all language models in the NT version, except for the two transformer models 
(see Supplementary Table 7 for numerical results and model specifications). Here, only the coefficient for the 
larger transformer on the BPE level was statistically significant (p < 0.005), while both coefficients for the small 
transformer LM were deemed non-significant. Given that transformers are known to require large amounts 
of training data to perform well64, we attribute the lack of significance in the coefficients based on the smaller 
transformer to the limited size of the training data used for the NT version. This assumption is consistent with 
the fact that all βLMER-values at both symbolic levels were negative at p < 0.005 for the OT version, where the 

Figure 5.   Multilevel mixed-effects linear regression results (Study 2). (a) and (c) Results for NT (N = 504). 
(b) and (d) Results for OT (N = 138). (a) and (b) Boxplots visualising the distribution of the estimated impact 
of speaker population size, βLMER, per LM and per symbol for a total of 2430 models that include a fixed effect 
(and potential random slopes) for speaker population size. (c) and (d) Estimated βLMER (vertical line) and 
95% confidence interval (horizontal line) for the model with the lowest AIC per LM and per symbol (see 
Supplementary Table 7 for numerical results and model specifications). Olive colour—words as information 
encoding units. Blue colour—byte-pair encoding.
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amount of training data is three times larger. Supplementary Table 7 shows that these results are corroborated by 
the ΔAIC-values. In addition, we show in Supplementary Table 8 that these results are fully supported by lasso 
linear regressions similar to those presented in Supplementary Tables 3, 4, 5.

To further investigate the relationship between language learning difficulty and population size, we proceed by 
explicitly modelling the degree of covariation due to descent from a common ancestor. To this end, we conduct 
a Phylogenetic Generalised Least Squares (PGLS) regression with learning difficulty as the outcome and speaker 
population size as a covariate41. We use a phylogenetic tree provided by Ref.82 that was generated using language 
taxonomies from Ethnologue83. Fig. 6 presents the results, which are in close agreement with the LMER results 
(Fig. 5c,d): with the exception of the small transformer model for the NT version, all βPGLS-coefficients are nega-
tive at p < 0.005 (see Supplementary Table 9 for numerical details). The information-theoretic approach where 
we calculate ΔAIC between reduced models that do not include population size and full models, again supports 
these results. Excluding the small transformer model for the NT version, speaker population size explains the 
median amount of variance in learning difficulty of R2

med = 7.59% (Q1 = 5.29%, Q3 = 8.42%). For the OT version, 
the results for all LMs are more pronounced ( R2

med = 22.00%, Q1 = 18.49%, Q3 = 25.33%, no exclusion of the small 
transformer model).

While the PGLS analyses explicitly control for genealogical relatedness, spatial proximity can also generate 
non-independence in comparative language data21,41,84. To control for both sources of influence simultaneously, 
we use two weighting matrices:

	 (i)	 to control for spatial proximity, we generate a matrix containing the geographical distances between 
languages;

	 (ii)	 to control for genealogical relatedness, we used a phylogenetic dissimilarity matrix provided by Ref.85 
that is based on word lists from the Automated Similarity Judgment Program (ASJP)86.

We conduct spatial autoregressive errors regression models (SAR)45 with learning difficulty as the outcome 
and speaker population size as a covariate. We add two spatially lagged error terms specified by the inverse of 
each weighting matrix using a generalized spatial two-stage least-squares estimator (GS2SLS)87.

The SAR results are visualized in Fig. 7. Again, all results are in close agreement with the other analyses 
presented in this section: 27 out of 28 estimated βSAR-coefficients are negative. With the exception of the small 
transformer model for the NT version, all coefficients pass a non-parametric permutation test (see “Methods” 
for details) with p < 0.05 in one case, p < 0.01 in four cases and p < 0.005 in the remaining 21 cases (goodness-
of-fit: NT version, excluding NNCPsmall: R2

med = 8.64%, Q1 = 5.57%, Q3 = 10.44%; OT version: R2
med = 17.02%, 

Q1 = 14.32%, Q3 = 20.38%, see Supplementary Table 10 for numerical details).

Figure 6.   Phylogenetic generalized least squares regression results (Study 2). Estimated βPGLS (vertical line) and 
95% confidence interval (horizontal line) per LM and per symbol (see Supplementary Table 9 for numerical 
results). (a) Results for NT (N = 504). (b) Results for OT (N = 138). Olive colour—words as information 
encoding units. Blue colour—byte-pair encoding.
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Discussion
In this article, we examined the assumption that all languages are equally difficult to learn by using LMs as 
computational working models for empirically studying various aspects of human language26. In summary, we 
find that there is evidence for an effect of speaker population size on learning difficulty that questions the above 
assumption. This evidence turns out to be stable across different datasets and two different ways of operation-
alising learning difficulty. We have observed this relationship across a range of LMs, ranging from very basic 
n-gram models that use only the last few symbols for prediction to state-of-the-art deep neural network large 
language models that leverage complex computational architectures and mechanisms that allow them to capture 
long-range dependencies and contextual information in the text. Despite the differences in model complexity, the 
observed correlation held consistently, highlighting the robustness of this finding across the spectrum of LMs.

