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Application of statistical machine 
learning in biomarker selection
Ritwik Vashistha 1, Zubdahe Noor 2, Shibasish Dasgupta 2,3*, Jie Pu 4 & Shibing Deng 4

In the recent JAVELIN Bladder 100 phase 3 trial, avelumab plus best supportive care significantly 
prolonged overall survival relative to best supportive care alone as first-line maintenance therapy 
following first-line platinum-based chemotherapy in patients with advanced urothelial cancer (aUC). 
Discovering biomarkers using genomic profiling to understand potential patient heterogeneity 
is essential to help improve patient care with precision medicine. For the JAVELIN Bladder 100 
trial, it is unclear which variable selection methods can most reliably identify biomarkers to inform 
patient care because the dataset is characterized by high collinearity and low signal. The aim of 
this paper was to evaluate available selection methods and their ability to discover prognostic and 
predictive biomarkers in patients with aUC receiving first-line maintenance therapy. A simulation 
study evaluated the performance of popular variable selection approaches for high-dimensional data 
including penalized regression models, random survival forests, and Bayesian variable selection 
methods. For Bayesian variable selection methods, a modified Bayesian Information Criterion (BIC) 
thresholding rule was proposed in addition to the traditional BIC thresholding rule. These methods 
were applied to the JAVELIN Bladder 100 dataset to investigate potential biomarkers associated 
with survival benefit. Results from the simulations demonstrated the strengths and limitations of 
the different methods. The variable selection methods demonstrated low false discovery rates under 
different conditions. However, their performance declined in the presence of high collinearity. Using 
the JAVELIN Bladder 100 data, we identified some potentially significant biomarkers across multiple 
models. Several lasso-related methods were able to identify potentially biologically meaningful 
variables in the trial. Some variable selection methods (such as stochastic search variable selection 
and random survival forest) may not be well suited to this type of data due to the presence of extreme 
collinearity and low signal. Future research should explore novel variable selection methods that may 
be more suitable for identifying prognostic and predictive biomarkers in this population.

Trial registration: ClinicalTrials.gov Identifier: NCT02603432.

Abbreviations
aUC  Locally advanced or metastatic urothelial cancer
BIC  Bayesian information criterion
BSC  Best supportive care
DE  Double-exponential
FPR  False positive rate
gsslasso Cox  Group spike-and-slab lasso Cox
lasso  Least absolute shrinkage and selection operator
OS  Overall survival
RSF  Random survival forest
sslasso  Spike-and-slab lasso
SSVS  Stochastic search variable selection
TNR  True negative rate
TPR  True positive rate
VIF  Variance inflation factor
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Immune checkpoint inhibitors are established treatments for locally advanced or metastatic urothelial cancer 
(aUC). Although mechanisms underlying anticancer immunity and immune checkpoint inhibition have been 
studied extensively, prospective use of biomarkers to identify patients who are most likely to obtain long-term 
durable benefits from these agents remains unrealized, in part due to variability in assay platform and interpreta-
tion across studies. A recent trial (JAVELIN Bladder 100, NCT02603432) showed that the addition of avelumab 
as first-line maintenance therapy to best supportive care (BSC) significantly prolonged overall survival (OS) 
compared with BSC alone and established avelumab as a new first-line standard-of-care treatment for  aUC1. The 
isolation of avelumab through randomization as the only active treatment covariate in the maintenance setting 
for aUC provides a unique opportunity to investigate biomarkers that are associated with survival  benefit2. In 
particular, the study provides an opportunity to evaluate various methodologies with respect to selecting bio-
markers among various candidates, estimating the effects of biomarkers, and combining multiple biomarkers 
into accurate models.

In published literature, various models have been proposed to address these challenges. For low-dimensional 
data, the Cox proportional hazards model is the most popular method to study associations of biomarkers with 
time-to-event  endpoints3. However, in the context of high-dimensional data (number of biomarkers > number 
of observations) or in the presence of severe collinearity in the data, the proportional hazards model may not be 
suitable. Various penalized regression methods have been proposed to overcome these hurdles, among which 
ridge, lasso (least absolute shrinkage and selection operator), and elastic net are most  popular4. As an alterna-
tive to penalized regression methods, Bayesian methods have also been proposed for variable selection. The 
main advantage of the Bayesian framework for variable selection is that it allows the incorporation of any prior 
information regarding the data into the model in addition to transparent quantification of uncertainty. Work by 
Park and  Casella5 and Li and  Lin6 has shown that the frequentist approaches mentioned previously can be out-
performed by Bayesian variable selection methods. Various choices of prior distributions have been proposed in 
the literature for variable selection; however, one type of priors, “spike and slab,” has gained widespread attention 
due to its intuitive nature and ease of implementation. In the context of survival analysis, Tang et al.7 introduced a 
double-exponential (DE) spike-and-slab prior distribution that was successfully utilized to analyze genes associ-
ated with breast cancer in a Dutch dataset. Subsequently, the authors extended their work and proposed group 
spike-and-slab lasso Cox (gsslasso Cox) to conduct variable selection by incorporating group structures into the 
model. Tree-based methods have also been proposed as a flexible alternative to the Cox proportional hazards 
model for modeling survival time and variable selection. In particular, the random survival forest (RSF) has been 
developed to identify significant covariates and their  interactions8. Its main advantage over other methods is 
that it can model complex nonlinear and high-dimensional survival data without strong assumptions regarding 
the data-generating process.

