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Construction and validation 
of a novel prognostic model 
of neutrophil‑related genes 
signature of lung adenocarcinoma
Qianjun Zhu 1,3, Yanfei Chai 1,2,3, Longyu Jin 1, Yuchao Ma 1, Hongwei Lu 2, Yingji Chen 1 & 
Wei Feng 1*

Lung adenocarcinoma (LUAD) remains an incurable disease with a poor prognosis. This study aimed 
to explore neutrophil‑related genes (NRGs) and develop a prognostic signature for predicting the 
prognosis of LUAD. NRGs were obtained by intersecting modular genes identified by weighted 
gene co‑expression network analysis (WGCNA) using bulk RNA‑seq data and the marker genes of 
neutrophils identified from single‑cell RNA‑sequencing(scRNA‑seq) data. Univariate Cox regression, 
least absolute shrinkage and selection operator (LASSO), and multivariate Cox analyses were run 
to construct a prognostic signature, follow by delineation of risk groups, and external validation. 
Analyses of ESTIMAT, immune function, Tumor Immune Dysfunction and Exclusion (TIDE) scores, 
Immune cell Proportion Score (IPS), and immune checkpoint genes between high‑ and low‑risk groups 
were performed, and then analyses of drug sensitivity to screen for sensitive anticancer drugs in 
high‑risk groups. A total of 45 candidate NRGs were identified, of which PLTP, EREG, CD68, CD69, 
PLAUR, and CYP27A1 were considered to be significantly associated with prognosis in LUAD and 
were used to construct a prognostic signature. Correlation analysis showed significant differences in 
the immune landscape between high‑ and low‑risk groups. In addition, our prognostic signature was 
important for predicting drug sensitivity in the high‑risk group. Our study screened for NRGs in LUAD 
and constructed a novel and effective signature, revealing the immune landscape and providing more 
appropriate guidance protocols in LUAD treatment.

Lung carcinoma is the second most commonly diagnosed cancer and the leading cause of cancer death in recent 
 years1. It is divided into two main subtypes: small-cell lung carcinoma (SCLC) and non-small-cell lung carcinoma 
(NSCLC)2. Among NSCLC, lung adenocarcinoma (LUAD) is the most common type in all newly diagnosed 
 cases3. LUAD patients with early stage can receive standard surgical treatment, but the vast majority of patients 
are usually diagnosed at an advanced stage, with a low 5-year survival rate. The tumor microenvironment (TME) 
is a complex micro-ecosystem composed of tumor cells, immune cells, inflammatory cells, microvasculature, and 
extracellular matrix (ECM)4. The heterogeneity of immune cell infiltration is a key factor influencing immune 
response and prognosis in LUAD and other  tumors5,6. Therefore, the prognostic signature based on specific 
immune cell biomarkers can predict the immune response and survival more accurately.

Neutrophils, the most abundant circulating cells in human blood, play a crucial role in fighting infections 
and maintaining dynamic tissue  homeostasis7,8. With the advancement of technology in recent years, such as 
in vivo imaging, high-dimensional transcriptomic and epigenomic approaches, and single-cell RNA-sequencing 
(scRNA-seq), the awareness of neutrophils is no longer limited to the inflammatory response and adaptive 
immunity, but it has also been found to play crucial roles in the growth and development of tumors. Neutrophils 
can release reactive oxygen species (ROS) and induce oxidative DNA damage in tissues, thereby promoting 
 tumorigenesis9,10. Neutrophils also directly support the proliferation of tumor cells through various paracrine 
signaling  pathways11,12. In addition, neutrophils can protect cancer cells from cytotoxic immune cells by inhibit-
ing the killing ability of other immune cells and releasing neutrophil extracellular traps (NETs)13,14. Neutrophils 
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are also closely associated with lung cancer. In RAS-driven lung cancer, neutrophils can release elastase to 
degrade insulin receptor substrate 1 and promote cancer cell  proliferation12. In SOX2 overexpressing non-small 
cell lung cancer models, CXCL58-dependent TANs (Tumer-associated neutrophils) can promote tumor growth 
and  squamification15. Neutrophils can also induce zinc finger protein expression, which in turn promotes the 
epithelial-mesenchymal transition of cancer cells in a mouse model of lung cancer by mediating T-cell rejec-
tion and  hypoxia16. However, the relationship between neutrophils and the prognosis of lung adenocarcinoma 
is unclear. There is mounting evidence suggesting the role of neutrophils in LUAD progression, supporting the 
need for further studies to clarify this relationship.