To address the potential non-independence of observations resulting from the phylogenetic and geographic 
relationships between languages, we employed established methods from existing literature41 while also intro-
ducing novel approaches to analyse our data43,45. In addition, we used both parametric and non-parametric 
tests to determine statistical significance, recognising that our data cannot be considered a random sample of 
all existing languages61.

By using a variety of methods and analyses, we have increased the reliability and generalisability of our 
primary finding, which challenges our initial expectations: contrary to what we expected, our research reveals 
a positive statistical association between population size and learning difficulty, suggesting that languages with 
more speakers tend to be harder to learn.

The expectation that there should be an inverse correlation between speaker population size and learning dif-
ficulty can be traced back to the linguistic niche hypothesis, which suggests that the social niche that a language 
occupies in a community affects its structural properties2,18. Specifically, the linguistic niche hypothesis suggests 
that languages with large numbers of speakers tend to simplify their grammar and have a reduced structural 
complexity. It assumes that languages that are spoken by more people over larger geographical areas are, on aver-
age, also learned by a larger proportion of adults. Since languages with complex structures appear to be difficult 
for adults to learn, the linguistic niche hypothesis conjectures that there should be a negative selection against 
complexity, i.e. languages tend to adapt and simplify when they are spoken by larger communities that include a 
significant number of adult learners18,88,89. Subsequently, the linguistic niche hypothesis has been an important 
starting point that generated extensive research in the field89–95. Only very recently, research has emerged that 
casts doubt on the validity of the specific assertions made by the linguistic niche hypothesis: it has been shown 
that the number of adult learners does not appear to impact language complexity21,23 and that languages with 
more speakers tend to be more complex, not less21,25. In a similar vein, the results presented in this article suggest 
that languages with more speakers are not easier to learn but more difficult.

It is important to point out in this context that LMs are only working models and that there are therefore 
important limitations26. In particular, we neither claim that there is a one-to-one correspondence between human 
and machine language learning, nor that LMs understand language in a human-like sense96. Future work could 
explore whether and to what extent our results also apply to human language learning. However, we agree with 
Refs.26,27 that, given their impressive performance in natural language processing71,97, LMs, especially so-called 

Figure 7.   Spatial autoregressive error regression results (Study 2). Bars—estimated coefficients, βSAR, for 
the effect of speaker population size per LM and per symbol. (a) Results for NT (N = 414). (b) Results for 
OT (N = 126). Each model contains autoregressive error terms for phylogenetic relatedness and geographical 
proximity simultaneously estimated by two inverse-distance matrices. *p < 0.05, ** p < 0.01, *** p < 0.005. 
Statistical significance is determined based on non-parametric permutation tests (see “Methods” for details 
and Supplementary Table 10 for numerical results). Olive colour—words as information encoding units. Blue 
colour—byte-pair encoding.
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large language models, are worthy of scientific investigation, because of their inherent “potential to inform future 
work in the cognitive science of language”26. In our study we have tried to exploit this potential, and we hope that 
we have, at a very minimum, been able to show that the sociolinguistic structure of language and learnability by 
machines do not seem to be statistically independent of each other.

Nevertheless, as language scientists, our primary objective is to comprehend the underlying reasons behind 
the specific characteristics of human language, and it is not clear whether the results regarding machine learn-
ability presented in this study can be extrapolated to human language learning as well. A link to human language 
learning could be made through the field of artificial grammar learning, where participants are asked to judge 
the permissibility of an upcoming symbol in a sequence of symbols based on the rules of an underlying artificial 
grammar. In this paradigm, it can be shown that the complexity of an artificial grammar is positively correlated 
with the error rate of participants who implicitly learn the underlying rules of an artificial grammar (i.e., by 
reading language material based on the artificial grammar)98,99. Our results suggest that rule complexity should 
also influence the speed of artificial grammar learning (measured, e.g., as number of experimental trials until 
the rules have been extracted from the linguistic material).

Using advanced machine learning techniques, we found that speaker population size negatively affects learn-
ing speed after controlling for potential confounding from translation effects and several environmental variables 
such as geographic range size. To understand how speaker population size affects machine learning difficulty, 
future studies could build on this methodological approach and examine the impact of other potential covari-
ates. Another promising avenue for future work would therefore be to investigate which types of grammatical 
structures tend to be more difficult for LMs to learn, and whether those features covary with speaker population 
size. A recently published new cross-linguistic database of grammatical features of unprecedented size17 provides 
an ideal starting point for such endeavours.