The main objective of this study was to examine biomarkers associated with survival benefit in the JAVELIN 
Bladder 100 aUC population using popular variable selection approaches for high-dimensional data and to evalu-
ate variable selection methods using both simulation and the existing biological understanding of aUC biomark-
ers. In Section “Methods”, we describe various methods that were studied as part of the project and a simulation 
study conducted to assess the performance of various methods. We also introduce a modified thresholding 
rule based on Bayesian information criterion (BIC) to select variables based on the posterior estimates of the 
parameters. In Section “Results”, we present the results obtained by implementing variable selection methods on 
simulated data and the JAVELIN Bladder 100 dataset. Concluding remarks are provided in Section “Discussion”.

Methods
Cox proportional hazards model
In survival analysis, the dataset is usually in the form (Ti , δi , xi) , where Ti is the observed time (either failure 
time or censored time), δi ∈ {0, 1} is the censoring indicator for an event δi = 1 in the case of a failure or death 
or δi = 0 if the observation is censored, and xi denotes a p dimensional vector of the observed covariates of the 
ith individual. The Cox proportional hazards  model3 is the most popular method for studying the relationship 
between observed survival response and explanatory variables. It assumes that �(t|x), the hazard at time t given 
the vector of explanatory variables X , takes the form:

where �0(t) is the baseline hazard function, and X and β are the vectors of explanatory variables and coefficients, 
respectively. Here, βTx is the linear predictor and is also called the risk score. We can estimate the parameter β 
in the model without specification of �0(t) by maximizing the partial log-likelihood:

Here, R(ti) denotes the risk set at time ti , which contains all subjects who are at risk of an event.
For low-dimensional data, the Cox proportional hazards model can help to understand the relationship 

between covariates and observed survival response. However, for high-dimensional data, this model fails to 
be identifiable, or in presence of severe collinearity, regression coefficient estimates β̂  fail to converge. Several 
methods have been proposed to handle such cases, including penalized regression models.

�(t|X) = �0(t)exp(β
TX)

pl(β) =

n∑

i=1

δi log

(
exp(βTXi)∑

i′∈R(ti)
exp(βTXi′)

)



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18331  | https://doi.org/10.1038/s41598-023-45323-9

www.nature.com/scientificreports/

Penalized regression methods
Lasso
Lasso is a regularization method that has L1 Norm as its  penalty9. Here, coefficients are estimated by minimizing 
the penalized negative log partial-likelihood:

where λ is the regularization or shrinkage parameter. The estimation of parameters β depends on the value of 
λ: a larger value of λ implies a higher number of non-zero regression coefficient estimates. We used a 10-fold 
cross-validation procedure with grid search to find an ‘optimal’ value of λ. This procedure was implemented 
using the glmnet package in R.

Elastic net
Zou and  Hastie10 showed that if a group contains variables with very high pairwise correlations, the lasso tends 
to randomly select only one variable from the group. To address this issue and other limitations of lasso, they 
proposed elastic net—a penalized regression method where the penalty is a convex combination of the L1 Norm 
and the L2 Norm. The presence of an additional L2 Norm term in the penalty makes it possible to promote a 
grouping effect, thereby removing the limitation of the number of selected variables. Here, coefficients are esti-
mated by minimizing the penalized negative log partial-likelihood:

The elastic net penalty is controlled by mixing parameter α to bridge the gap between the lasso regression 
(α = 1) and ridge regression (α = 0). The parameters (λ, α) can be estimated using cross-validation with grid search. 
Because the elastic net has two tuning parameters, we cross-validated on a two-dimensional surface. We first 
selected a value of α from a grid of values, then, for each α, we selected a value of λ using 10-fold cross-validation.

Adaptive lasso
The adaptive lasso introduces a variable-specific weight wj into the lasso  penalty11. The main objective is to penal-
ize larger coefficients less than smaller coefficients to reduce the bias of penalized coefficient estimates found 
using lasso. The penalized negative log-likelihood is given by:

The variable-specific weights wj are of the form 1
|βj|

 , with β̃j , j = 1, 2, . . . p, being the solutions of an initial 
estimation. We considered β̃j to be the ridge estimates found in our data. The optimal value of the parameter λ 
can be found by performing cross-validation as per lasso.

Random survival forest
RSF is a nonparametric method that has been proposed for modeling survival  data8. It combines the ideas of 
bootstrap aggregation and random selection of variables. In our work, survival trees were built according to the 
parameters recommended by the  authors8 in the case of high-dimensional data, using the randomForestSRC 
package in R.

