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Drug designing is high‑priced and time taking process with low success rate. To overcome this 
obligation, computational drug repositioning technique is being promptly used to predict the possible 
therapeutic effects of FDA approved drugs against multiple diseases. In this computational study, 
protein modeling, shape‑based screening, molecular docking, pharmacogenomics, and molecular 
dynamic simulation approaches have been utilized to retrieve the FDA approved drugs against AD. 
The predicted MADD protein structure was designed by homology modeling and characterized 
through different computational resources. Donepezil and galantamine were implanted as standard 
drugs and drugs were screened out based on structural similarities. Furthermore, these drugs 
were evaluated and based on binding energy (Kcal/mol) profiles against MADD through PyRx tool. 
Moreover, pharmacogenomics analysis showed good possible associations with AD mediated genes 
and confirmed through detail literature survey. The best 6 drug (darifenacin, astemizole, tubocurarine, 
elacridar, sertindole and tariquidar) further docked and analyzed their interaction behavior through 
hydrogen binding. Finally, MD simulation study were carried out on these drugs and evaluated their 
stability behavior by generating root mean square deviation and fluctuations (RMSD/F), radius 
of gyration (Rg) and soluble accessible surface area (SASA) graphs. Taken together, darifenacin, 
astemizole, tubocurarine, elacridar, sertindole and tariquidar displayed good lead like profile as 
compared with standard and can be used as possible therapeutic agent in the treatment of AD after 
in‑vitro and in‑vivo assessment.

Alzheimer’s disease (AD), a neurodegenerative disorder usually characterized by memory loss in older  persons1,2. 
Globally, it has been observed that around 35 million people are affected by AD annually and this number is 
believed to double in next 20 years. In USA, 6.7 million American are living with dementia having age greater 
than  653. The etiology of AD is highly complex, however, there are some biomarkers including low levels of 
acetylcholine, β-amyloid (Aβ) deposits, tau-protein aggregation, neurofibrillary tangles (NFTs), oxidative stress, 
and dys-homeostasis of bio-metals are used for the diagnosis of  AD2,4. These available clinical therapeutics show 
only partial effectiveness in ameliorating the AD  symptoms5.

Drug development is time consuming and overpriced process however, computational techniques particularly 
drug repurposing is being used in the present  time6,7. Drug repositioning is basic computational approach to pre-
dict the therapeutic potential of known drugs against different disease by targeting different  receptors8,9. However, 
in present time, medical research emphases on the factors that are thought to contribute to AD development, 
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such as tau proteins and Aβ  deposits10. MAP kinase-activating death domain (MADD) protein is bulky a protein 
comprises 1647 amino acids and four different domains such as uDENN, cDENN, dDENN and death domain, 
respectively. Furthermore, six disordered regions are also present in MADD structure with different residues 
lengths. MADD protein plays a significant role in regulating cell proliferation, survival, and death through 
alternative mRNA splicing indifferent disease such as Deeah and  AD11. MADD protein also links TNF receptor 
superfamily member 1A (TNFRSF1A) with MAP kinase activation and important for regulatory role in physi-
ological cell  death12.

In the present study, Food and Drug Administration (FDA)-approved drugs were screened against AD by 
taking double standards donepezil and galantamine through shape-based screening technique. The screened 
hits underwent molecular docking analysis using PyRx against MADD protein. Moreover, pharmacogenomics 
analysis was carried out and best drug interacting with AD-medicated genes were shortlisted from the pool of 
selected drugs. The best-selected drugs were further examined by a docking procedure with AutoDock to check 
their binding affinities against the MADD protein. Finally, the best-generated docked complexes were further 
analyzed through molecular dynamics simulations to observe the structural stability through RMSD, RMSF, 
Rg, and SASA graphs.

Computational methodology
Retrieval of MADD protein sequence
The amino acid sequence of MADD protein having accession number Q8WXG6 (https:// www. unipr ot. org/ unipr 
ot/ Q8WXG6) was accessed from the UniProt  database13. MADD protein contains four major domains (uDENN, 
cDENN, dDENN and Death domain) and unstructured regions..

Modelling of MADD protein and domain assembly
The complete three-dimensional (3D) structure of MADD is not available in Protein Data  Bank14 (PDB; https:// 
www. rcsb. org/); therefore, homology modelling based method was used to predict the complete structure of 
MADD protein. There are different online protein prediction servers, however, trRosetta (transform-restrained 
Rosetta) is the most recent protein structure prediction server. trRosetta is a web-based platform for fast and 
accurate protein structure prediction, powered by deep learning and Rosetta (https:// yangl ab. nankai. edu. cn/ 
trRos etta/). However, to predict the complete MADD protein at once using server, its much difficult therefore, 
all four domains (uDENN, cDENN, dDENN and Death domain) and unstructured/disordered regions were 
modelled separately using trRosetta. After modelling of all four domains and unstructured/disordered regions, 
The Domain Enhanced MOdeling (DEMO; https:// zhang group. org/ DEMO/) was used to assemble all structure 
using default  parameters15. Demo is a method for automated assembly of full-length structural models of multi-
domain proteins. Starting from individual domain structures, DEMO first identify quaternary structure templates 
that have similar component domains by domain-level structural alignments using TM-align. Replica-exchange 
Monte Carlo simulations are used to assemble full-length models, as guided by the inter-domain distance pro-
files collected from the top-ranked quaternary templates. The final models with the lowest energy are selected 
from Monte Carlo trajectories, followed by atomic-level refinements using fragment-guided MD  simulations15.

Structure analysis of MADD protein
The assemble model structure of MADD protein was analyzed using different computational approaches to 
check its stability behavior. To do this, initially Ramachandran Plot Server (https:// zlab. umass med. edu/ bu/ rama/ 
index. pl) and MolProbity server (http:// molpr obity. bioch em. duke. edu/) were used to check the amino acids 
and overall protein conformation with respect to phi (φ) and psi (ψ) angles by generating Ramachandran graph. 
The stability behavior of target protein is dependent upon the occurrence of residues in allowed and disallowed 
regions. Furthermore, the ProtParam tool was employed to predict their theoretical PIs, extinction coefficients, 
aliphatic and instability indexes, and GRAVY  values16. The overall protein architecture and the statistical per-
centage values of α-helices, β-sheets, coils, and turns were retrieved from the online VADAR 1.8  server17. FRST 
serves to validate the energy of a protein  structure18. The server computes both an overall and a per-residue 
energy profile of a protein structure. Furthermore, Quality Model Energy Analysis (QMEAN) was employed to 
further evaluate the model quality (https:// swiss model. expasy. org/ qmean/). Another known model server SaliLab 
Model Evaluation Server (https:// modba se. compb io. ucsf. edu/ evalu ation/) was employed to check the predicted 
model quality based on TSVMod and Modeller values. Finally, the modelled structure was further refine using 
GalaxyWEB (https:// galaxy. seokl ab. org/) before going to utilize it for virtual screening, molecular docking, and 
dynamic simulation analysis. The graphical representation of model structure was done using Discovery Studio 
2.1  Client19, and UCSF Chimera  X20. Furthermore, after prediction of protein model Split-Statistical Potentials 
Server (http:// aleph. upf. edu/ spser ver/) was employed to identify the native conformation behavior and to evalu-
ate the accuracy of protein  folds21.

Shape‑based virtual screening of chemical scaffolds
The Swiss Similarity, an online platform that allows you to identify the similar chemical hits from Food and 
Drug Administration (FDA) and other libraries with respect to the reference template  structure22. In our cur-
rent research approach, couple of standard drugs; donepezil and galantamine are being used against  AD5,23,24 
were implanted and retrieved similar drugs hits based on structural similarity. The chemical structures of done-
pezil and galantamine were retrieved from Drug Bank (https:// go. drugb ank. com/) having accession numbers 
(DB00843 & DB00674) and used as template molecule to screen FDA-approved drugs. All the screened drugs 
were ranked according to their predicted similarity scoring values. The best screened drugs were sketched in 
ACD/ChemSketch and utilized for molecular docking experiments.

https://www.uniprot.org/uniprot/Q8WXG6
https://www.uniprot.org/uniprot/Q8WXG6
https://www.rcsb.org/
https://www.rcsb.org/
https://yanglab.nankai.edu.cn/trRosetta/
https://yanglab.nankai.edu.cn/trRosetta/
https://zhanggroup.org/DEMO/
https://zlab.umassmed.edu/bu/rama/index.pl
https://zlab.umassmed.edu/bu/rama/index.pl
http://molprobity.biochem.duke.edu/
https://swissmodel.expasy.org/qmean/
https://modbase.compbio.ucsf.edu/evaluation/
https://galaxy.seoklab.org/
http://aleph.upf.edu/spserver/
https://go.drugbank.com/


3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18022  | https://doi.org/10.1038/s41598-023-45347-1

www.nature.com/scientificreports/

Prediction of active binding sites of MADD protein
The Prankweb (http:// prank web. cz/), an online source that explores the probability of amino acids involved in 
the formation of active binding sites. Prankweb is a template-free machine learning method based on the pre-
diction of local chemical neighborhood ligandability centered on points placed on a solvent-accessible protein 
 surface25. Points with a high ligandability score are then clustered to form the resulting ligand binding sites. The 
binding pocket information was not available in PDB; therefore, active binding sites residues of MADD protein 
were predicted by using Prankweb. The death domain is highly significant domain with functional association 
with  AD12. Therefore, 3D modeled structure of death domain was utilized and predicts possible binding pockets 
with high probability values of amino  acids25.