Methods
Language models
We use general-purpose data compression algorithms, taking advantage of the fact that there is a close connection 
between understanding, prediction and compression100,101. All data compression algorithms consist of a model 
and a coder78. Our focus is on the class of (lossless) compressors where the algorithm estimates a model, i.e. a 
conditional probability distribution, based on the training data, which can be used to generate predictions. To 
perform compression, the predicted probabilities are then used to encode symbols using a technique called arith-
metic encoding102. The language models that we use are summarized in Table 1. In what follows, further details 
are given for each language model. PPM is a dynamic and adaptive variable-order n-gram LM. The algorithm 
makes an assumption of the Markov property: to predict the next symbol, the algorithm uses the last o symbols 
that immediately precede the symbol of interest47,103. For Study 2, we use two different values for o, 2 and 6, i.e. 
the last 2 resp. 6 symbols are used as context to generate predictions, whereas the optimal order in the range of [2, 
32] is learned directly from the data in Study 125,46. In both studies, the level of compression is set to maximum 
and the size of used memory is set to 2000 megabytes. LZMA employs a compression strategy wherein repetitive 
segments within the data are identified and replaced by references pointing to a single instance of that segment 
occurring earlier in the uncompressed data stream. These matches are encoded using a length-distance pair, 
indicating that a specific number of symbols following the match are identical to the symbols located a certain 
distance back in the uncompressed stream77,78. LZMA is only used in Study 2; the level of compression is set to 
maximum and the size of the compression dictionary is set to the maximum value of 1536 megabytes. PAQ can 
be described as a weighted combination of predictions from a large number of models, where the individual 
models are combined using a gated linear network52,78–80. The network has a single layer with 552 input nodes 
and 3080 input weights. The model has a total of approximately 1.7 million weights, but due to the sparse updat-
ing scheme which leads to faster compression and decompression, the effective number of parameters used in 
training is significantly lower. Only 552∙7 = 3864 weights are updated for each bit of data. In both studies, we use 
version PAQ8o and set the compression level to maximum, requiring 1712 megabytes of memory. As PAQ, lstm-
compress53, referred to as LSTMcomp throughout the manuscript, combines predictions from independent models. 
Predictions are combined using a long short-term memory deep neural network54. The network is trained using 
backpropagation through time104 and Adam optimisation is used to update network weights105. The algorithm 
takes no options and we do not use any dictionary-based pre-processor in neither Study 1 nor Study 2. In total, 
the model has 508,936 parameters (assuming the corresponding input file uses all 256 possible bytes. The model 
size may be smaller if the input file contains a smaller set of bytes). NNCP81 is a lossless data compressor that is 
based on the Transformer XL model defined in Ref.97. Modifications to the original Transformer XL model and 
algorithmic details are provided in Refs.106,107. As for lstm-compress, the Adam optimiser is used. For NNCPsmall, 
we use the default options with four layers and a resulting total number of parameters of ~ 2.24 million. For 
NNCPlarge, we change the default options to twelve layers. This results in a total of ~ 6.45 million parameters. For 
both versions, we use the Gaussian error linear unit activation function108, we do not use a text pre-processor or 
tokenizer and we use the faster “encode only” mode (the output cannot be decompressed, but the compression 
itself is still lossless). NNCP is only used in Study 2.

Data
For Study 1, we use part of a large-scale database of written multilingual texts compiled by Ref.25. In total, we 
use information on 3853 documents contained in 40 different multilingual corpora comprising a large variety 
of different text types. The documents range in length from a few tens to several hundreds of millions of words. 
33 of these corpora consist of fully parallel texts. Parallel texts are texts in different languages that contain the 
same message, but differ in the language used (e.g. subtitles of a movie in different languages). The remaining 
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seven corpora are comparable corpora, i.e. texts that are not parallel but come from comparable sources and are 
therefore similar in content (e.g. Wikipedia or newspaper articles). In-depth details on the database and each 
corpus are given in the “Methods” section and supplementary information of Ref.25 that is available at https://​
osf.​io/​f5mke/.