We also performed variable selection using the minimal depth method proposed by Ishwaran et al.12. This is a 
simple and robust method for selecting variables from high-dimensional survival data. Minimal depth evaluates 
the predictiveness of a variable by its depth in relation to the root node of a tree. The idea can be understood 
more precisely by defining a maximal subtree for a variable v, such that it is the largest subtree whose root node 
is split using v and no other parent node of the subtree is split using v. The shortest distance from the root of the 
tree to the nearest maximal subtree of v is the minimal depth of v.

Bayesian variable selection methods
Stochastic search variable selection
Stochastic search variable selection (SSVS)13 was proposed for variable selection in the context of linear regres-
sion. In SSVS, the coefficients βj are assumed to follow a suitable Gaussian mixture prior, which induces a positive 
prior probability on the hypothesis H0: βk = 0. Such prior distributions, which are a mixture of two continuous 
distributions and imply high probability close to zero, are referred as “spike-and-slab” priors. The mathematical 
formulation of the SSVS prior setup is the following:

 

Q(β) = −pl(β)+ �

p∑

j=1

|βj|

Q(β) = −pl(β)+ �(α

p∑

j=1

∣∣βj
∣∣+ (1− α)

p∑

j=1

∣∣βj
∣∣2)

Q(β) = −pl(β)+ �

p∑

j=1

wj

∣∣βj
∣∣

βj|γj =∼
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1− γj
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N
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+ γjN(0, c2j τ

2
j )

γj|pj ∼ Bernoulli(pj)
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Here, γj ∈ [0, 1] acts as a latent variable that facilitates the analysis of performing variable selection. The 
parameter pj can be thought of as the prior probability that βj is non-zero or that Xj should be included in the 
model. The parameters τj and cj can be thought of as tuning parameters that are data dependent. τj is set to be 
small so that if γj = 0 , βj can be estimated by 0, while cj is set to be large to ensure that a non-zero estimate of βj 
can be included in the final model.

We fixed cj to be a relatively large value, 1⁄τj, and identified optimal values of τj using 10-fold cross-validation 
with grid search.

Spike‑and‑slab lasso Cox
Spike-and-slab lasso (sslasso)14 was proposed to integrate two popular methods—lasso and Bayesian spike-and-
slab models—into one unifying framework. This method has also been extended for the Cox proportional hazards 
model to perform variable selection in survival analysis. The sslasso Cox  model7 was developed by extending the 
DE prior into the spike-and-slab model because lasso can be expressed as a hierarchical model with DE prior on 
the coefficients. The mathematical formulation of the prior setup is the following:

where the preset scale value s0 is chosen to be small to induce strong shrinkage on estimation whereas s1 is chosen 
to be large to induce weak shrinkage on estimation. The R package BhGLM has been developed to implement 
the sslasso Cox prior formulation. To find optimal parameters, Tang et al.7 suggested to set the slab scale s1 to be 
a relatively large value (e.g., 1) and use cross-validation to find an optimal value of s0.

Group spike‑and‑slab lasso Cox
Group structure can also be incorporated into the sslasso model by assigning a group-specific Bernoulli dis-
tribution for the indicator  variables15. Suppose there are K groups with mk variables each in the group. For a 
coefficient, βkj in a group k, where k = 1, 2….K and j = 1, 2, . . . ,mk , the mathematical formulation is given by:

If group k includes important predictors, the parameter pk will be estimated to be relatively large, imply-
ing that other predictors in the group are likely to be important. For the probability parameters, a beta prior is 
adopted, which yields the uniform hyperprior pk ∼ U(0, 1) , if a = b = 1.

For all methods, decision rules to determine hyperparameters are described in the Appendix.

Simulation study
During exploratory data analysis, it was observed that the data were characterized by extreme collinearity and 
were sparse in nature. To assess the ability of various methods to detect the true variables in the presence of 
these issues, a simulation study was conducted. The simulated data (n = 450 and p = 200, where n is the number 
of observations, and p is the number of variables) was created by varying the number of true variables in the 
model, their effect size (relative risk reduction of a one-unit increase in the value of variable), and the type of 
correlation structure in explanatory variables. The survival time was generated from exponential distribution.

Simulation settings
Following the simulation study conducted by  Tibshirani9 and after understanding the structure of our data, we 
randomly generated blocks of correlated variables from the standard normal distribution with an autoregressive 
correlation structure, i.e., with homogeneous unit variances and with correlation ( ρ ) declining exponentially 
within blocks: σ 2

ij = ρ|i−j| . We considered ρ = 0.9 and block size = 50 in the simulation study. The number of 
true biomarkers in the model (q) was 5 or 10. To generate survival time, we assumed that median survival time 
was 4 years and considered two values of β in the simulations: βLOW and βHIGH , where:

• βLOW : coefficients of true biomarkers between − 0.4 and − 0.1, and 0 otherwise.
• βHIGH : coefficients of true biomarkers between − 1 and − 0.5, and 0 otherwise.

