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How intra‑source imbalanced 
datasets impact the performance 
of deep learning for COVID‑19 
diagnosis using chest X‑ray images
Zhang Zhang 1*, Xiaoyong Zhang 2,3, Kei Ichiji 4, Ivo Bukovský 5 & Noriyasu Homma 1,3,4

Over the past decade, the use of deep learning has been widely increasing in the medical image 
diagnosis field. Deep learning‑based methods’ (DLMs) performance strongly relies on training data. 
Therefore, researchers often focus on collecting as much data as possible from different medical 
facilities or developing approaches to avoid the impact of inter‑category imbalance (ICI), which means 
a difference in data quantity among categories. However, due to the ICI within each medical facility, 
medical data are often isolated and acquired in different settings among medical facilities, known as 
the issue of intra‑source imbalance (ISI) characteristic. This imbalance also impacts the performance 
of DLMs but receives negligible attention. In this study, we study the impact of the ISI on DLMs by 
comparison of the version of a deep learning model that was trained separately by an intra‑source 
imbalanced chest X‑ray (CXR) dataset and an intra‑source balanced CXR dataset for COVID‑19 
diagnosis. The finding is that using the intra‑source imbalanced dataset causes a serious training 
bias, although the dataset has a good inter‑category balance. In contrast, the deep learning model 
performed a reliable diagnosis when trained on the intra‑source balanced dataset. Therefore, our 
study reports clear evidence that the intra‑source balance is vital for training data to minimize the risk 
of poor performance of DLMs.

The severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) causes the Coronavirus disease 2019 
(COVID-19) that has been widely spread worldwide and continues to have a devastating effect on the health 
and life of the global  population1. The polymerase chain reaction (PCR) test is the gold  standard2 for detecting 
SARS-CoV-2 nowadays. Nevertheless, PCR testing is time-consuming and laborious, and it is also suffering 
from the high  cost3.

As one of the essential complements to PCR testing, chest X-ray (CXR) imaging has also demonstrated its 
effectiveness in current  diagnosis4. The CXR imaging is often part of the standard procedure for patients with 
respiratory complaints, and it is reported that some patients showed abnormalities in the CXR images before 
they eventually test positive for COVID-19 with the PCR  test4. Moreover, all the rapid triaging, availability, acces-
sibility, and portability of CXR imaging indicated that it could be a preliminary tool for COVID-19 screening. 
Nonetheless, one of the biggest bottlenecks of CXR screening is the need for experts to diagnose from the CXR 
images because the radiological signatures can be subtle.

The deep learning-based methods (DLMs) can actually enhance the diagnosis performance by  radiologists5 
and they can aid image diagnosis in the lung areas that is not easy even for the  experts6. The success made by 
DLMs encouraged researchers to develop deep learning-based computer-aided diagnostic (CAD) systems that 
can aid radiologists in screening COVID-19 more rapidly and  accurately7–11. Brunese et al.7 applied VGG-16 
model for COVID-19 detection from CXR images. Hemdan et al.8 proposed an original COVIDX-Net frame-
work to assist radiologists to automatically diagnose COVID-19 in CXR images. Kundu et al.9 proposed an 
ET-NET for a more sensitive computer tomography scan based COVID-19 detection. Saha et al.10 proposed a 
GraphCovidNet to deal with classification of COVID-19 or any other kind of pneumonia patients from healthy 
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people in screening. Wang et al.11 also proposed the new architecture of deep learning model named COVID-
Net for COVID-19 detection in CXR images. In these previous studies, the deep learning models could achieve 
high performance on COVID-19 detection.

Although the deep learning models can achieve high performance on COVID-19 detection, the lack of 
accepted theoretical explanation remains the fundamental problem of deep learning, i.e., the black-box  problem12. 
The cause is that deep learning models lack transparency and explainability; it is difficult to know and understand 
how the model made a prediction, and the inner workings remain opaque to the outside  observer13. Without 
a sufficient understanding of the machine-made prediction, it becomes very complicated to detect errors in 
models’  performance13, i.e., training bias caused by mislabeled training data, especially for medical applications. 
Therefore, the reliability of deep learning models remains a concern.