Virtual screening using PyRx
Before conducting our docking experiments, all the screened drugs were sketched in ACD/ChemSketch tool and 
accessed in mol format. Furthermore, UCSF Chimera 1.10.1 tool was employed for energy minimization of each 
ligand having default parameters such as steepest descent and conjugate gradient steps 100 with step size 0.02 
(Å), and update interval was fixed at 10. In PyRx docking experiment, all screened drugs were docked with death 
domain of MADD using default  procedure26. Before, docking binding pocket of target protein was confirmed 
from Prankweb and literature data. In docking experiments, the grid box dimension values were adjusted as 
center_X = − 0.8961, Y = − 1.6716 and Z = 0.3732 whereas, size_X = 37.8273, Y = 36.5416 Z = 36.5756, respectively, 
with by default exhaustiveness = 8 value. The grid box size was adjusted on binding pocket residues to allows the 
ligand to move freely in the search space. Furthermore, the generated docked complexes were keenly analyzed 
to view their binding conformational poses at active binding site of MADD protein. Moreover, these docked 
complexes were evaluated based on the lowest binding energy (Kcal/mol) values and binding interaction pattern 
between ligands and target protein. The graphical depictions of all the docked complexes were accomplished by 
UCSF Chimera 1.10.1 and Discovery Studio (2.1.0), respectively.

Furthermore, another docking experiment was employed on best screened drugs against MADD protein using 
AutoDock 4.2  tool27. In brief, for receptor protein, the polar hydrogen atoms and Kollman charges were assigned. 
For ligand, Gasteiger partial charges were designated, and non-polar hydrogen atoms were merged. All the torsion 
angles for screened drugs were set free to rotate through the docking experiment. A grid map of 80 × 80 × 80 Å 
was adjusted on the binding pocket of MADD to generate the grid map and to get the best conformational state 
of docking. A total of 100 number of runs were adjusted using docking experiments. The Lamarckian genetic 
algorithm (LGA) and empirical free energy function were applied by taking docking parameters  default28. All 
the docked complexes were further evaluated on lowest binding energy (kcal/mol) values and hydrogen and 
hydrophobic interactions analysis using Discovery Studio (2.1.0) and UCSF Chimera 1.10.1.

Designing of pharmacogenomics networks
To design the pharmacogenomics network model for best-selected drugs, Drug Gene Interaction Databases 
(DGIdb) (https:// www. dgidb. org/) and Drug Signatures Database (DSigDB) (http:// dsigdb. tanlab. org/ DSigD 
Bv1.0/) were employed to obtain the possible list of different disease-associated genes. Furthermore, a detailed 
literature survey was performed against all predicted genes to identify its involvement in AD. Moreover, clumps 
of different diseases associated genes were sorted based on MADD and remaining disease-associated genes were 
eliminated from the dataset.

Molecular dynamics (MD) simulations
The best screened drugs-complexes having good energy values were selected to understand the residual back-
bone flexibility of protein structure; MD simulations were carried out by Groningen Machine for Chemicals 
Simulations (GROMACS 4.5.4  package29, with GROMOS 96 force  field30. The protein topology was designed by 
pdb2gmx command by employing GROMOS 96 force field. Moreover, simulation box with a minimum distance 
to any wall of 10 Å (1.0 nm) was generated on complex by editconf command. Moreover, box was filled with 
solvent molecules using gmx solvate command by employing spc216.gro water model. The overall system charge 
was neutralized by adding ions. The steepest descent approach (1000 ps) for protein structure was applied for 
energy minimization. For energy minimization the nsteps = 50,000 were adjusted with energy step size (emstep) 
0.01 value. Particle Mesh Ewald (PME) method was employed for energy calculation and for electrostatic and 
van der waals interactions; cut-off distance for the short-range VdW (rvdw) was set to 14 Å, whereas neighbor 
list (rlist) and nstlist values were adjusted as 1.0 and 10, respectively, in em.mdp  file31. This method permits the 
use of the Ewald summation at a computational cost comparable with that of a simple truncation method of 
10 Å or less, and the linear constraint solver (LINCS)32 algorithm was used for covalent bond constraints and the 
time step was set to 0.002 ps. Finally, the molecular dynamics simulation was carried out at 100 ns with nsteps 
50,000,000 in md.mdp file. Different structural evaluations such as root mean square deviations and fluctuations 
(RMSD/RMSF), solvent accessible surface areas (SASA) and radii of gyration (Rg) of back bone residues were 
analyzed through Xmgrace software (http:// plasma- gate. weizm ann. ac. il/ Grace/).

Results and discussion
The overall computational drug repositioning flowchart showed the multiple steps involved in this study (Fig. 1). 
A total of 631 drugs have been evaluated by employing different computational resources through PyRx screen-
ing, pharmacogenomics analysis, molecular docking, and MD simulations, respectively.

http://prankweb.cz/
https://www.dgidb.org/
http://dsigdb.tanlab.org/DSigDBv1.0/
http://dsigdb.tanlab.org/DSigDBv1.0/
http://plasma-gate.weizmann.ac.il/Grace/
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Protparam analysis of MADD protein
ProtParam (https:// web. expasy. org/ protp aram/) is an online tool which analyse the protein based on various 
physical and chemical parameters, respectively. The significant parameters include molecular weight (mg/mol), 
theoretical pI, amino acid composition, atomic composition, extinction coefficient, estimated half-life, instabil-
ity/aliphatic indexes, and grand average of hydropathicity (GRAVY), respectively. The generated theoretical pI 
value of MADD protein is calculated by the accumulation of average isotopic masses and pK values of linear 
amino acids present in the proteins. The prior published research data depicted that proteins are distributed 
across a wide range of pI values (4.31–11.78)33. The MADD protein exhibited 5.49 pI value which is comparable 
with the standard values (4.31–11.78). Moreover, the aliphatic index value also showed the stability and relative 
volume occupied by aliphatic side chain residues. The predicted physiochemical properties showed the reliability, 
efficacy, and stability of the MADD protein. The predicted values of both instability and aliphatic indexes 58.81 
and 74.96 are justifiable with standard values. The GRAVY value is the sum of hydropathy values of all residues 
in  protein34. The prior research reports justified that the GRAVY negative and positive values show the hydro-
philic and hydrophobic behavior of protein  structure33. The negative GRAVY value (− 0.517) of MADD protein 
indicates the hydrophilic behavior (Table 1).

Structural assessment of MADD protein
MAP kinase-activating death domain (MADD) is a human protein encoded by MADD  gene35. MADD, a bulky 
protein structure which comprises 1647 amino acids having molecular mass 183.303 KDa. The structural analysis 
showed that MADD contains four major domains such as uDENN (14-268 AA), cDENN (289-429 AA), dDENN 
(431-565 AA) and death domain (1340-1415 AA), respectively with disordered regions (https:// www. unipr ot. 
org/ unipr ot/ Q8WXG6) (Fig. 2).

VADAR analysis
VADAR is an online server which predict the protein volume, area, dihedral angle reports and statistical evalu-
ation. The generated MADD model structure showed different architectures related to α-helices, β-sheets, coils 
and turn, respectively. The overall protein structure analysis showed that MADD consists of 25% α-helices, 19% 
β-sheets, 55% coils and 20% turns, respectively. Moreover, Ramachandran plots and values depicted that 92.68% 

Figure 1.  Proposed mechanistic flowchart of repositioned drugs.

Table 1.  The physiochemical properties of MADD protein.

Protein parameters Predicted values

Number of amino acids 1165

Theoretical PI 5.49

Negatively charged residues (Asp + Glu) 157

Positively charged residues (Arg + Lys) 131

Total number of atoms 17,974

Instability index 58.81

Aliphatic index 74.96

GRAVY − 0.517

https://web.expasy.org/protparam/
https://www.uniprot.org/uniprot/Q8WXG6
https://www.uniprot.org/uniprot/Q8WXG6
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of amino acids were present in favored region with good accuracy of phi (φ) and psi (ψ) angles which showed 
the good accuracy of our predicted model.