The censoring time was generated from the exponential distribution where the parameter c was chosen to 
keep the censoring rate near 50%. In total, 4 designs with an autoregressive correlation structure were created as 
part of the simulation study. Information about simulated datasets is summarized in Table 1.

pj ∼ Uniform(0, 1)

βj|γj ∼
(
1− γj

)
DE(0, s0)+ γjDE(0, s1)

γj|pj ∼ Bernoulli(pj)

pj ∼ Uniform(0, 1)

βkj |γkj ∼

(
1− γkj

)
DE(0, s0)+ γkjDE(0, s1)

γkj |pk ∼ Bernoulli(pk)

pk ∼ beta(a, b)
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Measures for evaluation of results
The data were generated randomly under each design 100 times. The variable selection capability of different 
models was judged by computing three operating characteristics based on the parameter estimates: true positive 
rate (TPR or sensitivity), true negative rate (TNR or specificity), and false positive rate (FPR). The formulas for 
these operating measures are as follows:

For penalized methods, variable selection was performed using non-zero coefficient estimates. In RSF, vari-
ables were selected using variable importance through minimal depth procedure. However, for Bayesian methods, 
variables were selected using three alternative rules because posterior estimates are non-zero:

• Confidence interval (CI) rule: variables whose (1− α)% CI for coefficient estimates 
[β̂ − Zα/2 ∗ SE

(
β̂

)
, β̂ + Zα/2 ∗ SE

(
β̂

)
] does not contain 0 are selected by the model. Here, Zα/2 is the crit-

ical value when the right-tailed area under a standard normal distribution is given by α/2, i.e.,

where Z ∼ N(0, 1) . We considered α = 0.25, 0.1, or 0.05 for calculating the CIs.
• BIC thresholding rule: Lee, Chakraborty, and Sun 16 proposed the BIC thresholding rule for variable selec-

tion. Here, the absolute posterior estimates of βj are initially arranged in descending order, and BIC values 
are computed in a stepwise manner by sequentially adding important covariates. The formula for BIC with 
j largest βj is written as:

where n is the number of observations, l
(
β̂(1:j)

)
 denotes the maximized log-likelihood under a model that 

includes the variables corresponding to the first j largest absolute posterior estimates β̂j s given by β̂(1:j) . l(0) 
denotes the log-likelihood under the null model. BICj s are computed by sequentially adding important vari-
ables and the best model is chosen where its minimum occurs. To shortlist variables before computation of 
BIC, we considered the top 50 variables with the largest non-zero absolute posterior estimates (j = 50).

• Modified BIC thresholding rule: We also considered a modified version of the BIC thresholding rule above. 
We proceeded as follows:

1. Select the top 50 variables with the largest non-zero absolute posterior estimates.
2. Consider the variable with the highest coefficient and include it in the model.
3. Include a variable in the model from the list of remaining variables for which BIC is minimum.
4. Continue adding variables and computing BIC as in Step 3 until there are no remaining variables to be 

considered.
5. Consider the model with minimum BIC value as the final model.

Our modified approach is likely to be less conservative in selecting variables than the original BIC approach. 
However, the computation time increases due to additional comparisons.

Ethics approval and consent to participate
The trial was conducted in accordance with the ethics principles of the Declaration of Helsinki and with the Good 
Clinical Practice guidelines defined by the International Council for Harmonization. All the patients provided 
written informed consent. The experimental protocol and amendments were approved by Pfizer.

TPR =
Number of true variables correctly entered into the model

Total number of variables

TNR =
Number of irrelevant variables correctly excluded from themodel

Total number of variables

FPR =
Number of irrelevant variables mistakenly entered into themodel

Total number of variables

P(Z > Zα) = α

BICj = −2
(
l
(
β̂(1:j)

)
− l(0)

)
+ jlog(n)

Table 1.  Simulated data.

Design No. of true variables Magnitude of coefficients Correlation structure

Design 1 5 Low Autoregressive

Design 2 5 High Autoregressive

Design 3 10 Low Autoregressive

Design 4 10 High Autoregressive
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Results
Simulated data
Results were obtained for all 100 replications of the four designs that were considered in the study, and average 
measures of TPR, TNR, and FPR are shown in Tables 2, 3, 4 and 5 for different methods. In our simulation study, 
we considered penalized, RSF, and Bayesian spike-and-slab models for comparison. Optimal parameters were 
found using the cross-validation procedure mentioned in the methods section for each model. Table 2 shows 
that elastic net had the highest TPR (sensitivity) among penalized regression methods for different designs, 
followed by lasso, adaptive lasso, and RSF. However, RSF, followed by lasso and elastic net, had high FPRs and 
consequently low specificity compared with adaptive lasso. With RSF, a huge number of variables were chosen, 
resulting in an extremely high FPR and poor performance across different designs. However, adaptive lasso tried 

Table 2.  Simulation results for penalized regression methods and RSF. FPR false positive rate, lasso least 
absolute shrinkage and selection operator, RSF random survival forest, TNR true negative rate, TPR true 
positive rate.