For assessing the reliability of deep learning models used for COVID-19 detection in CXR images, Sadre 
et al.14 proposed a region-of-interest (ROI) hide-and-seek protocol. As shown in Fig. 1, to observe the reliability 
of these deep learning models, they removed lung regions from CXR images in a public CXR dataset and used 
them to train and test deep learning models. Then, a gradient-weighted class activation mapping (Grad-CAM) 
 method15 was utilized to visualize which parts of the CXR images were focused on by the deep learning models. 
The experiment results showed that the deep learning models even could achieve high performance using the 
lungs-removed images, and the focused locations were outside the lung regions when deep learning models 
made a COVID-19 prediction. Results in this  study14 indicated the deep learning models are unreliable in terms 
of medical findings because the image features contributing to COVID-19 classification exist outside the lung 
regions, which is unexpected for a lung-based  illness14.

The  study14 mentioned that the unreliability of DLMs might be explained via data characteristics, because 
the previous studies collected as much data as possible from different medical facilities to develop DLMs for 
the urgent pandemic. The inter-category imbalance (ICI), i.e., the difference in data quantity among catego-
ries, belongs among such data characteristics, and its impact on DLMs has attracted much attention from 
 researchers16,17. At the same time, there are few investigations for intra-source imbalance (ISI), which means 
the ICI within the data collected from each medical facility. Therefore, to demonstrate the unreliable performance 
shown in the previous  study14 is related to the ISI, we organized two different COVID-19 datasets and analyzed 
how the ISI affects DLMs’ performance. The both datasets consist of positive and negative categories, and they 
are well-balanced between the two categories. The data sources differ between the two datasets (see Table 1). 
One dataset (Qata-COV19) was collected from different medical facilities, and every single facility only provided 
positive or negative images. As one of the largest open-access COVID-19 dataset, the Qata-COV19 dataset has 
been used to train and test deep learning models in many previous  studies18,19. In another dataset (BIMCV), 
positive and negative CXR images were collected from a single medical facility. The ROI hide-and-seek protocol 
was implemented on the two datasets to investigate the effect of the ISI on the deep learning models. Then, to 
evaluate the reliability of the deep learning models trained by each dataset, we made a cross-dataset test, which 
refers to training a deep learning model on one dataset and testing it on another dataset. Finally, we analyzed 
the relationship between the unreliability and the ISI according to the experimental results.

The outline of this paper is as follows. Firstly, we discuss the unreliability of deep learning models in terms of 
medical findings, as shown in the previous  study14. Then, we introduce the materials and methods for clarifying 
the relationship between the unreliability and the ISI. Finally, we summarized and analyzed the experimental 
results.

Materials and methods
Datasets
In this study, we used two CXR datasets collected from various public COVID-19 databases to investigate how 
the ISI of training data impacts the deep learning models for the COVID-19 diagnosis. The intra-source imbal-
anced dataset is Qata-COV19  dataset20, and the intra-source balanced dataset is BIMCV  dataset21,22. As shown 
in Table 1, the Qata-COV19 dataset contains 3761 positive CXR images from five different public facilities and 
3761 negative CXR images from seven other public facilities. In comparison, the BIMCV dataset contains 2461 
positive CXR images and 2461 negative CXR images from a single public facility, Valencian Region Medical 