Galaxy refine analysis
Galaxy-refine is an good source to resolve the ambiguities in the modelled structure based on different param-
eters such as GDT-HA, RMSD, MolProbity, clash score, poor rotamers and Rama favored,  respectively36. The 
initial predicted structure of MADD protein depicted MolProbity: 3.809–2.871, clash score: 88.4–47.8, poor 
rotamers: 5.7–1.4 and Rama favored: 72.4–85.8, respectively whereas, the values have been rectified to improve 
the modelled MADD structure (Supplementary Table S1). Moreover, the online Ramachandran graph server 
(https:// www. umass med. edu/ zlab/) generate both Ramachandran graphs which have been mentioned in Fig. 3. 
The comparative results showed that the Galaxy refine clearly improved the modelled MADD structure which 
can be further implied for structure and docking analysis.

Figure 2.  The overall protein structure of MADD protein. The figure showed the three main parts, the overall 
protein structure, its four core domains and couple of disordered regions.

https://www.umassmed.edu/zlab/
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FRST energy validation against MADD
The energy validation of predicted MADD structure was analyzed using FRST evaluation tool based on overall 
and a per-residue energy profile of a protein structure. The FRST energy calculation is composed of rapdf pair-
wise potential, solvation potential, backbone hydrogen bonds and torsion angle potential and composite score 
values (http:// prote in. cribi. unipd. it/ frst/). The rapdf  potential37 is a distance-dependent residue-specific all-atom 
probability discriminatory function. Similarly, solvation potential to likelihood for each of 20 amino acids to 
adopt a given relative solvent accessibility is used to derive the pseudo-energy38. The torsion angle potential 
(TORS) is derived from the propensities of each amino acid to adopt different combinations of (phi, psi) tor-
sion  angles39. The total energy is again summed over all individual contributions in a protein. In our generated 
MADD results, rapdf, solvation, torsion and composite FRST energies (Kcal/mol) which showed the stability 
of model structure (Table 2).

Quality model energy analysis
Qualitative Model Energy ANalysis (QMEAN) is a composite scoring function which derive both global and 
local absolute quality estimates based on one single model (https:// swiss model. expasy. org/ qmean/). The gener-
ated results showed that MADD protein exhibited − 6.64 value which is comparable with standard values (0,1). 
The prior data showed that different residues clumps showed lowest score value 0.1 which represents the quality 
assessment of predicted MADD model. However, most amino acids patches in the predicted model showed 
higher values > 0.6 depicts accurate and stable behavior of MADD protein. The blue peak showed highest pre-
diction value having best quality results (> 0.8) of predicted model. Moreover, the purple color represents also 
showed good accuracy of MADD protein with scoring values range from 0.6 to 0.8. However, the orange values 
showed the de-stable behavior of MADD protein with values less than 0.6. The overall results showed that pre-
dicted MADD model exhibited good stable behavior and could be used for further analysis (Fig. 4).

Native conformational behavior evaluation
After prediction the protein models, native conformation behavior is significant parameter is to evaluate the 
accuracy of protein folds. SPS server (http:// aleph. upf. edu/ spser ver/ index. php/ init. html), is a knowledge-based 
scoring functions used for correct folding of proteins, stability of mutant proteins, and assess outcomes of dock-
ing experiments. The generated results were evaluated based on five different parameters such as PAIR, ES3DC, 
ECOMB, ELOCAL, and E3DC respectively. The PAIR and ES3DC parameters are focused on amino acid frequen-
cies along distances and their environments such as hydrophobicity of each amino acid, solvent accessibility, and 
secondary structure, respectively. Figure 5A, B showed that residues fluctuations with respect to z-score values. 
In PAIR parameters analysis, residues showed stable frequency throughout the protein structure except amino 

Figure 3.  Ramachandran graphs of predicted MADD protein.

Table 2.  The energy evaluation of MADD protein.

Protein energy parameters Predicted scores (Kcal/mol)

Rapdf energy − 19,038.2

Solvation energy 9.04

Torsion energy − 50.96

Composite FRST energy − 60,911.62

http://protein.cribi.unipd.it/frst/
https://swissmodel.expasy.org/qmean/
http://aleph.upf.edu/spserver/index.php/init.html
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acids at positions 58, 60, 174, 696 and 1100, respectively. The graph line remains stable at center value 0 with little 
deviations range from 2 and − 2. In ES3DC analysis in correlation with Z-score, the generated graph line (yellow) 
showed high fluctuations at the terminal part of MADD protein. However, the average value ranges from 3 to 
− 3 in the energy folding graph. Our results depicted that MADD protein exhibited hydrophobicity and solvent 
accessibility properties, respectively. Moreover, both E3DC and ELOCAL parameters are also implicated on 
MADD protein based on amino acid frequencies along distances of pairs referred by the hydrophobicity of the 
amino acids and the rest of their environments, whereas ECOMB is combinatorial scores of all three parameters 
such as ES3DC, ELOCAL and E3DC, respectively. Figure 5C displayed the residual fluctuations graph at different 
positions in the MADD structure whereas, ELOCAL parameter showed less fluctuations based on Z-score values 
(Fig. 5D). In combine effects, the ECOMB parameter exhibited stable behavior and good folding of model MADD 
protein. The fluctuation peaks were range from 0 to 3, however, at various position range raised up to 4 (Fig. 5E).

Binding pocket analysis of MADD protein
Generally, binding pocket is the core position of ligands in the active region of  protein40. Prankweb is a novel 
machine learning method for prediction of ligand binding sites inside the protein  structure41. The predicted 
results showed five different binding pockets with different scoring values 15.4, 4.42, 3.68, 2.44 and 1.41, respec-
tively. The pocket-1 exhibited high score value 15.4 as compared to other binding pockets and constitutes Met-
1004, Ile-1005, Arg-1007, Tyr-1008, Leu-1009, Leu-1011, Leu-1019, Glu-1020, Glu-1023, Leu-1026, Leu-1027, 
Leu-1030, Leu-1055, Lys-1058, Ser-1059, His-1060, and Ile-1061 amino acids. Soluble Accessible Surface (SAS) 
area represents the area having propensity to interacts with neighboring atoms. The pocket 1 showed good SAS 

Figure 4.  QMEAN Quality assessment of MADD protein.

Figure 5.  (A–E) SPS analysis of MADD protein to predict their folding and native conformation pattern.
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value 152 as compared to other binding pockets values (66, 49, 28 and 18, respectively) with different amino acids 
of death domain of MADD protein. Moreover, the probability value of pocket 1 was also better as compared to 
other probabilities values (Fig. 6A, B).

Shape based screening and retrieval of similar FDA approved drugs
In drug-repositioning approach, shape-based screening, pharmacogenomics and molecular docking simulation 
are significant parameters to predict the possible drugs from FDA approved medications by considering protein 
 targets5,42. Donepezil and galantamine were used as standard drug against AD and used as template to screen 
FDA approved drug having similar skeleton similarity. In our computational results, Swiss-Similarity results 
showed 282 drugs were retrieved with donepezil and 351 against galantamine. The scoring values FDA approved 
drugs based on structural similarity scoring values range from 1.000 to 0.010 and 1.000 to 0.134 for donepezil 
and galantamine, respectively (Supplementary Tables S2 and S3). The screened drugs were ranked based on 
similarity scoring values, ranged for 0–1. The 0 value represents dissimilarity between compounds whereas, 1 
is used for highly identical compounds in screening  approach5. In our computational results, drugs depicted 
good similarity scoring values range from 1 to 0.111. In donepezil screening results, DB07701 and DB3393 were 
exhibited scoring values 0.999 and 0.837, respectively. Furthermore, in galantamine screening results, it has been 
observed that DB00318 (0.979), DB01466 (0.977), and DB11490 (0.974) showed scoring values and DB14703 
depicted lowest structure similarity result 0.134. The top 100 screened drugs from each standard (donepezil and 
galantamine) were selected for molecular docking analysis to predict the most suitable candidate having good 
binding affinity values against MADD protein.

Virtual screening using PyRx
PyRx is a virtual screening software for computational drug discovery that can be used to screen libraries of 
compounds against potential drug targets. In PyRx, donepezil-MADD docking results, among 100 screened 
drugs (Table S4), 72 drugs showed higher docking energy values as compared to standard donepezil (Table 3). 
Similarly, In PyRx, galantamine-MADD docking results, among 100 screened drugs (Table S5), 67 drugs showed 
higher docking energy values as compared to standard galantamine (Table 4).