Design

Lasso Elastic net Adaptive lasso RSF

TPR TNR FPR TPR TNR FPR TPR TNR FPR TPR TNR FPR

Design 1 0.87 0.91 0.09 0.93 0.89 0.11 0.87 0.94 0.06 0.79 0.24 0.76

Design 2 0.96 0.90 0.10 1.00 0.90 0.10 0.85 0.97 0.03 0.82 0.19 0.80

Design 3 0.74 0.88 0.12 0.83 0.83 0.17 0.66 0.93 0.07 0.63 0.23 0.77

Design 4 0.99 0.85 0.15 1.00 0.84 0.16 0.91 0.93 0.07 0.79 0.21 0.76

Table 3.  Simulation results for Bayesian methods with BIC rule for variable selection. BIC Bayesian 
information criterion, FPR false positive rate, gsslasso group spike-and-slab least absolute shrinkage and 
selection operator, SVSS stochastic search variable selection, TNR true negative rate, TPR true positive rate.

Design

gsslasso-BIC
gsslasso-modified 
BIC SSVS-BIC SSVS-modified BIC

TPR TNR FPR TPR TNR FPR TPR TNR FPR TPR TNR FPR

Design 1 0.63 0.99 0.01 0.70 0.99 0.01 0.12 0.99 0.01 0.50 0.98 0.02

Design 2 0.81 1.00 0.89 0.89 0.99 0.01 0.59 0.97 0.03 0.89 0.99 0.01

Design 3 0.42 0.98 0.44 0.44 0.98 0.02 0.15 0.97 0.03 0.31 0.97 0.03

Design 4 0.93 0.99 0.95 0.95 0.99 0.01 0.85 0.95 0.05 0.88 0.98 0.02

Table 4.  Simulation results for gsslasso Cox prior with CI rule for variable selection. CI confidence interval, 
FPR false positive rate, gsslasso group spike-and-slab least absolute shrinkage and selection operator, TNR true 
negative rate, TPR true positive rate.

Design

75% CI rule 90% CI rule 95% CI rule

TPR TNR FPR TPR TNR FPR TPR TNR FPR

Design 1 0.75 0.97 0.03 0.76 0.97 0.03 0.64 0.99 0.01

Design 2 0.92 0.98 0.02 0.93 0.97 0.03 0.89 0.99 0.01

Design 3 0.55 0.96 0.04 0.57 0.95 0.05 0.41 0.98 0.02

Design 4 0.97 0.97 0.03 0.98 0.96 0.04 0.94 0.99 0.01

Table 5.  Simulation results for SSVS prior with CI rule for variable selection. CI confidence interval, FPR false 
positive rate, SVSS stochastic search variable selection, TNR true negative rate, TPR true positive rate.

Design

75% CI rule 90% CI rule 95% CI rule

TPR TNR FPR TPR TNR FPR TPR TNR FPR

Design 1 0.76 0.65 0.35 0.74 0.63 0.37 0.66 0.80 0.20

Design 2 0.92 0.75 0.25 0.94 0.73 0.27 0.91 0.84 0.16

Design 3 0.56 0.69 0.31 0.58 0.68 0.32 0.47 0.81 0.19

Design 4 0.91 0.92 0.08 0.92 0.90 0.10 0.87 0.93 0.07
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to achieve a balance between TPRs and FPRs and had a significantly lower FPR than RSF and the other two 
penalized regression methods. The decrease in the value of FPR in adaptive lasso came at the cost of the number 
of true discoveries and results in a relatively low sensitivity compared with the other models.

The results for Bayesian methods are summarized in Tables 3, 4, and 5. In Table 3, we compare a modified 
BIC approach for selection with the original BIC approach for both Bayesian models. Our modified approach 
performed better than the original approach for both Bayesian models. Among the two Bayesian models, gsslasso 
performed the best and showed higher sensitivity and specificity than the SSVS model.

In the case of the CI rule for variable selection, we see from Table 4 that the 90% CI rule performed better 
than the other choices for gsslasso Cox prior owing to its higher sensitivity. However, for the SSVS model, as 
shown in Table 5, the 95% CI rule was the most appropriate choice owing to the high values of FPRs in the other 
two choices for CI. Overall, however, SSVS performed less well than other Bayesian methods.

From our simulation study, the adaptive lasso and gsslasso Cox were concluded to be the most appropriate 
models for variable selection from the two classes of models. Both had moderate sensitivity and high specificity. 
Additionally, the gsslasso Cox model had the advantage of incorporating the group structure into the model. 
Because keeping the false discovery rate low is highly important in a clinical setting, both methods were con-
cluded to be more appropriate for variable selection in the presence of high collinearity than their counterparts.

Real data
We assessed the performance of the various methods discussed in Section “Results” on using data from a recent 
phase 3 trial: JAVELIN Bladder 100 (NCT02603432). The data contained information from 688 patients for 189 
variables. Among the 189 variables, two were related to OS outcome (OS_EVENT and OS), one was treatment 
arm (TRT01P1, “avelumab + BSC” is the treatment arm and “BSC” is the control arm), four were baseline patient 
characteristics (SEX, AGE, STRATI11 [best response to first-line chemotherapy], and STRATI21 [metastatic 
disease site at first-line chemotherapy]), and the remaining 182 were biological features (biomarkers) of interest.