For Study 2, we use data from the Parallel Bible Corpus made available by Ref.67, which contains 1568 unique 
translations of the Bible in 1166 different languages in a fine-grained parallel structure (in terms of book, chap-
ter and verse). Each translation is already tokenized and Unicode normalized and spaces are inserted between 
words as well as punctuation marks and non-alphabetic symbols by Ref.67. In addition, all texts were manually 
checked and corrected by Ref.67 where necessary. In some texts without spaces or marks between words (e.g. for 
Khmer, Burmese, or Mandarin Chinese), we used a dictionary lookup method described in Ref.25 to detect word 
boundaries with detected word tokens then being space-separated. All uppercase characters are lowered based 
on the closest language-specific ISO-639-3 code. We then split each Bible translation into different books of the 
biblical canon, aggregating all books of the New Testament (NT) and the Old Testament (OT). Beside the actual 
text, each element of each line of each Bible translation document contains information about the book, chapter 
and verse number67. Per version, we dropped translations with no available verse. For languages with more than 
one available translation, we kept the translation with most available verses and broke ties at random. In total, 
we ended up with 1062 different languages for the NT version and 189 different languages for the OT version. 
On average, each NT translation consists of 7840 verses and each OT translation consists of 17,086 verses. Per 
version, we then dropped partly incomplete translations and removed verses that are only available in some 
translations and selected verses that appeared in as many translations as possible. For the NT version, we selected 
5000 verses that are available in 504 different languages. For the OT version, we selected 15,000 parallel verses in 
138 different languages. Note that the biblical canon consists of different books, for our selection 24 books for NT 
and 36 books for OT. Per version (NT/OT) we prepared stratified samples by randomly assigning each available 
verse from each available book to one of ten folds. In addition, we made sure that both (i) the verse order across 
translations and folds and (ii) the sequential training order is fully balanced and parallel; (i) means that each 
fold consists of the same verses that the LM is trained with, in the same order. From an information-theoretic 
perspective, this procedure ensures that—apart from random fluctuations—each fold contains text drawn from 
the same information source109 and thus induces stationarity110. Regarding (ii), assume that fold 10 is the test 
fold, and the remaining folds are used to sequentially train the LM. We generated random training sequences, 
e.g. fold 3–fold 2–fold 8–fold 5–fold 4–fold 9–fold 6–fold 7–fold 1. This means that the LM is first trained on 
fold 3, we then compute H, i.e. the average number of bits per verse that are needed to encode each byte of fold 
10, then the LM is trained on fold 3 and fold 2 and H is computed again, and so on. Training sequences are kept 
parallel across translations.

Information encoding units
For Study 1, we follow Ref.25 and compute the relevant quantities for both words and characters as information 
encoding units/symbols. For Study 2, we estimate on the level of words, but not on the level of characters, since 
there are idiosyncrasies/vagaries of the writing system that can lead to cross-linguistic differences in the mapping 
between phonemes and graphemes on the level of characters111,112. Instead, we apply byte pair encoding (BPE)69,70 
to split words into one or several units and the LM will be trained over the resulting sequences of sub-word units. 
BPE plays an important role in many state-of-the-art natural language modelling applications71,72 and provides 
strong baseline results on a multilingual corpus73. Note that the BPE is always extracted from the training data 
only and then applied to both the training and the test data. We follow Ref.69 and set the number of BPE merges 
to 0.4·C where C is the number of different word types observed in the training data.

On the level of words and sub-words, each unique symbol type is replaced by one unique 4-byte Unicode 
symbol. Each LM is then trained on the resulting sequence of Unicode symbols. On the level of characters, each 
LM is trained directly on the raw text.

Sociodemographic and linguistic variables
Information on speaker population size, corpus, language family, language (identified by its ISO code), macro 
area, country, writing script, speaker population size, longitude and latitude are taken from Ref.25. EGIDS level 
information was initially sourced from Ref.113, which is reported in Glottolog114 (v4.2.1). Country is defined by 
Ethnologue as the primary country/country of origin of the language in question15. To ensure completeness, 
we manually supplemented missing data from Ref.113 by cross-referencing with Glottolog and Ethnologue. The 
EGIDS level serves as a measure of a language’s endangerment status57. The purpose is to use the EGIDS level as 
a covariate to control for potential translation effects55,111, as languages with lower EGIDS levels could be more 
likely to be used as source languages, while languages with higher EGIDS levels could be more likely to be used 
as target languages. For example, an EGIDS level of 0 (labelled "International") pertains to the six official United 
Nations languages: Arabic, Chinese, English, French, Russian, and Spanish. On the other hand, languages with 
values of five and above pertain to languages that are not used in formal education, mass media or by the gov-
ernment, and they may consequently be more susceptible to (more) pronounced "translationese" influences111.