Pharmacogenomics analysis
Based on swiss similarity and virtual screening result, the selected drugs further undergo for pharmacogenomics 
analysis to check their possible interaction with genes encoded proteins and their association with AD. Multiple 
reports also justify this approach as worthwhile to predict the possible drug having repositioned  functionality5,12. 
All the screened drug from both standard (donepezil and galantamine) exhibited good interaction scoring values 
with predicted genes which showed good correlation with AD. From donepezil screening, our results showed 
that 10 from 35 drugs exhibited good interaction scoring values and association with AD. The darifenacin 
showed good interaction scoring values with CHRM3 (0.85), CHRM2 (0.38), CHRM1 (0.29) and CYP2D6 (0.04) 
which have correlation with AD. The other drug astemizole showed interaction with multiple genes (14) which 
have association with multiple diseases. The 9 genes such as CYP2J2, HPSE, ABCB1, PPARD, CYP2D6, IDH1, 
CYP3A4, AR, and TP53 were directly associated with AD. The predicted results showed that astemizole showed 
highest interaction score 0.90 as compared to other genes. In tubocurarine gene network, 5 genes were interacted 
and among these four 2 (CHRNA2 and KCNN2) genes were showed interaction with AD. Both CHRNA2 and 
KCNN2 genes exhibited good interaction scoring values 6.37 and 4.24, respectively. Another important screened 

Figure 6.  (A) Predicted binding pockets represented by graphs lines and scoring values of death domain of 
MADD protein. (B) the predicted model of death domain and core part has been depicted in purple color in 
surface format.
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drug which exhibited good interaction prediction with AD is aripiprazole through interaction with different 
genes. The drug-gene association analysis showed that out of 14 genes, eleven (DRD2, HTR1A, ANKK1, SH2B1, 
HTR2A, CNR1, FAAH, HTR1B, HTR2C, ABCB1, CYP2D6) possessed good interaction scoring values and are 
directly involves in AD.

Fluspirilene-gene interactions analysis also showed their intimation with AD by targeting multiple genes. 
The predicted results showed that six gene such as DRD2, HTR1E, XBP1, HTR2A, HTR1A, and PPARD were 
showed their association with AD with different interaction scoring values. In elacridar-genetic complex, two 
genes ABCG2 (1.54) and ABCB1 (0.27) were observed having showed their interaction with AD. Another impor-
tant screened drug was sertindole which showed interactions multiple genes involves in AD and other diseases. 
A total of 17 genes were observed showed interaction with sertindole and from 17, eight genes (DRD2 (0.15), 
HTR2A (0.14), HTR2C (0.17), HTR1E (0.1), HTR1A (0.03), HTR1B (0.05), CYP2D6 (0.01), CYP3A4 (0.01)) 
showed association with AD with different interaction scoring values. Tariquidar interacted with ABCB1 and 
ABCG2 with scoring values 0.66 and 1.03, respectively. Sarizotan is another screened drug shows interactions 
with HTR1A (0.91) and DRD2 (0.36) having good interaction score values with AD. Similarly, fipexide interacted 
with CYP2D6 (0.03) and CYP3A4 (0.02) also depicted good correlation with AD (Table 5).

In galantamine pharmacogenomics results, forty screened drugs having good similarity score has been pre-
dicted having possible correlation with AD mediated genes. However, from forty, eight screened drugs have been 
elected having good interaction scoring values as well as exhibited good association with AD mediated genes. 
Morphine shows interactions with 24 genes having association with different diseases and only seven genes pos-
sessed association with AD. These seven genes PDYN (4.11), OPRK1 (0.23), PER1 (2.05), HMOX2 (2.05), ABCB1 
(0.09), CYP2D6 (0.01), DRD2 (0.02) may predict the good therapeutic behavior of morphine as an anti-AD drug. 
Codeine is another screened drug extracted through galantamine that could be use as repositioned drug against 
AD. Our drug-gene predicted results showed that eight genes OPRD1 (1.22), OPRM1 (0.58), OPRK1 (0.63), 
UGT2B7 (0.76), ABCB1 (0.13), CYP3A4 (0.02), CYP2D6 (0.01), and AR (0.01) were interacted having different 
interaction values. The literature mining showed that four genes among eight were involved in AD. Quinine-gene 
interaction analysis showed that CYP3A7 (1.27), SLC29A4 (0.64), COP1 (1.27), IL2 (0.6), G6PD (0.18), ABCB1 
(0.03), CYP3A4 (0.01), and CYP2D6 (0.01). Moreover, from gene literature mining it has been observed that 

Table 3.  Screening of FDA approved drugs using donepezil. Significant values are in [bold].

Drugbank IDs Drugs Binding affinity (Kcal/mol) Drugbank IDs Drugs
Binding affinity (Kcal/
mol)

DB00496 Darifenacin − 8.1 DB08927 Amperozide − 7.7

DB00637 Astemizole − 8.4 DB08950 Indoramin − 8.6

DB01199 Tubocurarine − 8.5 DB09063 Ceritinib − 8

DB01238 Aripiprazole − 7.9 DB09083 Ivabradine − 7.5

DB02929 K201 free base − 7.7 DB11376 Azaperone − 7.7

DB04835 Maraviroc − 7.7 DB11732 Lasmiditan − 8.8

DB04842 Fluspirilene − 8.5 DB11793 Niraparib − 8.1

DB04872 Osanetant − 9.2 DB12082 Vesnarinone − 8.2

DB04881 Elacridar − 10.2 DB12096 PF-05175157 − 8.3

DB05171 E-2012 − 7.9 DB12289 DB12289 − 8.6

DB05414 Pipendoxifene − 8.4 DB12341 LY-2456302 − 8.3

DB05422 OPC-14523 − 7.5 DB12408 PF-03635659 − 8.4

DB05713 LY-517717 − 9.1 DB12731 Daporinad − 7.8

DB06144 Sertindole − 8.1 DB12837 UK-500001 − 9.2

DB06240 Tariquidar − 10.4 DB12867 Benperidol − 8.3

DB06306 Onalespib − 7.9 DB12886 GSK-1521498 − 10.3

DB06401 Bazedoxifene − 8.4 DB12981 XL-888 − 8.1

DB06446 Dotarizine − 8.1 DB13080 Roluperidone − 8

DB06454 Sarizotan − 9.2 DB13276 Idanpramine − 8.8

DB06555 Siramesine − 9.3 DB13310 Ormeloxifene − 7.8

DB16182 CXD101 − 8.9 DB13393 Emetine − 7.8

DB15398 Dihydrocapsiate − 5.7 DB13403 Oxypertine − 7.9

DB15688 Vazegepant − 11.1 DB13511 Clebopride − 7.4

DB14641 Estriol tripropionate − 7.3 DB13687 Niaprazine − 7.4

DB08810 Cinitapride − 7.6 DB13766 Lidoflazine − 8.8

DB15120 GSK-239512 − 8.3 DB13790 Fipexide − 7.5

DB15377 ATB-346 − 7.7 DB13865 Dehydroemetine − 7.6

DB16080 Acolbifene − 9 DB13954 Estradiol cypionate − 8

DB16124 Chiauranib − 9.2 DB00843 Donepezil − 7.4
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5 genes were involved in AD. Similarly, atropine, nalbuphine, quinidine, volinanserin and vernakalant are also 
screened drugs interacting with different genes which are linked with AD (Table 6).

Molecular docking using autodock
Docking energy analysis against death domain of MADD
The selected drugs-death domain docked complexes were analyzed based on lowest binding energy values 
(Kcal/mol) and hydrogen/hydrophobic interaction analyses. Results showed that all drugs showed good bind-
ing energy values (Kcal/mol) and binds within the active site with appropriate conformational poses (Table 7). 
Docking energy values is most significant parameter to screen and evaluate the drugs in binding with target 
 proteins5,203–206. Among all, six drugs including darifenacin (− 7.59 kcal/mol), astemizole (− 7.19), tubocurarine 
(− 8.26), elacridar (− 7.72), sertindole (− 7.58) and tariquidar (− 8.42) showed higher than − 7 (kcal/mol) dock-
ing energy values. The ligand efficiency is a useful metric for lead selection using computational  resources207. 
Ligand efficiency is a way of normalizing the potency and MW of a compound to provide a useful comparison 
between compounds with a range of MWs and activities. In our docking results, the predicted ligand efficiency 
(LE) results, showed that all drugs exhibited good LE values, whereas lowest value is considered as most signifi-
cant compared to other. The comparative results showed that Tubocurarine, Elacridar and Tariquidar exhibited 
− 0.18 value which was lowest compared to rest of all drugs.

Another significant parameter in drug analysis is inhibition constant (Ki). Autodock uses the binding energy 
(Kcal/mol) to calculate the inhibition constant. The binding energy is the free energy change for the protein-
inhibitor interaction (ΔG). This is used to determine the inhibition constant (ki) which is, in turn, the dissociation 
constant (Kd) of the protein-inhibitor complex. In our predicted results, morphine, codeine, quinine, darifenacin, 

Table 4.  Screening of FDA approved drugs using galamtamine against MADD. Significant values are in 
[bold].