There were 344 observations in the treatment group and 344 observations in the control group (Table 6). 
Of the total of 688 observed times, 320 were uncensored observations (failure times) and 368 (53.4%) were 
censored observations. However, among the 688 observations, only 429 observations had complete data for all 
variables (37.6% missing observations). Eliminating the missing observations, only 222 observations remained 
in the treatment group and 207 observations remained in the control group. Of these 429 observed times, 198 
were uncensored observations and 231 were censored observations (53.8%). For our analysis, we excluded all 
missing observations from the data and analyzed only complete data.

We found that the data (excluding variables related to OS outcome) originally consisted of 5 binary variables 
and 182 numerical variables. Three new binary variables were created and included in the analysis. Post feature 
engineering, the data had 8 binary variables and 178 numerical variables. The data were also found to have a high 
amount of sparsity in some features, with 12 of 186 numeric variables (excluding OS_EVENT and OS from the 
total 188 variables) having at least 60% “zeroes” in their observations. Although, some of the sparse features had 
a low number of unique values, they were still considered as numerical variables in our analysis.

In exploratory data analysis, we found that the data had severe multicollinearity. Additionally, the variables 
had a natural group structure such that 5 groups of variables had varying lengths and some other variables were 
not part of any group (mentioned in Supplement S2). The variables in one group were found to have “inner 
correlation” (correlation between themselves) and “outer correlation” (correlation with variables outside their 
own group).

In summary, the main characteristics of our data are:

1. Severe collinearity among the explanatory variables,
2. High-dimensional data with not enough sample size,
3. Sparsity in the data (8.06%), and
4. High percentage of censored observations (53.8%).

On comparing full data with treatment-only data, we found that the collinearity was more severe for treat-
ment-only data. The percentage of censored observations also increased for treatment-only data (59.4% from 
53.8%). However, the sparsity in the data remained similar (7.82% from 8.06%).

We focused both on the full data, which contained information on patients assigned to treatment and control 
observations, in addition to the data subset containing only the observations of patients who were assigned to 
treatment. Optimal parameters for all the methods except RSF were found using the cross-validation procedures.

Table 6.  Data description.

Whole data Complete data Missing data (%)

Total no. of observations 688 429 37.64

Treatment group 344 222 35.47

Control group 344 207 39.83

Censored observations 368 231 37.23

Uncensored observations 320 198 38.13
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For RSF, we considered the value of parameters recommended by Ishwaran et al.8. We observed that RSF gave 
very poor prediction results and had a high prediction error rate for both full and treatment-only data (46.96% 
and 46.48%, respectively). Tuning parameters did not reduce the prediction error. We further performed vari-
able selection by shortlisting the top 15 variables with highest variable importance. The results are presented in 
two tables in the supplement (Tables S1 & S2) that summarize the variables selected by different methods. For 
Bayesian models, we used only the 90% or 95% CI rule and our modified BIC approach for variable selection 
after observing their performance in the simulation study.

Full data
Table 7 reports the results for the analysis of full data, showing only those variables selected by at least two of 
the methods considered in our assessment; the full list of selected variables is reported in Table S1. None of the 
variables were selected by all the models. However, all the penalized models, gsslasso Cox, and RSF selected 
the treatment variable and thus validated its relevance. Very few variables were selected by both penalized 
and Bayesian methods. Except for the treatment variable, only “cytopro.effector_memory_CD8.positive_alpha.
beta_T_cell,” “IC_PD_L1_Status1,”, and “LM22.Mast_cells_activated” were selected by both classes of methods. 
All the penalized models selected the variables “cytopro.neutrophil,” “cytopro.effector_memory_RA_-CD8.
positive_alpha.beta_T_cell_.TEMRA,” and “STRATI21,” whereas these were not identified as being relevant by 
Bayesian methods. In contrast, Bayesian methods selected “LM22.T_cells_CD8” and “LM22.NK_- cells_rest-
ing,” whereas these were not identified as being relevant by penalized models. These different results highlight 
a stark contrast between the two classes of methods in selecting variables from the data, making the relevance 
of these variables unclear. However, the significantly lower false discovery rate of Bayesian methods compared 
with penalized models favors the Bayesian methods. Furthermore, gsslasso Cox performed better than sslasso 
Cox due to incorporation of the group structure in the model.