Additional information used in Study 2 regarding the classification of languages into family, subfamily and 
sub-branch are taken from Ref.67. We manually added information for five languages that was missing by using 
publicly available genealogical classifications (ISO codes gso, lbk, lsm, npi and yan, see https://​osf.​io/​sa9x2/ for 
details). Classifications in Ref.67 are given as comma-separated values, we define the first value as the family, the 
second one as the subfamily and the third one as the sub-branch e.g. for the language “Ghotuo” the classification 
is “Niger-Congo, Atlantic-Congo, Volta-Congo, Benue-Congo, Edoid, North-Central, Ghotuo-Uneme-Yekhee”, so 
the family is “Niger-Congo”, the subfamily is “Atlantic-Congo” and the sub-branch is “Volta-Congo”. Additionally, 

https://osf.io/f5mke/
https://osf.io/f5mke/
https://osf.io/sa9x2/
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we use a phylogenetic tree provided by Ref.82 for the PGLS regressions and a dissimilarity matrix provided by 
Ref.85 for the SAR regressions. We take information on language range size estimates from Ref.115 and informa-
tion on distance to water resources, altitude and two variables on climatic information (Climate PC1 and Cli-
mate PC2) from Ref.20. Information on the number of countries in which each language is spoken was sourced 
from Glottolog (v4.2.1). We manually supplemented missing data by cross-referencing with Ethnologue83,116. 
The rationale behind considering this variable as a potential covariate is to account for the varying degrees of 
pluricentrism56. For instance, languages such as Chinese or Spanish are spoken in several countries and may 
therefore have different codified standard forms. For further information and a discussion of potential caveats 
and problems regarding the assignment of environmental variables to individual languages in order to reflect 
local grouping structure, see Refs.20,36.

Estimating LM learning difficulty
The link between understanding, prediction and compression mentioned above (“Language models”) directly 
implies that the better the compression, the better the language model78.

In Study 1, we take advantage of this fact by measuring the compression rate rl for different sub-sequences 
of increasing length l where rl represents the number of bits per symbols that are needed to compress the first l 
symbols. Estimating the shape of the curve of the resulting series of compression lengths gives us a measure of 
how well language learning succeeds32,117. For PPM as LM, we take the series of compression rates directly from 
Ref.25. Here, each document in each corpus is compressed every m symbols where m is some pre-defined corpus-
specific chunk size, e.g. 1000 symbols. For the purpose of this study, we carried out a comprehensive retraining 
of all documents utilizing two additional language models, PAQ and LSTMcomp. Due to the significant increase 
in training time required (see Table 1), we did not use the corpus-specific chunk size pre-defined by Ref.25, but 
compressed each document of each multilingual corpus every 5% of all symbols, resulting in 20 data points, i.e. 
rl-values per document. Note that consistency checks revealed that LSTMcomp repeatedly produced inconsistent 
results for the following documents that belong to the United Nations Parallel Corpus118, see Ref.25 for further 
details: ISO code “fra”, level: words, rl at 95% and 100%; ISO code “rus”, level: characters, all rl-values from 65% 
to 100%; ISO code “rus”, level: words, rl at 100%. Since these inconsistencies could not be resolved, we exclude 
these rl-values in what follows.

We fit a variant of the ansatz suggested by Ref.65 to each series of compression rates:

where A > 0, b > 0 and h > 0 ; rl = R(Xl
1)/l denotes the number of bits per symbol that are needed to compress 

the first l symbols of a document. h is the limiting entropy rate, A is a proportionality constant and b describes 
the shape of the curve and thus can be used to quantify learning difficulty as visualised in Fig. 1 and Supple-
mentary Fig. 1. To estimate the three parameters of the ansatz function, we fit the following nonlinear function 
by log-least squares:

where o′l is an independent and identically distributed (i.i.d.) error term and exp() denotes the exponential 
function. Since we want A and b to be positive, we set interval constraints that make sure that the optimisation 
algorithm will not search in the negative subspace by fitting both parameters as exponentials, i.e. we estimate 
A′

= log(A) and b′ = log(b) . The limiting entropy rate is recovered as h = exp(h∗).
Since achieving convergence of the parameter estimates turned out to be difficult25, we approximate initial 

values in linear space, i.e., for each value of φ = 0.01, 0.02, …, 10, we calculate � =
logl
lϕ  and fit the following linear 

regression by ordinary least squares:

where o′l is an i.i.d. error term. To provide initial values to fit Eq. (2), we pick the solution of Eq. (3) where the 
root mean squared error is smallest and where βA > 0 , then h∗ is initialized as βh,A′ is initialized as exp(βA) and 
b′ is initialized as exp(ϕm) where φm denotes the value of φ corresponding to the selected Φ. Further details are 
provided in Ref.25.

In Study 2, we compute the cross entropy H, i.e. the number of bits needed on average to encode/predict a 
training verse for each document as a function of the number of training folds as follows:

where f = 1, 2, …, 9 denotes the number of folds that are used to train the LM,Nv denotes the number of verses and 
R(X) denotes the compressed size of string X. Tf  denotes a string that consists of the concatenation of the first f 
training folds, while Tf Ttest represents the concatenation of Tf  and the test fold Ttest . Note that on both symbolic 
levels (words/BPE) we also compress the mapping of unique symbols to 4-byte Unicode symbol mentioned above 
(“Information encoding units”) and add the resulting compressed lengths to Rf

(
Tf Ttest

)
 and Rf (Tf ).