Drugbank IDs Drugs Binding affinity (Kcal/mol) Drugbank IDs Drugs
Binding affinity 
(Kcal/mol)

DB00295 Morphine − 7.1 DB06444 Dexanabinol − 6.8

DB00318 Codeine − 7.4 DB06578 Tonabersat − 7.5

DB00424 Hyoscyamine − 7.1 DB07905 Hypothemycin − 7.6

DB00468 Quinine − 7.2 DB09039 Eliglustat − 7

DB00497 Oxycodone − 7.5 DB09184 Edivoxetine − 6.7

DB00521 Carteolol − 6.7 DB09196 Lubazodone − 6.7

DB00572 Atropine − 7 DB09209 Pholcodine − 7.7

DB00611 Butorphanol − 7.3 DB11181 Homatropine − 7

DB00654 Latanoprost − 6.7 DB11411 Fenprostalene − 6.9

DB00688 Mycophenolate mofetil − 7.2 DB11490 Nalorphine − 6.8

DB00704 Naltrexone − 7.6 DB11711 Navarixin − 7.7

DB00844 Nalbuphine − 7.6 DB12057 ORM-12741 − 7.3

DB00905 Bimatoprost − 7.5 DB12179 Secoisolariciresinol − 6.6

DB00908 Quinidine − 6.9 DB12464 Bevenopran − 7.5

DB00921 Buprenorphine − 6.8 DB12543 Samidorphan − 6.8

DB00973 Ezetimibe − 7.8 DB12637 Onapristone − 7.5

DB01183 Naloxone − 7.2 DB12884 Lavoltidine − 7.4

DB01192 Oxymorphone − 7.3 DB13471 Nalfurafine − 8

DB01229 Paclitaxel − 7.6 DB13718 Hydroquinine − 7.3

DB01346 Quinidine barbiturate − 7.2 DB14035 Englitazone − 8

DB01450 Dihydroetorphine − 7.4 DB14881 Oliceridine − 7

DB01466 Ethylmorphine − 7.1 DB15241 Methylsamidorphan − 7.3

DB01469 Acetorphine − 7.2 DB15300 Hydroquinidine − 7.2

DB01477 Codeine methylbromide − 7 DB15439 Navoximod − 7.2

DB01480 Cyprenorphine − 7 DB15495 Rocaglamide − 7.2

DB01497 Etorphine − 7.5 DB15496 Didesmethylrocaglamide − 7.8

DB01505 Etoxeridine − 5.7 DB16243 TBA-7371 − 7.7

DB01512 Hydromorphinol − 6.7 DB16287 Penequinine, Penehyclidine − 7.2

DB01548 Diprenorphine − 7.2 DB16351 Volinanserin − 6.6

DB01551 Dihydrocodeine − 7.5 DB04865 Omacetaxine mepesuccinate − 7.4

DB01565 Dihydromorphine − 6.7 DB04861 Nebivolol − 7.7

DB01573 Benzylmorphine − 8.3 DB06217 Vernakalant − 7

DB02205 Rutamarin alcohol − 7.1 DB06230 Nalmefene − 7.3

DB04509 N-Methylnaloxonium − 7.9 DB00674 Galantamine − 6.7
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Drugs Genes Interaction score Disease associations Refs.

Darifenacin

CHRM3 0.85 AD 43

CHRM4 0.54 Schizophrenia 44

CHRM5 0.5 Schizophrenia 45

CHRM2 0.38 AD 46

CHRM1 0.29 AD 47

CYP2D6 0.04 AD 48

Astemizole

EED 9.09 Cohen-Gibson 49

HRH1 0.35 Allergic rhinitis 50

CYP2J2 0.91 AD 51

KCNH1 0.76 Epilepsy 52

HPSE 0.7 AD 53

KCNH2 0.15 Short QT syndrome 54

ABCB1 0.02 AD 55

PPARD 0.03 AD 56

CYP2D6 0.01 AD 57

IDH1 0.01 AD 58

GMNN 0.01 Meier-Gorlin syndrome 59

CYP3A4 0.01 AD 57

AR 0.01 AD 60

TP53 0.01 AD 61

Tubocurarine

ZACN 12.73 Neoplasm 62

CHRNA2 6.37 AD 63

KCNN2 4.24 AD 64

KCNN3 3.18 Neoplasm metastais 65

KCNN1 2.55 Leukemia 66

Aripiprazole

TAAR6 7.96 Bipolar Disorder 67

DRD2 0.83 AD 68

HTR1A 0.38 AD 69

MC4R 1.11 Obesity 70

ANKK1 0.99 AD 68

SH2B1 0.88 AD 71

HTR2A 0.22 AD 72

HTR1D 0.2 Adenocarcinoma 73

CNR1 0.41 AD 74

FAAH 0.38 AD 75

HTR1B 0.18 AD 76

HTR2C 0.12 AD 72

ABCB1 0.03 AD 55

CYP2D6 0.01 AD 57

Maraviroc CCR5 27.58 AD 77

Fluspirilene

DRD2 0.13 AD 68

HTR1E 0.09 AD 72

XBP1 0.15 AD 78

HTR1D 0.05 Adenocarcinoma 73

HTR2A 0.04 AD 72

HTR1A 0.03 AD 69

HRH1 0.02 Allergic rhinitis 50

PPARD 0.02 AD 56

THPO 0.04 Amegakaryocytosis 79

NPSR1 0.03 Allergic asthma 80

Osanetant

TACR3 3.86 Hypogonadotropic hypogonadism 81

TACR2 3.03 AD 82

TACR1 0.59 Bipolar 83

Elacridar
ABCG2 1.54 AD 84

ABCB1 0.27 AD 55

LY-517717 F10 5.79 Factor X Deficiency 85

Continued
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Drugs Genes Interaction score Disease associations Refs.

Sertindole

DRD2 0.15 AD 68

HTR2A 0.14 AD 72

HTR2C 0.17 AD 72

HTR6 0.31 Schizophrenia 86

KCNH2 0.08 Short QT syndrome 54

ADRA1D 0.21 Crohn Disease 87

HTR1E 0.1 AD 72

HTR1D 0.06 Adenocarcinoma 73

ADRA1B 0.13 Seizures 88

HTR1A 0.03 AD 69

ADRA1A 0.12 Schizophrenia 89

HTR1F 0.12 Schizophrenia 90

HTR1B 0.05 AD 76

HRH1 0.02 Allergic rhinitis 50

DRD4 0.05 Mental Depression 91

CYP2D6 0.01 AD 48

CYP3A4 0.01 AD 57

Tariquidar
ABCB1 0.66 AD 55

ABCG2 1.03 AD 84

Onalespib
ALK 0.56 Neoplasms 92

HSP90AA1 0.23 Breast Carcinoma 93

Bazedoxifene

IL6ST 10.61 Rheumatoid Arthritis 94

IL6R 3.54 Rheumatoid Arthritis 95

ESR2 0.69 Breast neoplasm 96

ESR1 0.32 Breast neoplasm 96

Sarizotan
HTR1A 0.91 AD 69

DRD2 0.36 AD 68

CXD101 HTT 0.32 Huntington Disease 97

Acolbifene
ESR2 0.46 Breast neoplasm 96

ESR1 0.32 Breast neoplasm 96

Chiauranib

AURKB 0.27 Liver carcinoma 98

FLT1 0.19 Breast neoplasm 99

FLT4 0.18 Milroy Disease 100

KDR 0.12 Hemangioma 101

Amperozide
DRD1 0.19 Bipolar Disorder 102

CYP3A4 0.04 AD 57

Indoramin

ADRA1A 0.59 Schizophrenia 89

ADRA1D 0.45 Crohn Disease 87

ADRA1B 0.27 Seizures 88

Ceritinib

EML4 4.77 Lung Carcinoma 100

ALK 4.37 Neoplasms 92

TSSK1B 1.99 Systemic Scleroderma 103

NPM1 1.52 Leukemia 104

ROS1 0.73 Adenocarcinoma of lung 105

IGF1R 0.42 Fetal Growth Retardation 106

INSR 0.26 Donohue Syndrome 107

MAP2K1 0.21 Cardio-facio-cutaneous syndrome 108

SRC 0.18 Thrombocytopenia 109

CYP3A4 0.01 AD 57

FLT3 0.06 Leukemia 110

ABCB1 0.04 AD 55

Ivabradine

HCN3 4.24 Diabetes Mellitus 111

MALAT1 4.24 Breast neoplasm 112

HCN1 3.18 Epileptic encephalopathy 113

HCN4 2.55 Sick Sinus Syndrome 114

CYP3A4 0.01 AD 57

Continued
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astemizole, nalbuphine, quinidine, aripiprazole, fluspirilene, elacridar, sertindole, vernakalant, sarizotan, fipexide 
and volinanserin exhibited good inhibition constant value on comparison with standard value 80.08 µM208. The 
intermolecular energy is the attractive intermolecular forces between particles that tend to draw the particles 
together and evaluates based on minimum energy values. According to AutoDock, the binding energy is the 
sum of the intermolecular forces acting upon the receptor-ligand  complex209.

Here, ΔG gauss: attractive term for dispersion of two gaussian functions, ΔGrepulsion: square of the dis-
tance if closer than a threshold value, ΔGhbond: ramp function also used for interactions with metal ions, 
ΔGhydrophobic: ramp function, ΔGtors: proportional to the number of rotatable bonds.