Treatment‑only data
Table 8 reports the results for the analysis of treatment-only data, showing only those variables selected by at 
least two methods considered in our assessment; the full list of selected variables is reported in Table S2. Results 
were similar to those observed in the analysis of full data. As observed for the treatment variable in the analysis 
of full data, “STRATI21” was selected by all of the penalized models and by gsslasso Cox, but not by RSF. All 
of the penalized models selected the variables “Number_high_affinity_FCGR_alleles” and “cytopro.CD8.posi-
tive_alpha.beta_-T_cell,” whereas these were not identified as being relevant by Bayesian methods. In contrast, 
Bayesian methods selected “HALLMARK_IL2_STAT5_SIGNALING” and “LM22.Mast_cells_activated,” whereas 
these were not identified as being relevant by penalized models. “TUMOR_CELL_STAINING_analytePDL1” 
and “cytopro.effector_memory_CD8.positive_alpha.beta_T_cell” were selected by both the penalized and Bayes-
ian models.

Table 7.  Results (full data). CI confidence interval, gsslasso group spike-and-slab least absolute shrinkage and 
selection operator, lasso least absolute shrinkage and selection operator, RSF random survival forest, sslasso 
spike-and-slab least absolute shrinkage and selection operator, SVSS stochastic search variable selection.

Variable Lasso Elastic net Adaptive lasso SSVS-95% CI sslasso-90% CI gsslasso-90% CI gsslasso-modified BIC RSF

TRT01P1 Yes Yes Yes No No Yes Yes No

STRATI21 Yes Yes Yes No No No No No

Crypto.effector_memory_CD8.positive_alpha.
beta_T_cell Yes Yes Yes No No No No Yes

Crypto.effector_memory_RA_CD8.positive_
alpha.beta_T_cell_.TEMRA Yes Yes Yes No No No No Yes

Cytopro.neutrophil Yes Yes Yes No No No No Yes

IC_PD_L1_Status1 Yes Yes Yes No No Yes No No

TMB_pre_chemo No Yes No No No No No Yes

LM22.T_cells_regulatory_Tregs No Yes No No No No No No

LM22.Mast_cells_activated No Yes No Yes Yes Yes Yes Yes

B999001_c11_Epithelium_development No Yes No No No No No Yes

Cytopro.CD8.positive_alpha.beta_T_cell No Yes Yes No No No No Yes

LM22.NK_cells_resting No No No Yes Yes Yes Yes No

LM22.T_cells_CD8 No No No Yes Yes No No No

LM22.T_cells_gamma_delta No No No No No Yes Yes No

Cytopro.CD14.positive_CD16.positive_mono-
cyte No No No No No Yes No No
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Discussion
We assessed various methods of variable selection in survival analysis. Our objectives were to find important 
variables in a recent clinical trial dataset using different methods and to find a suitable method for variable 
selection. To understand the properties of different methods, we performed a simulation study that reflected key 
issues present within our data. In particular, we assessed the performance of penalized regression models, RSF, 
and Bayesian spike-and-slab models in the presence of groups of highly correlated variables with low signals 
within the data. In the simulation study, we found that RSF selected the highest number of variables, followed 
by penalized regression methods and Bayesian methods, and had higher sensitivity. However, because of its less 
restrictive nature in selecting variables, RSF also had a higher FPR than Bayesian methods. Elastic net had the 
highest sensitivity and the lowest specificity among the classic penalized regression models in all the scenarios. 
Adaptive lasso aimed to achieve a balance between TPRs and FPRs, and had a significantly lower FPR than lasso 
and elastic net for a marginal decrease in sensitivity. Among Bayesian methods, the gsslasso Cox model had the 
best overall performance in all scenarios owing to its extremely high specificity and moderate sensitivity. We also 
considered various rules for variable selection because posterior estimates of coefficients are not exactly zero, 
unlike in penalized regression models. In the case of the gsslasso Cox model, we found that the 90% CI rule and 
our modified BIC approach provided similarly good results. However, for the SSVS model, the CI rule performed 
poorly in terms of specificity for different designs and was inferior to the BIC approach. Following the simula-
tion study, we applied all the methods studied to clinical trial data but observed poor performance. We assessed 
the penalized regression models and Bayesian spike-and-slab models in addition to RSF. Results for penalized 
regression models and Bayesian spike-and-slab models were slightly inconsistent with few variables identified 
by both classes of models in both full and treatment-only data. The difference in the results made the relevance 
of the selected variables unclear. However, variables that were selected by both classes of models can be consid-
ered potentially significant. Using full data, “TRT01P1,” “IC_PD_L1_Status1,” and “LM22.Mast_cells_activated” 
were selected by both model classes, and for treatment-only data, “STRATI21” and “TUMOR_CELL_STAIN-
ING_analytePDL1” were selected by both model classes. Because Bayesian spike-and-slab models had very low 
false discovery rates, the probability that common variables were false discoveries is low.

RSF was also applied to the same datasets, but its performance was poor owing to high prediction error. 
Tuning parameters did not improve this model, but we still performed variable selection using minimal depth 
procedure. Despite its poor prediction performance, some variables selected using RSF were the same as those 
selected by other methods.

There remains much room for further research. We only considered main effects in our regression models. A 
future direction of work may focus on incorporating interaction effects in the regression model in the presence 
of a high amount of noise in the data.