Figure 1.  An overview of the previous  study14. CXR images with lung regions removed are utilized to 
investigate the reliability of deep learning models for COVID-19 classification. Deep learning models can 
achieve high accuracy when images with lung regions are removed, and the focused locations are outside the 
lung regions when deep learning models make a COVID-19 prediction. The result indicates the deep learning 
models are unreliable in terms of medical findings, but the cause of the unreliable performance is still unknown.
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ImageBank. In the Qata-COV19 dataset, one facility only provided CXR images in a single category. For exam-
ple, BIMCV+21 only provided positive images, and RSNA  dataset23 only provided negative images for the Qata-
COV19 dataset. The two datasets are both well balanced between positive and negative to avoid the influence of 
ICI. Since Qata-COV19 contains positive images not only from BIMCV but also from other medical facilities, 
the two dataset have different sizes. Examples of positive and negative images in each dataset are shown in Fig. 2. 
The important relationship between the Qata-COV19 dataset and the BIMCV dataset is that both shared the 
positive CXR images from BIMCV+ but did not share any negative CXR images.

In our study, the two datasets were used to clarify the influence of the ISI on the reliability of deep learning 
models. All the images were resized to 512× 512 pixels. The datasets were divided into training and testing 
subsets according to Table 1.

Experiments
As in Fig. 3, to clarify the relationship between the ISI of training data and the reliability of deep learning models, 
we re-implemented the ROI hide-and-seek  protocol14 on the Qata-COV19 dataset and the BIMCV dataset and 
trained and tested the VGG-16  model33 on the original datasets and the modified datasets separately.

At first, we re-implemented the ROI hide-and-seek  protocol14 to generate datasets. In this step, we used a 
pre-trained U-Net  model14 to segment the lung regions from the original images (Fig. 3a). According to the seg-
mented lung regions, bounding boxes around the lungs were also generated. Four types of modified images were 
generated by emphasizing and hiding the lung regions and the bounding boxes. Lungs-isolated images (Fig. 3b) 
and lungs-framed images (Fig. 3c) were generated by isolating the segmented lung regions and regions inside 
the bounding boxes from the original images, respectively; lungs-removed images (Fig. 3d) and lungs-boxed-out 
images (Fig. 3e) were generated by removing the segmented lung regions and regions inside the bounding boxes 
from the original images, respectively. We can see that original images, lungs-isolated images, and lungs-framed 
images are all with lung regions, while lungs-removed images are without lung regions. Lungs-boxed-out images 
are without lung regions or lung borders.

Table 1.  Our study used two image datasets (Qata-COV19, BIMCV); Qata-COV19 has images provided from 
various facilities and only for a single category, while BIMCV collected images from the same facility.

Dataset Category Data Source Train Test

Qata-COV1920

Positive

BIMCV+21

3383 378

MHH24

SIRM25

COVID-chestxray  dataset26

COVID-19 radiography  dataset27

Negative

RSNA23

3383 378

Padchest  dataset28

Guangzhou Women’s Medical  Center29

Indiana Network for Patient  Care30

MC  dataset31

Shenzhen  Hospital31

ChestX-ray14  dataset32

BIMCV
Positive BIMCV+21 2222 239

Negative BIMCV-22 2222 239

Figure 2.  Examples of positive and negative CXR images in the two datasets: (a) a positive CXR image in the 
Qata-COV19 dataset, (b) a negative CXR image in the Qata-COV19 dataset, (c) a positive CXR image in the 
BIMCV dataset, (d) a negative CXR image in the BIMCV dataset.
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A VGG-16 model pre-trained with ImageNet was used in this study. We used a global average pooling layer 
to replace the first fully-connected layer. The VGG-16 model was trained to classify the original images or modi-
fied CXR images into positive and negative classes. We tuned all the weights and biases in the VGG-16 model 
during the training step.

In the first experiment, we trained VGG-16 models by using original images and four types of modified 
images from the Qata-COV19 dataset separately to investigate the effect of lung regions on the performance of 
the VGG-16 model. And for investigating the effect when using an intra-source balanced dataset, we trained 
VGG-16 models by using original images and four types of modified images from the BIMCV dataset, separately.

In addition, a cross-dataset  test34,35 was used to evaluate the reliability of the models trained by different 
datasets. We trained a VGG-16 model using the original images from one dataset and then tested them on the 
authentic images from another dataset.