In general, there is a strong negative correlation between cross entropy and the number of folds, for both ver-
sions, both symbolic levels, all LMs and all languages (NT version, word level—PPM2: median Pearson correlation 

(1)rl = h+ A ·
logl

lb

(2)rl = exp

(
h∗ + exp(A′) ·

logl

lexp(b
′)

)
+ o′l

(3)log(rl) = βh + βA�+ o′l

(4)Hf =
R
(
Tf Ttest

)
− R(Tf )

Nv
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between the log of Hf  and the log of f, rmed = − 0.90; PPM6: rmed = − 0.97; LZMA: rmed = − 0.97; PAQ: rmed = − 0.97; 
LSTMcomp: rmed = − 0.98; NNCPsmall: rmed = − 0.97; NNCPlarge: rmed = − 0.98; BPE level—PPM2: rmed = − 0.73; PPM6: 
rmed = − 0.94; LZMA: rmed = − 0.94; PAQ: rmed = − 0.94; LSTMcomp: rmed = − 0.98; rmed = NNCPsmall: rmed = − 0.97; 
NNCPlarge: rmed = − 0.98; OT version, word level—PPM2: rmed = − 0.91; PPM6: rmed = − 0.99; LZMA: rmed = − 0.99; 
PAQ: rmed = − 0.99; LSTMcomp: rmed = − 0.99; NNCPsmall: rmed = − 0.98; NNCPlarge: rmed = − 0.99; BPE level—PPM2: 
rmed = − 0.77; PPM6: rmed = − 0.98; LZMA: rmed = − 0.99; PAQ: rmed = − 0.99; LSTMcomp: rmed = − 0.98; NNCPsmall: 
rmed = − 0.98; NNCPlarge: rmed = − 0.99). This demonstrates that all LMs—on average—improve with input.

To measure language-specific learning difficulty, we fit LMERs per LM, version (NT/OT) and level (words/
BPE) with the log of Hf  as the outcome and a fixed effect for f. We include (crossed) random intercepts for lan-
guage and for the test fold (1–10 for PPM2, PPM6, LZMA and PAQ and, due to the significant increase in training 
time, 1–5 for LSTMcomp, NNCPsmall and NCCPlarge). In addition, we include random slopes per language, i.e. we 
allow the relationship between Hf  and f to be different for each language. We model the covariance structure 
between the random effect and the random slope for language as either (i) independent, i.e. both the effect and 
slope have their own variance and the covariances between effect and slope are assumed to be independent of 
each other or (ii) unstructured, i.e. we allow the random effect and the random slope to be correlated. In all cases, 
an unstructured covariance structure turned out to be better as indicated by a lower AIC. Based on the LMERs, 
we obtained language-specific empirical Bayes predictions or best linear unbiased predictions (BLUPs)119 of the 
random slopes, represented by variable µ. These BLUPs capture the interactions between f and language, with 
higher values of µ indicating faster learning and lower values indicating slower learning as visualized in Fig. 4. 
µ is assumed to be Gaussian with mean zero and variance σ2.

Models were fitted with gradient-based maximization and—since our main interest lies in the estimation 
of random slopes—via restricted maximum likelihood (REML) to avoid a downward-biased estimate of σ2, for 
details, see Ref.119.

Statistical analyses
Multilevel mixed‑effects linear regression (LMER)
To enhance convergence for the LMERs conducted in Study 1 (Table 1), the outcome b and the fixed control 
variables h and L were standardized per corpus, i.e. the corpus-specific mean was subtracted from each observed 
value and the result was divided by the corpus-specific standard deviation. As described in the main body of the 
paper, our covariate candidate model set includes (i) random intercepts for corpus, language family, language, 
macro area, country and writing script and (ii) random slopes for corpus, language family, macro area, country 
and writing script. All effects are assumed to be crossed. Note, however, that—in the terminology of Ref.120—
countries are explicitly nested within macro areas, i.e. each country occurs in exactly one macro area. In the 
same sense, languages are explicitly nested within language families.

To compute differences in AIC, ΔAIC, we additionally fit LMERs without a fixed effect for speaker population 
size. Note that in models without a fixed effect for speaker population size, we also exclude potential random 
slopes. We then compute ΔAIC between the full model, which includes a fixed effect and potential random 
slopes for speaker population size, and a reduced model that does not include a fixed effect or random slopes for 
speaker population size but otherwise has the same fixed and random effect structure. We counted a full model 
to be more apt if either its AIC value is lower than its reduced counterpart or if the fitting of the reduced model 
fails. In all other cases, we counted the reduced model to be better.