(1)�Gbinding = �Gvdw + �Gelec + �GHbond + �Gdesolv + �Gtorsional

Drugs Genes Interaction score Disease associations Refs.

Lasmiditan HTR1F 10.97 Schizophrenia 90

Niraparib

PARP2 6.06 Lipodystrophy 115

SLFN11 4.71 Malignant Neoplasms 116

PARP1 3.54 Breast neoplasm 117

BRCA1/2 1.41 Breast neoplasm 118

ATR 0.79 Seckel syndrome 119

ATM 0.13 Ataxia Telangiectasia 120

PTEN 0.07 Hamartoma Syndrome 121

IDH1 0.04 AD 58

Vesnarinone

THBS1 2.27 Diabetic Retinopathy 122

NT5E 1.3 Calcification of Joints 123

FAS 0.96 Autoimmune Lymphoproliferative Syndrome 124

PDE3A 0.4 Brachydactyly 125

CYP3A4 0.02 AD 57

KCNH2 0.03 Short QT syndrome 54

TP53 0.05 AD 61

PF-05175157 ACACB 21.22 Obesity 126

LY-2456302
OPRM1 0.17 Alcoholic Intoxication 127

OPRD1 0.33 Alcoholic Intoxication 127

Daporinad NAMPT 42.43 Colorectal Carcinoma 128

Benperidol

DRD4 0.33 Mental Depression 91

CYP2D6 0.04 AD 48

DRD2 0.12 AD 68

GSK-1521498 OPRM1 0.51 Alcoholic Intoxication 127

XL-888

NRAS 0.66 Colorectal Carcinoma 129

HSP90AB1 0.42 Pulmonary Fibrosis 130

BRAF 0.33 Melanoma 94

Emetine

HIF1A 0.19 Hypertensive disease 131

MTOR 0.1 Focal cortical dysplasia 132

ATXN2 0.05 Spinocerebellar Ataxia-II 133

ATAD5 0.04 Carcinoma, Ovarian Epithelial 134

AR 0.01 Malignant neoplasm of prostate 135

Clebopride CYP2D6 0.11 AD 48

Lidoflazine

SLC29A1 1.14 Colorectal Carcinoma 136

KCNH2 0.19 Short QT syndrome 54

SCN3A 0.27 Epilepsies 137

CYP2D6 0.03 AD 48

Fipexide

CYP2D6 0.03 AD 48

CYP3A4 0.02 AD 57

CYP1A2 0.03 Liver carcinoma 138

CYP2C19 0.03 Depressive disorder 139

Estradiol cypionate
ESR1 0.16 Breast neoplasm 96

AR 0.04 Malignant neoplasm 135

Table 5.  Pharmacogenomic analysis of donepezil.
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Drugs Genes Interaction score Disease associations Refs.

Morphine

PDYN 4.11 AD 140

SYP 4.11 Mental retardation 141

OPRD1 0.32 Alcoholic Intoxication 127

COMT 1.09 Bipolar Disorder 142

UGT2B7 0.78 Malignant neoplasm 143

RHBDF2 1.37 Esophageal cancer 144

OPRM1 0.2 Alcoholic Intoxication 127

OPRK1 0.23 AD 145

TAOK3 2.05 Neoplasm Metastasis 146

PER1 2.05 AD 147

HMOX2 2.05 AD 148

LPAR2 1.37 Breast neoplasm 149

KCNJ6 0.82 Alcoholic Intoxication, Chronic 150

GRM1 0.82 Schizophrenia 151

ABCB1 0.09 AD 55

F2R 0.26 Stomach neoplasm 152

GCG 0.26 Diabetes Mellitus 153

ITGAM 0.41 Lupus Erythematosus 154

NR4A1 0.41 Pancreatic neoplasm 155

CCR2 0.37 Pulmonary Fibrosis 156

SLC22A1 0.27 Liver carcinoma 157

CCKBR 0.2 Panic Disorder 158

CYP2D6 0.01 AD 57

DRD2 0.02 AD 68

Codeine

OPRD1 1.22 Alcoholic Intoxication 127

OPRM1 0.58 Alcoholic Intoxication 127

OPRK1 0.63 AD 145

UGT2B7 0.76 Neoplasm urinary bladder 143

ABCB1 0.13 AD 55

CYP3A4 0.02 AD 57

CYP2D6 0.01 AD 57

AR 0.01 Prostate neoplasm 135

Hyoscyamine CHRM5 0.99 Schizophrenia 45

Quinine

CYP3A7 1.27 Malignant Neoplasms 159

SLC29A4 0.64 AD 160

COP1 1.27 Neoplasms 161

IL2 0.6 AD 162

G6PD 0.18 Anemia 163

ABCB1 0.03 AD 55

CYP3A4 0.01 AD 57

CYP2D6 0.01 AD 57

Oxycodone

RHBDF2 4.71 Esophageal cancer 144

COMT 2.87 Bipolar Disorder 142

OPRD1 0.65 Alcoholic Intoxication 127

OPRM1 0.57 Alcoholic Intoxication 127

OPRK1 0.56 AD 145

UGT2B7 0.67 Neoplasm of urinary bladder 143

NR1I3 1.01 Drug-Induced Liver Disease 164

CYP3A5 0.21 Malignant neoplasm of prostate 165

ABCB1 0.09 AD 55

Carteolol
ADRB1 3.11 Hypertensive disease 166

ADRB2 1.61 Asthma 167

Continued
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Drugs Genes Interaction score Disease associations Refs.

Atropine

GUCA2A 3.54 Carcinogenesis 168

CHRM5 0.66 Schizophrenia 45

F2R 0.66 Stomach neoplasm 152

CHRM2 0.64 AD 46

CHRM4 0.54 Schizophrenia 44

CHRM1 0.43 AD 47

CYP3A5 0.1 Prostate neoplasm 165

CHRM3 0.37 AD 43

AR 0.01 Prostate neoplasm 135

Butorphanol

OPRD1 1.54 Alcoholic Intoxication 127

OPRK1 1.33 AD 145

OPRM1 0.88 Alcoholic Intoxication 127

CYP3A4 0.02 AD 57

CYP1A2 0.03 Liver carcinoma 138

CYP2C9 0.04 Unipolar Depression 169

CYP2C19 0.04 Depressive disorder 139

Latanoprost

PTGFR 19.97 Breast Carcinoma 170

ABCC4 1.46 Malignant neoplasm of prostate 171

PTGS1 0.64 Hyperalgesia 172

Mycophenolate mofetil

IMPDH2 1.18 Neoplasm Metastasis 173

ITGB2 1.12 Leukocyte adhesion deficiency type 1 174

IMPDH1 1.06 Neoplasm Metastasis 173

CSF2 0.78 Rheumatoid Arthritis 175

AR 0.01 Prostate neoplasm 135

Naltrexone

OPRD1 1.47 Alcoholic Intoxication 127

OPRM1 1.35 Alcoholic Intoxication 127

OPRK1 0.8 AD 145

GCG 0.99 Diabetes Mellitus 153

DBH 1.14 dopamine beta hydroxylase deficiency 176

BAX 0.33 AD 177

Nalbuphine

OPRK1 1.79 AD 145

OPRM1 1.11 Alcoholic Intoxication 127

OPRD1 0.98 Alcoholic Intoxication 127

CYP2D6 0.04 AD 48

CYP3A4 0.02 AD 57

CYP1A2 0.04 Liver carcinoma 138

Bimatoprost

PTGFR 14.98 Breast Carcinoma 170

PTGER3 5.3 Stevens-Johnson Syndrome 178

PTGER1 3.54 Breast Carcinoma 170

Quinidine

KCNK5 1.68 Balkan Nephropathy 179

KCNU1 1.68 Diabetes Mellitus 180

CYP3A7 0.67 Malignant Neoplasms 159

KCNT1 0.84 Epileptic encephalopathy 181

KCNK16 0.84 Diabetes Mellitus 182

SLC29A4 0.34 AD 160

KCNH5 0.67 Epilepsy 183

KCNE1 0.67 Long qt syndrome 5 184

KCNA7 0.42 Familial heart attack 185

SCN5A 0.41 Brugada Syndrome 186

KCNH1 0.28 Temple-Baraitser Syndrome 187

ABCB1 0.04 AD 55

CYP3A4 0.02 AD 57

CYP2D6 0.01 AD 48

CYP2C9 0.02 Unipolar Depression 169

CYP1A2 0.01 Liver carcinoma 138

CYP2C19 0.01 Depressive disorder 139

Continued
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Drugs Genes Interaction score Disease associations Refs.