To evaluate the performance of the deep learning models, we utilized a receiver operating characteristics 
(ROC)  curve36 and the Area Under ROC curve (AUC).

Results
As in Fig. 4, the AUC values were all larger than 0.99 when the VGG-16 model was trained and tested on the 
original images or modified images from Qata-COV19. According to the ROC curves, the VGG-16 model 
achieved relatively high performance even when lung areas were removed or boxed out, which showed the same 
results as in the previous  study14. These results confirm the high risk of obtaining an unreliable deep learning 
model. As shown in Fig. 5, when using the lungs-removed images or lungs-boxed-out images from BIMCV, the 
AUC values degraded a lot. The results showed that image features inside the lung regions played a more impor-
tant role in classification using an intra-source balanced dataset. Such different results with different datasets 
demonstrate that the unreliable performance is related to the ISI.

As shown in Fig. 6a, when testing the BIMCV-trained model on the original CXR images from the Qata-
COV19 dataset, the AUC was nearly 0.5, and the performance was the same as a random classifier. The ROC 
curve shows that the model failed to classify the positive and negative images from BIMCV. The result demon-
strates lacking balance in data sources leads to unreliability. On the other hand, as shown in Fig. 6b, when testing 
the Qata-COV19-trained model on the original CXR images from the BIMCV dataset, the AUC was 0.8863, and 
the model trained by BIMCV was able to classify positive and negative CXR images in the Qata-COV19 dataset. 
Moreover, when testing the Qata-COV19-trained model on BIMCV dataset, the specificity was 0, which showed 
that all the images from the BIMCV dataset were classified into the positive class even if they were negative.

Figure 3.  Overview of the comparative experiment. ROI hide-and-seek protocol operated (a) original images 
from the Qata-COV19 dataset or the BIMCV dataset to emphasize and hide the lung regions, respectively. (b) 
lungs-isolated images and (c) lungs-framed images were generated by emphasizing the lung regions, while (d) 
lungs-removed images and (e) lungs-boxed-out images were generated by hiding the lung regions. The original 
datasets and the modified datasets were utilized to train and test a VGG-16 model separately.
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Discussion
Cross‑validation
To demonstrate the statistical significance of the experiments, we utilized cross-validation37, which uses differ-
ent portions of the data to train and test a model on different iterations, in the comparison experiments and the 
cross-dataset test. Cross-validation is a statistical technique for testing the performance of deep learning models 
that can help to avoid selecting bias.

To demonstrate the effect of lung regions on the deep learning performance, we ran a 5-folder cross-validation 
to compare the impact of lung regions when using Qata-COV19 dataset and BIMCV dataset. In the cross-vali-
dation, original images and lungs-boxed-out images were used to train and test a VGG-16 model separately. We 
compared the mean cross-validated ROC curves and 95% confidence intervals. As shown in Fig. 7, the models 
achieved 0.9983± 0.0015 and 0.9984± 0.0013 AUC values for the original images and the lungs-boxed-out 
images, respectively. Absence of the lung regions did not significantly affect the performance when using Qata-
COV19 for training and test. On the other hand, as shown in Fig. 8, when using BIMCV dataset, the model 
trained by lung-boxed-out images performed worse than the model trained by original images. The model 
trained by original images achieved 0.7339± 0.0454 AUC value and the model trained by lungs-boxed-out 
images achieved 0.5250± 0.0751 AUC value. Absence of lung regions significantly impacted the deep learning 
performance when using BIMCV dataset. Moreover, we found out the optimal cut-off  points38 of the ROC curves 
by maximizing sensitivity (True Positive Rate) plus specificity (True Negative Rate). The model trained by the 
original images and the lungs-boxed-out images from Qata-COV19 dataset both achieved more than 0.99 accu-
racy on the cut-off points. On the other hand, the model trained by the original images and the lungs-boxed-out 
images from BIMCV dataset achieved 0.68 and 0.55 accuracy on the cut-off points, respectively.