We model all intercepts and slopes as i.i.d. and to be independently from each other. Models were fitted 
with gradient-based maximization and—since our primary focus in this set of analyses is on estimating and 
comparing different fixed effects structures—via maximum likelihood (ML)121–123. We accepted any solution 
after a maximal number of 20 iterations. Full details on the fixed and random effect structure for each selected 
model are given in Supplementary Tables 1, 2. As written above, we also exclude potential random slopes in 
models without a fixed effect for speaker population size, since excluding the fixed effect for speaker population 
size while including random slopes would constrain βLMER to be zero and thus force the random slopes to be 
evenly distributed around a slope of zero. To make sure that this decision does not overly influence the results, we 
additionally ran constrained models where we allowed for reduced models that did not include a fixed effect for 
speaker population size but included potential random slopes for speaker population size. We then compared AIC 
values between full and reduced models with the same fixed effects, random effects and random slopes. Column 
6 of Supplementary Tables 1 and 2 shows that our results are also valid if such constrained models are included.

For the LMERs conducted as part of Study 2, our covariate candidate model set contains (crossed) random 
effects and slopes for macro area, country, language family, language subfamily and sub-branch. Again, countries 
are explicitly nested within macro areas. We also explicitly nest sub-branches within subfamilies and subfamilies 
within families by creating unique indicators for subfamilies/sub-branches that occur in more than one level, 
e.g. the sub-branch label “West” occurs in several subfamilies, e.g. “Germanic” and “Mande”. To create a unique 
sub-branch indicator, the corresponding sub-branches are replaced by “GermanicWest” and “MandeWest”. Fur-
ther note that if there is no subfamily for a language, we also create a unique subfamily indicator within the cor-
responding family, e.g. for the Papuan language “Angor”, the only classification given in our data is “Senagi” for 
the language family. To fill in a unique group indicator for the subfamily, we use the language family. We proceed 
in the same way with missing sub-branches by filling in corresponding subfamilies. Analogous to Study 1, we 
compute ΔAIC-values. Again, we model all intercepts and slopes as i.i.d. and to be independent from each other. 
All models were fitted with gradient-based maximization and via ML. We accepted any solution after a maximal 
number of 100 iterations. Full details on the random intercept and slope structure for each selected model are 
given in Supplementary Table 7. Again, we tested if the inclusion of constrained models for model comparison 
changes the results. Columns 6 and 12 of Supplementary Table 7 show that this not the case.
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Frequentist model averaging (FMA)
In Study 1, the FMA estimator is computed per LM and symbol (words/characters) for all M = 2430 candidate 
models that include a fixed effect for the log of speaker population size as48,50,124:

where ωj =
cj�j∑M
i=1 ci�i

 ; cj is a binary indicator that is equal to 1 if j converged to a solution and 0 otherwise; 

�j = exp
(
−

AICj

2

)
 where AICj denotes the AIC value computed for j, likewise for i. Therefore, 

∑M
j=1 ωj = 1.

In Study 2, βFMA
LMER is computed in an analogous way per LM, symbol (words/BPE) and version (NT/OT) for 

the set of models consisting of M = 728 candidates.

Double‑selection lasso linear regression (DS) and permutation testing
For the DS regressions, we use the log of b as the outcome. Our covariate of interest is the log of speaker popula-
tion size. As potential control variables, we use the three different sets specified in the main part of the paper. 
We generate a set of variables that form third-order B-spline basis functions for both longitude and latitude each 
with three knots placed at the 25th, the 50th and the 75th percentiles. In addition to the log of h, the log of L, 
the basis functions for longitude and latitude and the set of indicator variables for the levels of corpus, language 
family, writing script, macro area and EGIDS, we include (log) language range, (log) distance to water resources, 
(log) altitude, Climate PC1, Climate PC2 and the (log) number of countries in which a language is spoken as 
potential controls.

The DS approach works by (i) running a lasso of speaker population size on the potential covariates, (ii) run-
ning a lasso of the log of b on the potential covariates. Let c̃ denote the union of the covariates selected in (i) and 
(ii). As a third step, the log of b is regressed on the log of speaker population size and c̃ . Further information on 
this approach is given in Refs.43,125. To select the optimal value for the penalty parameter for each lasso, we use 
cross-validation. Standard errors are clustered at the level of individual languages, i.e. we allow for intra-language 
correlation. Since, as written above, the sample of languages for which we have available documents cannot be 
considered a random sample of the population of all languages61,62, we use the controls selected in step (i) and step 
(ii) as input for non-parametric Freedman-Lane permutation tests63,126. Here, we wish to test the null hypothesis 
that speaker population size provides no information about the outcome b, i.e. that the corresponding estimate 
coefficient is equal to zero. The procedure is as follows127:

1.	 We regress b (logged) against speaker population size (logged) and c̃ and extract the observed t-statistic tobs 
of the coefficient for speaker population size.