Buprenorphine

OPRD1 0.88 Alcoholic Intoxication 127

OPRM1 0.62 Alcoholic Intoxication 127

OPRK1 0.43 AD 145

UGT2B7 0.61 Neoplasm of urinary bladder 143

COMT 0.4 Bipolar Disorder 142

CYP3A5 0.12 Malignant neoplasm of prostate 165

CYP3A4 0.02 AD 57

Ezetimibe
NPC1L1 175.04 Diabetes Mellitus 188

NPSR1 0.38 Asthma 189

Naloxone

OPRD1 1.07 Alcoholic Intoxication 127

OPRM1 0.89 Alcoholic Intoxication 127

OPRK1 0.33 AD 145

GRP 1.65 Head Neoplasms 190

NTF3 0.72 Schizophrenia 191

RARA 0.37 Promyelocytic Leukemia 192

BDNF 0.18 Congenital hypoventilation 193

Oxymorphone

OPRM1 1.03 Alcoholic Intoxication 127

OPRD1 0.73 Alcoholic Intoxication 127

NR1I3 2.27 Drug-Induced Liver Disease 164

CYP2D6 0.03 AD 48

Paclitaxel
STMN1 1.31 Liver carcinoma 194

SPATA5 1.31 Epilepsy 195

Ethylmorphine CYP2D6 0.11 AD 48

Etorphine

OPRD1 2.61 Alcoholic Intoxication 127

OPRM1 1.2 Alcoholic Intoxication 127

OPRK1 0.95 AD 145

Diprenorphine

OPRD1 2.28 Alcoholic Intoxication 127

OPRK1 0.48 AD 145

OPRM1 0.34 Alcoholic Intoxication 127

Dihydromorphine

OPRD1 1.31 Alcoholic Intoxication 127

OPRK1 0.95 AD 145

OPRM1 0.68 Alcoholic Intoxication 127

Dexanabinol

GLRA2 1.74 Autistic Disorder 196

GLRA3 0.83 Autistic Disorder 196

GLRA1 0.83 Autistic Disorder 196

CNR1 0.15 AD 74

Tonabersat HTR1D 2.12 Adenocarcinoma 73

Eliglustat
Edivoxetine

UGCG 15.91 Liver Cirrhosis 197

CYP2D6 0.16 AD 48

Nalorphine
OPRD1 0.33 Alcoholic Intoxication 127

OPRK1 0.24 AD 145

ORM-12741
OPRM1 0.17 Alcoholic Intoxication 127

ADRA2C 0.77 Heart failure 198

Bevenopran OPRM1 1.03 Alcoholic Intoxication 127

Samidorphan

OPRM1 0.34 Alcoholic Intoxication 127

OPRD1 0.33 Alcoholic Intoxication 127

OPRK1 0.24 AD 145

Onapristone
PGR 1.14 Endometriosis 199

NR3C2 0.92 Pseudohypoaldosteronism 200

Nalfurafine
NR3C1 0.32 Pseudohypoaldosteronism 200

OPRK1 0.72 AD 145

Oliceridine OPRM1 0.51 Alcoholic Intoxication 127

Methylsamidorphan OPRM1 0.51 Alcoholic Intoxication 127

Navoximod TDO2 7.07 Schizophrenia 201

Rocagla NFE2L2 0.08 Lung Carcinoma 202

Continued
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Binding pocket and binding interaction analysis
The active binding site is a cavity on the surface or in the interior of a protein that possesses suitable proper-
ties for ligand  binding40. 18 drugs were docked against death domain of MADD and superimposed all docking 
complexes to check the binding conformations inside the binding pocket. The predicted results showed that all 
18 drugs were firmly bind within the active region of MADD however, the binding behavior was deviant with 
each other’s (Fig. 7A, B).

Drug-protein binding interaction is significant parameter to better understand the molecular docking results 
and to deeply understand the conformational  behavior210,211. Top six drug having docking energy greater than 
− 7.00 kcal/mol were selected to check the binding conformation behavior and draggability behavior of MADD. 
The best six drug such as darifenacin (− 7.59), astemizole (− 7.19), tubocurarine (− 8.26), elacridar (− 7.72), 
sertindole (− 7.58) and tariquidar (− 8.42) exhibited good docking energy values (Kcal/mol) and binding inter-
action profiles. In darifenacin docking, single hydrogen bond was observed with appropriate binding distance. 
The amino group  (NH2) of darifenacin formed a hydrogen bond with Glu1020 having bond length 2.60 Å within 
the active region of death domain of MADD structure. Similarly, elacridar and tariquidar also formed hydrogen 
bonds with Glu1023 having appropriate bond lengths. The nitrogen atom of  NH2 elacridar formed hydrogen bond 
with Glu1023 having bond length 3.00 Å, whereas tariquidar formed two hydrogen bonds with Glu1023 having 
bond distances 2.50 and 2.80 Å, respectively. Glutamic acid is an α-amino acid that is used by almost all living 
beings in the biosynthesis of proteins. Our docking results showed that screened drugs bind with Glu1020 and 
Glu1023 which may depict their significance in death domain formation and their involvement in the associated 
signaling pathways. The reported data showed that hydrogen bond between 2.5 and 3.0 Å may considered as 
standard bond length in ligand docking which strengthen the docked  complexes212.

Drugs Genes Interaction score Disease associations Refs.

Volinanserin

HTR2A 0.44 AD 72

HTR2B 0.31 AD 72

HTR2C 0.22 AD 72

Nebivolol

ADRB1 1.21 Hypertensive disease 166

ADRB2 0.23 Asthma 167

CYP2D6 0.05 AD 48

Vernakalant CYP2D6 0.11 AD 48

Nalmefene

OPRD1 1.31 Alcoholic Intoxication 127

OPRK1 0.95 AD 145

OPRM1 0.34 Alcoholic Intoxication 127

Table 6.  Pharmacogenomic analysis of galantamine.

Table 7.  The predicted docking energy values of selected drugs.

Docking complexes
Docking energy (Kcal/
mol) Ligand efficiency (∆g)

Inhibition constant 
(uM)

Intermol energy (Kcal/
mol)

Total internal (Kcal/
mol)

Torsional energy 
(Kcal/mol)

Morphine − 6.31 − 0.30 23.72 − 6.91 − 0.39 0.6

Codeine − 6.60 − 0.30 14.55 − 7.2 − 0.78 0.6

Quinine − 6.21 − 0.26 28.07 − 7.7 − 1.1 1.49

Darifenacin − 7.59 − 0.24 2.73 − 9.68 − 2.5 2.09

Atropine − 5.41 − 0.26 107.92 − 7.2 − 1.12 1.79

Astemizole − 7.19 − 0.21 5.37 − 9.58 − 1.7 2.39

Nalbuphine − 6.36 − 0.24 21.81 − 7.85 − 2.35 1.49

Quinidine − 6.47 − 0.27 17.94 − 7.97 − 1.19 1.49

Tubocurarine − 8.26 − 0.18 888.7 − 9.45 − 0.86 1.19

Aripiprazole − 6.48 − 0.22 17.76 − 8.57 − 1.62 2.09

Fluspirilene − 6.91 − 0.20 8.57 − 9.0 − 2.29 2.09

Elacridar − 7.72 − 0.18 2.21 − 10.1 − 1.3 2.39

Sertindole − 7.58 − 0.24 2.76 − 9.08 − 1.3 1.49

Vernakalant − 5.59 − 0.22 79.57 − 7.98 − 1.96 2.39

Tariquidar − 8.42 − 0.18 671.0 − 11.7 − 2.42 − 2.42

Sarizotan − 6.86 − 0.26 9.35 − 8.35 − 2.25 1.49

Fipexide − 6.35 − 0.26 22.11 − 8.14 − 1.05 − 1.05

Volinanserin − 5.80 − 0.21 56.06 − 8.19 − 1.69 − 1.69
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Therefore, intermolecular hydrogen bonds have good impact in the formation of drug-protein docking com-
plex and enhance their accuracy. In all our docking analysis, darifenacin, elacridar and tariquidar exhibited 
comparative hydrogen bond length against the MADD protein. The comparative analysis showed that all drugs, 
darifenacin, astemizole, tubocurarine, elacridar, sertindole and tariquidar were bind at same position inside 
the active region of death domain in MADD protein. The common interactions pattern among unique residues 
also showed the reliability of our docking results. Furthermore, in detail results, darifenacin is surrounded by 
Glu1020, Tyr1008, Ile1005, Met1004, Gln999, Met997 and Glu1023 residues, whereas elacridar and tariquidar 
also encompassed similar amino acids such as Leu1027, Leu1030, Met1004, Leu1009, Tyr1008, Glu1020, His1060, 
and Glu1023, respectively. The other three drugs also showed their binding potential at the same binding regions 
with different conformational symmetry. The occurrence of common amino acids in all docking complexes also 
ensure the significance of these amino acid particularly Glu1023 is essential for target binding (Fig. 8).

Molecular dynamic simulation
The best docking complexes were analyzed further through the evaluation of residual flexibility in the target 
protein by employing MD simulation experiment. The MD simulation study was employed at 100 ns by using 
Gromacs 5.1.2 by generating root mean square deviations & fluctuations (RMSD/F), radius of gyration (Rg) and 
solvent accessible surface area (SASA) graphs.