We also ran a 5-folder cross-validation for the cross-dataset test by using the original images from BIMCV 
and Qata-COV19 datasets. Based on the results of the cross-validation, the ROC curves and the 95% confidence 
intervals are given in Fig. 9. As a result, the model trained by the Qata-COV19 achieved 0.5018± 0.0171 AUC 
value on the BIMCV dataset and the model trained by the BIMCV achieved 0.8374± 0.0158 AUC value on the 
Qata-COV19 dataset. As for the accuracy, the model trained by images from Qata-COV19 and BIMCV achieved 

Figure 4.  ROC curves for the VGG-16 models trained and tested on the modified datasets from Qata-COV19: 
(a) original images, (b) lungs-isolated images, (c) lungs-framed images, (d) lungs-removed images, and (e) 
lungs-boxed-out images. The deep learning models achieved high performance, even with hidden lung regions.
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Figure 5.  ROC curves for the models trained and tested on the modified datasets from BIMCV: (a) original 
images, (b) lungs-isolated images, (c) lungs-framed images, (d) lungs-removed images, and (e) lungs-boxed-out 
images. The performance degraded a lot when lung regions were hidden.

Figure 6.  ROC curves for the cross-dataset test: (a) testing the Qata-COV19-trained model on the BIMCV 
dataset, (b) testing the BIMCV-trained model on the Qata-COV19 dataset. The model trained on original 
images from BIMCV dataset was able to classify original images from the Qata-COV19 dataset, while the model 
trained on original images from the Qata-COV19 dataset failed to classify original images from the BIMCV 
dataset.
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Figure 7.  Mean cross-validated ROC curves and 95% confidence intervals for the cross-validation in 
Qata-COV19 dataset: (a) original images, (b) lungs-boxed-out images. Absence of the lung regions did not 
significantly affect the performance.

Figure 8.  Mean cross-validated ROC curves and 95% confidence intervals for the cross-validation in BIMCV 
dataset: (a) original images, (b) lungs-boxed-out images. Absence of lung regions significantly impacted the 
deep learning performance. Red points are the cut-off points. Red points are the cut-off points.

Figure 9.  Mean cross-validated ROC curves and 95% confidence intervals for the cross-validation in the cross-
dataset test: (a) testing the Qata-COV19-trained model on the BIMCV dataset, (b) testing the BIMCV-trained 
model on the Qata-COV19 dataset. The model trained by BIMCV performed more reliable than the model 
trained by Qata-COV19 dataset. Red points are the cut-off points.
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0.51 and 0.76 accuracy on the cut-off point, respectively. The result significantly demonstrated the model trained 
by the BIMCV dataset performed more reliable than the model trained by the Qata-COV19 dataset.

Visualization
To provide intuitive explanations for the unreliable performance of the model trained on the Qata-COV19 
dataset, we utilized Local Interpretable Model-agnostic Explanations (LIME)39 method to visualize the basis of 
the predictions made by the VGG-16 models in the cross-dataset test. The LIME method can generate a readily 
interpretable model which is locally close to the deep learning model and highlight areas inside input images 
that contribute to predictions. We selected top-5 areas which contribute the most in the LIME results as the 
explanations for predictions.

Figure 10 shows the LIME explanations for classifying a positive case from BIMCV dataset. In this case, 
both of the models made a true prediction. As shown in Fig. 10a, the model trained by the Qata-COV19 dataset 
focused more on the marker and areas outside lung regions. In contrast, as shown in Fig. 10b, the model trained 
by the BIMCV dataset focused more inside the lung regions. Figure 11 shows the LIME explanations for a nega-
tive case from BIMCV dataset. The model trained by BIMCV made a true prediction but the model trained 
by Qata-COV19 dataset made a false prediction. As shown in Fig. 11a, the model trained by the Qata-COV19 
dataset focused on the marker and areas outside lung regions and classified this negative image into positive 
class. Since the markers represented the BIMCV data source, the results demonstrated the model trained by the 
Qata-COV19 dataset learned the features representing data sources but not the features representing COVID-19 
characteristics. The visualization results showed the features representing data sources can strongly impact the 
decisions of the model trained by intra-source imbalanced dataset.