In this study, we combined scRNA-seq and conventional bulk RNA sequencing analysis to construct a novel 
and accurate 6-gene LUAD prognostic signature. Our signature effectively predicts the prognosis of LUAD 
patients and reveals a potential link between risk characteristics, tumor microenvironment, immunotherapy, 
and drug sensitivity.

Results
Screening for genes associated with neutrophil content by weighted gene co‑expression net‑
work analysis (WGCNA)
Before constructing the WGCNA co-expression network, we wished to further elucidate the relationship between 
neutrophils and the prognosis of LUAD patients. The mRNA transcriptomic data and clinical information of 555 
LUAD patients were downloaded from The Cancer Genome Atlas Program (TCGA, https:// www. cancer. gov/) 
database, and 473 eligible samples were obtained after excluding duplicate samples, normal samples, and samples 
with incomplete information on survival status and time. We used the “CIBERSORT” package to calculate the 
relative neutrophil content of each sample in TCGA-LUAD and then divided the TCGA-LUAD patients into 
high- and low-neutrophil-content groups based on the best cut-off value (cut. off = 0.001917716). Kaplan–Meier 
survival analysis showed that LUAD patients in the high neutrophil content group had a lower survival rate 
(Fig. 1A). It suggested that neutrophils probably play an important role in the prognosis of LUAD patients. 
Based on this result, we used the “WGCNA” package to construct the co-expression network to screen for genes 
significantly associated with neutrophil content in LUAD. First, no outliers were detected in the TCGA-LUAD 
samples (Fig. 1B), and the soft threshold power β was 5 when the fit index of the scale-free topology reached 
0.90 (Figs. 1C, D). Based on the average linkage hierarchical clustering and soft threshold power, we identified a 
total of 19 gene modules (Fig. 1E). Correlation analysis between gene modules and neutrophil content showed 
that the green module had the most significant correlation with high neutrophil content (correlation = 0.18, 
p-value < 0.001) (Fig. 1F). Therefore, we selected 1277 genes from the green module for subsequent analysis 
(Supplementary Table S3).

Identification of neutrophil marker genes
After data processing and quality control, we obtained gene expression profiles of 42,431 cells of 11 primary 
LUAD samples from the Gene Expression Omnibus (GEO, https:// www. ncbi. nlm. nih. gov/ geo/) database. The 
number of genes(nFeature), the sequence count per(nCount), and the percentage of mitochondrial genes(percent. 
mt) were displayed in Fig. 2A. Correlation analysis showed that nCount was positively correlated with nFeature 
(Fig. 2B). We performed principal component analysis (PCA) to reduce dimensionality based on 2000 highly 
variable genes and visualized the top 10 genes with the most significant change (Fig. 2C). We selected the top 
20 principal components (PCs) for t-SNE analysis using the elbow plot (Fig. 2D) and identified 28 different 
clusters. First, we classified all cells into immune (N = 33,524) and non-immune (N = 8907) cells (Fig. 2E) based 
on the level of gene PTPRC (CD45) expression. We then performed the second downscaling of all immune 
cells to obtain 22 clusters, which were cell annotated using the “SingleR” package. After this step, we identified 
six cell types, including B cells, T cells, natural killer (NK) cells, monocytes, macrophages, and dendritic cells 
(DCs) (Fig. 2F). We performed further subgroup clustering of myeloid immune cell populations (monocytes, 
macrophages, DCs). The myeloid immune cells were classified into 13 clusters and next, we defined cellular 
annotations for each cluster by cross-referencing differentially expressed genes in each cluster with typical marker 
genes obtained from the CellMarker database and the PanglaoDB database. Finally, we identified nine cell types 
(Fig. 2G), including macrophages, neutrophils, monocytes, granulocyte–macrophage progenitors (GMP), plas-
macytoid dendritic cells (PDCs), DC1, DC2, DC3, and unknown cells, and cluster 1 was defined as neutrophils. 
Information on the annotation of myeloid immune cell subpopulations is shown in the Supplementary Table S4. 
Overall, after the above steps, we ultimately identified 88 neutrophil marker genes for LUAD (Supplementary 
Table S5), and shown in the heatmap (Fig. 2H).