Root mean square deviation and fluctuation analysis
The protein backbone behavior in the simulation running time were evaluated through RMSD/F graphs. The 
RMSD graph results of six docking complexes (darifenacin, astemizole, tubocurarine, elacridar, sertindole and 
tariquidar) showed the steady and little fluctuated behavior through-out the simulation time. The RMSD graph 
lines displayed an increasing trend with RMSD values ranging from 0 to 0.1 nm from 0 to 100 ns.

Initially, all the graph lines (red, indigo, brown, green, blue, and yellow) of docked complexes showed an 
increasing trend with RMSD value 0–0.1 nm from 0 to 10 ns. However, in the same simulation time tariquidar 
graph line showed much stable behavior as compared to other complexes. From 10 to 20 ns, again fluctuated 
graphs lines were seen whereas, tariquidar (yellow) remained steady and stable at RMSD value around 0.6 nm. 
Tubocurarine (brown) displayed highest RMSD value (> 1 nm) at 20 ns as compared to all other graphs lines. 
Sertindole (blue) line showed upward movement from 0 to 10 ns whereas, from 10 to 20 ns the graph line showed 
downward movement. However, darifenacin and tubocurarine has been exposed in continuously increasing 
trend with increased RMSD values (nm). Elacridar (green) and astemizole also showed fluctuated behavior at 
this simulation time frame. From 20 to 40 ns much stable behavior has been observed in the tariquidar (yellow) 
and elacridar (green) graphs lines, respectively compared to other graph lines. Darifenacin (red), astemizole 
(indigo), tubocurarine (brown), elacridar (green), and sertindole (blue) showed high fluctuations in graph lines 
along with deviated RMSD values.

From 40 to 100 ns, again tariquidar (yellow) remained displayed stable behavior and no fluctuations has been 
observed in the backbone of MADD protein in the docking complex. Similarly, elacridar (green) also represented 
similar results with tariquidar and still remined stable behavior in the docking complex. The rest of all other 
docking complexes showed little fluctuations with steady stable behavior in the simulation time. The RMSD is 
used to measure the difference between the backbones of a protein from its initial structural conformation to 
its final  position213 and multiple research data exposed different RMSD values range from 0 to 0.3 nm in their 
MD simulation  analysis203. The overall RMSD graphs lines showed that all docked complexes showed fluctuated 
behavior in the simulation time frame. The generated graphs results showed the stable behavior in the backbone 
of all protein complexes (Fig. 9).

The RMSF results of all docked complexes dynamically fluctuated from residues N to C terminals. The 
protein structures are composed of with different structural architecture. There are different small fluctuations 

Figure 7.  (A) Binding pocket of death domain of MADD protein along with all selected drugs. (B) In detail 
description, binding of morphine, codeine, quinine, darifenacin, astemizole, nalbuphine, quinidine, aripiprazole, 
fluspirilene, elacridar, sertindole, vernakalant, sarizotan, fipexide and volinanserin at the active site of target 
protein.
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through-out the simulation time frame. However, most of protein complexes remain little stable in the RMSF 
graph. The tariquidar graph line displayed less fluctuations as compared to all other protein complexes which 
ensure his stable behavior in the docking complex. The comparative results showed that tubocurarine and sertin-
dole were exhibited higher fluctuations peaks, however, the values remain at 0.1 nm in the simulation study. All 
the results have been displayed in Fig. 10.

Radius of gyration and solvent accessible surface area
The structural compactness of protein was calculated by Rg. The generated results depicted that Rg values of all 
the docked structures showed little variations from 1.25 to 2.25 nm. Initially, the graph lines were unstable and 
showed little fluctuations from 0 to 20 ns. The comparative analysis showed that sertindole graph line displayed 

Figure 8.  Binding interaction of best darifenacin, astemizole, tubocurarine, elacridar, sertindole and tariquidar 
death domain of MADD protein along with all selected drug binding.

Figure 9.  RMSD graph of docked complexes of darifenacin, astemizole, tubocurarine, elacridar, sertindole and 
tariquidar, respectively from 0 to 100 ns.
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fluctuations from 0 to 100 ns. However, darifenacin, astemizole, tubocurarine, elacridar, and tariquidar graph 
lines were remined stable with less fluctuations after 20–100 ns. The overall stable behavior was observed at the 
Rg value 1.5 nm (Fig. 11). The solvent-accessible surface areas (SASA) were also observed and shown in. Results 
showed that the values of SASA of all five docked complexes were centered on 45  nm2 in the simulation time 
0–100 ns (Fig. 12).

Protein–ligand interaction energy
The interaction energy has been calculated from MD trajectories in couple of forms: electrostatic (coulombic) 
interaction energy and Lennard–Jones interaction energy, with their sum representing the total interaction 
energy. According to interaction energy analysis tariqudar drug showed the lowest interaction energy − 285.728 
followed by elacridar and tobucorarine (− 248.6337 and − 160.0039 respectively). Moreover, the astemizole, 
sertindole, and darifenacin exhibit high interaction energy as compared to the top (Table 8). Furthermore, the 

Figure 10.  RMSF graph of darifenacin, astemizole, tubocurarine, elacridar, sertindole and tariquidar docking 
complexes at 100 ns.

Figure 11.  Rg graph of darifenacin, astemizole, tubocurarine, elacridar, sertindole and tariquidar docking 
complexes from simulation time 0–100 ns.

Figure 12.  SASA graph of darifenacin, astemizole, tubocurarine, elacridar, sertindole and tariquidar docking 
structures from 0 to 100 ns simulation time frame.
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graphical depiction of interaction energy of those six drugs has been carried out to see the trajectory changes of 
all six drugs throughout 100 ns MD simulation (Fig. 13).

Binding poses validation
To analyze the interaction of darifenacin, astemizole, tubocurarine, elacridar, sertindole and tariquidar during 
100 ns MD simulation; MD binding Pose validation has been carried out against best selected drugs. Snapshots 
of all simulated drugs results demonstrated that all drugs remained in the active region of MADD during the 
100 ns MD simulation and maintained strong interactions with binding pocket residues. The elacridar manifest 
the strongest interaction while tubocurarine and sertindole also exhibit single hydrogen bonds and in addition to 
hydrophobic interactions. Furthermore, astemizole, darifenacin, and tariquidar also exhibits strong hydrophobic 
interactions. The results demonstrate that the drugs remain bounded to the active pocket of the target protein 
till 100 ns and block the active site residues (Supplementary Fig. S6).

Conclusion
Novel drug development is time consuming process with relatively high debilitating cost. In present time, drug 
repositioning is an in-silico approach being employing for drug discovery. In the present research repositioning 
profiles of known drugs against AD has been explored using shape-based screening, molecular docking phar-
macogenomics and MD simulation approaches. Swiss-Similarity results showed 282 drugs were retrieved with 
donepezil and 351 against galantamine and further evaluated based on similarity scoring values, docking energy 
values and pharmacogenomics analysis. The detailed pharmacogenomics and extensive data mining showed that 
three drugs have direct association with AD by targeting different genes. The detailed screening results, showed 
that darifenacin, astemizole, tubocurarine, elacridar, sertindole and tariquidar drugs exhibited good lead like 
behavior against AD. Moreover, in MD simulation result tariquidar displayed better stability behavior as com-
pared to rest of other docking complexes drugs with respect to their RMSD, RMSF, SASA and Rg evaluations 
graphs. Taken together, it has been concluded that tariquidar predicted exhibited better repositioning profiles 
as compared to other screened FDA approved drugs and may be use in the treatment of AD after in-vitro and 
clinical assessment in future.

Table 8.  MD protein–ligand Interaction energy table of all six compounds.

Drugs

Interaction energy

Total interaction energyCoulombic Lennard–Jones

Astemizole − 18.1286 − 116.472 − 134.6006

Darifenacin − 10.208 − 93.7889 − 103.9969

Elacridar − 59.3197 − 189.314 − 248.6337

Sertindole − 11.7399 − 112.683 − 124.4229

Tariqudar − 101.295 − 184.433 − 285.728

Tobucorarine − 24.7449 − 135.259 − 160.0039

Figure 13.  Graphical representation of MD protein–ligand Interaction energy trajectories darifenacin, 
astemizole, tubocurarine, elacridar, sertindole and tariquidar.
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Data availability 
The data used or analyzed in the current study are available at different online resources including https:// www. 
unipr ot. org/ unipr ot/ Q8WXG6; https:// go. drugb ank. com/; https:// www. dgidb. org/; and http:// dsigdb. tanlab. org/ 
DSigD Bv1.0/, respectively. All the relevant data has been mentioned in the manuscript whereas, rest of supporting 
information along with dataset names and accession numbers have been mentioned in the supplementary file.
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