Our study reveals that the ISI of training data can lead to an unreliable performance of deep learning models. 
The analysis of the comparative experiment and the cross-dataset test are as follows:

• The VGG-16 model performed well even when lung regions were hidden when using the Qata-COV19 
dataset. This result shows the same unreliable performance as shown in the previous  study14.

• The performance degraded when lung regions were hidden from the CXR images when using the BIMCV 
dataset. In particular, the ROC curve suggested nearly no capacity for classification when lung regions were 
boxed out. It demonstrated that the classification of CXR images in the BIMCV dataset relies on the features 
representing COVID-19 characteristics in lung regions, and the deep learning models are more reliable when 
using intra-source balanced datasets.

• The model trained by the Qata-COV19 dataset showed nearly no capacity to classify the CXR images in the 
BIMCV dataset because the AUC value was about 0.5. Moreover, according to the sensitivity and specific-
ity, all images from BIMCV were classified into the COVID-19 positive class. It is suggested that the model 
learned the features representing data characteristics of BIMCV from the positive images in the training step, 
so that the negative images from the BIMCV dataset were also classified into positive class in the test step. It 
revealed that when using intra-source imbalanced datasets, the prediction bases are the features representing 
each data source characteristics, but not the features representing COVID-19 characteristics, so the ISI can 
lead to an unreliable performance of deep learning models. Especially, as shown in the cross-dataset test, 

Figure 10.  The LIME explanations for classifying a positive case from BIMCV dataset. (a) The model trained 
by the Qata-COV19 dataset focused on the marker and classified it into positive class. (b)The model trained 
by the BIMCV dataset focused inside lung regions and classified it into positive class. Blue areas contributed 
positively to the predictions and green areas contributed negatively to the predictions.
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the model trained by intra-source imbalanced datasets can be totally unable to make a diagnosis for other 
datasets.

• The model trained by the BIMCV dataset achieved a relatively high performance when testing on the Qata-
COV19 dataset, which indicated it had better generalizability.

Many previous  studies18,19 used the Qata-COV19 dataset to train and test deep learning models and obtained high 
performance on the test subset, but few of them discussed about the reliability and generalizability. Our study 
revealed a risk of training bias when using such an intra-source imbalanced dataset, so researchers should raise 
their concerns about the intra-source balance when collecting training data to minimize the risk of unreliability.

Conclusion
We report that the intra-source imbalance of training data leads to the unreliability of deep learning methods by 
re-implementing the ROI hide-and-seek protocol on two differently collected CXR datasets. Using a cross-dataset 
test, we show that the model trained by intra-source imbalanced datasets might classify images based on the 
features characterizing data sources; hence, it lacks the capability to diagnose other datasets. As emphasized in 
the introduction, for the urgent COVID-19 pandemic, many previous studies collected as much data as possible 
from different medical facilities to train deep networks, but without enough validation. They might lack clinical 
applicability because of the intra-source imbalance of the training data. Our study reveals the risk of unreliability 
when using intra-source imbalanced datasets in deep learning methods, not only for COVID-19 classification 
but also for other medical applications. Therefore, when developing deep learning methods, we should ensure 
the intra-source balance of the datasets before they are applied to train deep learning models.

Data Availibility Statement
The datasets generated and/or analysed during the current study are available in the Kaggle repository and the 
IEEE dataport repository: https:// www. kaggle. com/ aysen deger li/ qatac ov19- datas et, https:// dx. doi. org/ 10. 21227/ 
w3aw- rv39, and https:// dx. doi. org/ 10. 21227/ m4j2- ap59.
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