In conclusion, we assessed various well-known variable selection methods and identified potentially signifi-
cant variables or biomarkers. However, these methods may not be well suited to analyzing this type of dataset 
because of the presence of extreme collinearity and low signal. The sslasso model can overcome collinearity 
owing to its ability to incorporate group structure in the model; however, it does not perform well if low signals 
are present.

Data availability
The data that support the findings of this study are available from Pfizer, but restrictions apply to the availability 
of these data, which were used under license for the current study, and so are not publicly available. Data are 

Table 8.  Results (treatment-only data). CI confidence interval, gsslasso group spike-and-slab least absolute 
shrinkage and selection operator, lasso least absolute shrinkage and selection operator, RSF random survival 
forest, sslasso spike-and-slab least absolute shrinkage and selection operator, SVSS stochastic search variable 
selection.

Variable Lasso Elastic net Adaptive lasso SSVS-95% CI sslasso-90% CI gsslasso-90% CI gsslasso-modified BIC RSF

STRATI21 Yes Yes Yes No No Yes Yes No

TMB_pre_chemo Yes Yes No No No No No Yes

Number_high_affinity_FCGR_alleles1 Yes Yes Yes No No No No No

cytopro.CD8.positive_alpha.beta_T_cell Yes Yes Yes No No No No Yes

cytopro.effector_memory_CD8.positive_alpha.
beta_T_cell Yes Yes Yes No No No No Yes

TUMOR_CELL_STAINING_analytePDL11 No Yes No No No Yes No No

B9991001_c11_Epithelium_development No Yes No No No No No Yes

B9991003_c15_Skin_development No Yes No No No No No Yes

cytopro.effector_memory_RA_CD8.positive_
alpha.beta_T_cell_.TEMRA No Yes Yes No No No No Yes

cytopro.granulocyte No Yes Yes No No No No Yes

cytopro.mast_cell No No Yes No No No No Yes

LM22.Mast_cells_activated No No No Yes Yes Yes Yes No

HALLMARK_IL2_STAT5_SIGNALING No No No Yes Yes Yes Yes No
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however available from the authors upon reasonable request and with permission of Pfizer. Subject to certain 
criteria, conditions and exceptions, Pfizer may also provide access to the related individual de-identified par-
ticipant data. See https:// www. pfizer. com/ scien ce/ clini cal- trials/ trial- data- and- resul ts for more information.

Appendix
Decision rules
We used the following decision rules for determining hyperparameters.

(1) Lasso:
  We used a modified version of a 10-fold cross-validation procedure with grid search to find an “optimal 

value” of λ. Generally, in k-fold cross-validation, the data are split randomly into k in approximately equally 
sized groups. The model is fitted using k-1 of these sets and the omitted set is used to test the model. This 
procedure is repeated k times, until all groups have been omitted once. The sum or average of the errors 
(log-partial likelihood) evaluated on each omitted set for all the groups is used to measure model perfor-
mance. However, where data include heavy censoring or in the case of leave-one-out cross-validation, the 
partial likelihood equation of the Cox proportional hazards model may become ill-defined and the cross-
validation would fail to help in finding an optimal value of the parameter. To tackle this issue, we used the 
technique proposed by Van Houwelingen et al.17 to obtain the log-partial likelihood. The data are split into 
k parts. The goodness-of-fit estimate for given part i and λ is:

where l−i is the log-partial likelihood excluding part i of the data, and β−i is the optimal β for the non-left-
out data, found from maximizing l−i + ��β�1 . The final total goodness-of-fit estimate, ĈV  , is the sum of 
all ĈVi . We chose λ, which maximizes ĈV  . However, due to randomness in the cross-validation procedure, 
it is common to obtain different ‘optimal’ values of � and, consequently, different models when the k-fold 
procedure is performed repeatedly. In this situation, it is difficult to select a final value of λ.

  To tackle this issue, we performed 100 iterations of the 10-fold cross-validation procedure with grid 
search. We selected the most commonly occurring λ value and chose the corresponding model to be our 
final model. This procedure was implemented using the glmnet package in R.

(2) Elastic net:
  The parameters (λ, α) are estimated using cross-validation with grid search. Because the elastic net has 

two tuning parameters, we cross-validated on a two-dimensional surface. First, we selected a value of α 
from a grid of values, then for each α, we selected a value of λ using 10-fold cross-validation. As described 
for lasso, we repeated this procedure 100 times to obtain 100 pairs of (λ, α) values, and we selected the most 
commonly occurring (λ, α) pair as the final value of the parameters.

(3) Adaptive lasso:
  The optimal value of the parameter λ can be found by performing cross-validation as per lasso.
(4) Random survival forest:
  No hyperparameter tuning was performed.
(5) Stochastic search variable selection:
  We fixed cj to be a relatively larger value, 1⁄τj, and found the optimal values of parameter τj using 10-fold 

cross-validation with a grid search.
(6) Spike-and-slab lasso Cox and group spike-and-slab lasso Cox:
  We set the slab scale s1 to be a relatively large value (e.g., 1) and used cross-validation to find an optimal 

value of s0.
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