2.	 We regress b against c̃  only to obtain fitted values and residuals.
3.	 We randomly permute the residuals and generate a new variable b* that is computed as the fitted values from 

step 2 and the randomly permuted residuals.
4.	 We regress b* against speaker population size and c̃  and extract the t-statistic of the coefficient for speaker 

population size and call that quantity t*.
5.	 Steps 3 and 4 are repeated 10,000 times to build the distribution of t* if the null hypothesis is true.
6.	 We count the number of times the absolute value of t* is at least as high as tobs and divide the result by the 

number of repetitions, i.e. 10,000. The result is the permutation p-value.

The idea of the permutation test is that if the null hypothesis is true, we do not lose “anything essential in the 
data”63 by permuting the residuals from the reduced model (step 2), because they should not be different from 
the full model (step 1) and can thus be used to generate the reference distribution of the test statistic.

Phylogenetic generalised least squares regression (PGLS)
To account for historical relatedness among languages, we fit PGLS regressions128 per LM, version (NT/OT) and 
level (words/BPE) with learning difficulty µ as the outcome and speaker population size as a covariate. The PGLS 
approach incorporates a covariance matrix that captures the phylogenetic relatedness between languages84. The 
covariance matrix is estimated using a Brownian motion model based on a tree that represents the evolutionary 
relationships between different languages and is used to model the degree of similarity or dissimilarity between 
languages. We use a phylogenetic tree provided by Ref.82 that was generated using language taxonomies from 
Ethnologue83. This tree represents the evolutionary relationships among the languages in our sample and allows 
us to account for the non-independence of observations due to shared ancestry. Languages are identified by 
their ISO codes. Models are fitted by generalized least squares and estimates are derived by maximizing the 
log-likelihood.

To compute ΔAIC, we additionally re-fit each model without including speaker population size. As a measure 
of fit, we compute the coefficient of determination, R2, as the squared Pearson correlation between the observed 
value of µ and the regression model-based prediction.

Spatial autoregressive error regression (SAR) and permutation testing
As written above, the PGLS framework uses a single covariance matrix that represents the phylogenetic relat-
edness between languages84. That means we do not take potential non-independence due to spatial proximity 
into account41. We fit SAR regressions45 using a GS2SLS estimator87 where autocorrelated errors are treated as 

(5)βFMA
LMER =

M∑

j=1

ωjβj
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heteroskedastic. Individual regressions are fitted per LM, version (NT/OT) and level (words/BPE) with learning 
difficulty µ as the outcome and speaker population size as a covariate. To control for both potential sources of 
non-independence simultaneously, we add two spatially lagged error terms to the regression equation that are 
specified by the inverse of two weighting matrices. To control for spatial proximity, we compute the Haversine 
distance129 between each pair of languages based on longitudinal and latitudinal information to generate a spatial 
distance matrix. To control for genealogical relatedness, we used a matrix provided by Ref.85 that is based on 
word lists from the Automated Similarity Judgment Program (ASJP)86. Again, languages are identified by their 
ISO codes. To select a specific language in case there are multiple languages with the same ISO code, we select 
either the language whose name begins with “STANDARD_”, e.g. “STANDARD_ARABIC” or the name with the 
shortest length, e.g. we select “JAPANESE” over “JAPANESE_2” or “TOKYO_JAPANESE”.

To assess the significance of the estimated βSAR-coefficients, we use the following permutation procedure:

1.	 We fit a SAR regression of µ against speaker population size (logged) and extract the observed z-statistic zobs 
of the coefficient for speaker population size.

2.	 We randomly permute the speaker population size variable, re-fit the SAR model and extract the z-statistic 
of the coefficient for speaker population size and call that quantity z*.

3.	 Step 2 is repeated 10,000 times to build the distribution of z* if the null hypothesis is true (i.e. βSAR = 0).
4.	 We count the number of times the absolute value of z* is at least as high as zobs and divide the result by the 

number of repetitions, i.e. 10,000. The result is the permutation p-value.

R2-values are computed in the same way as for the PGLS regressions.

Data availability
All parallel text data, bibliographic information on languages and the compression algorithms were taken from 
the sources mentioned in the “Methods” section. Data preparation, management and statistical analyses were 
done in Stata/MP4 (version 18.0) on a Linux server (CentOS 7.9.2009) with 756GB of available RAM. Com-
mented Stata code plus additional R (version 4.2.2) and Python code (version 3.6.8) are available at https://​osf.​
io/​sa9x2/.
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