Functional enrichment of neutrophil‑related genes (NRGs)
We obtained 45 candidate NRGs (Fig. 3A, Supplementary Table S6) after taking intersections of 1277 neutrophil 
module genes and 88 neutrophil marker genes. According to the Gene Ontology (GO, http:// geneo ntolo gy. 
org/) database annotation, NRGs were significantly enriched in 670 items, of which the top 10 were shown in 
the bubble map (Fig. 3B). The biological process (BP) categories mainly included “regulation of neuron death”, 
“humoral immune response”, “neuron death” and “activation of immune response”, etc. The cellular component 
(CC) categories included mainly “collagen-containing extracellular matrix” and “endocytic vesicle”. The Kyoto 
Encyclopedia of Genes and Genomes (KEGG, https:// www. genome. jp/ kegg/) functional enrichment analysis 
showed that NRGs were significantly enriched in 16 pathways. The top 10 were shown in the bubble diagram 
(Fig. 3C) and mainly involved in “Lysosome”, “Cholesterol metabolism”, “Complement and coagulation cascades” 
and “coagulation cascades” pathways.

https://www.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
http://geneontology.org/
http://geneontology.org/
https://www.genome.jp/kegg/
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Construction of the risk model based on NRGs in LUAD
First, we used the TCGA cohort as the training set and the “survival” package for univariate COX regression 
analysis to obtain prognosis-related genes. As shown in the forest plot (Fig. 3D), 16 NRGs were obtained that 
were significantly associated with overall survival (OS) (p-value < 0.05). The least absolute shrinkage and selec-
tion operator (LASSO) regression analysis was then used to screen for key prognostic genes, and ten NRGs 
were identified (Figs. 3E, F) through this step by performing 1000 variable screens and resampling on these 16 
genes and selecting those with more than 900 replicates. Next, we identified six stable prognostic NRGs and 
their regression coefficients (Fig. 3G) by stepwise multiple COX regression analysis. We eventually constructed 
a prognostic risk model containing six NRGs and calculated risk scores according to the following equation, and 
the regression coefficients of six genes included in the prognostic model are shown (Supplementary Table S7):

Figure 1.  Neutrophil-related survival analysis and screening of neutrophil content-related genes by WGCNA. 
(A) Kaplan–Meier survival curves showed that the prognosis was significantly worse in the group with high 
content of neutrophils. (B) TCGA-LUAD samples were clustered and outlier samples were not found. (C,D) 
Based on the near scale-free network distribution criterion, 5 was selected as the soft threshold power. (E,F) 
Correlation analysis of modules with traits constructed 18 non-gray modules, and the green module is 
considered to be the most relevant module for neutrophils.
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Based on the median risk score, we divided the TCGA-LUAD samples into high-risk and low-risk groups. 
Kaplan–Meier survival curves (Fig. 4A) showed that patients in the low-risk group had a better overall prognosis 
than those in the high-risk group (p-value < 0.001). The "timeROC" package was used to construct time-depend-
ent receiver operating characteristic (ROC) curves with area under curve (AUC) of 0.692, 0.661, and 0.660 for 
1, 3, and 5 years (Fig. 4B) respectively in the TCGA cohort. The risk curves and survival status plots (Fig. 4C, 
D) showed that the higher the risk score, the lower the survival rate and the higher the number of deaths. The 
risk heat map (Fig. 4E) suggested that the expression of EREG and PLAUR was higher in the high-risk group 
than in the low-risk group, while the expression of PLTP, CD68, CD69, and CYP27A1 was relatively lower. The 
univariate Cox regression and multivariate COX regression analyses (Figs. 4F, G) suggested that tumor stage and 
risk score were independent prognostic factors for poor survival. Excluding samples with incomplete informa-
tion on survival time and survival status, a total of 398 LUAD samples from GSE72094 were used for external 
validation of the risk model. Consistently, we observed similar results (Fig. 5A–E) in the GSE72094 cohort, all 
suggesting that this prognostic risk model had excellent predictive power for the survival prognosis of LUAD 
patients. In addition, we combined risk scores and different clinicopathological characteristics to construct the 

risk score = −0.1489 ∗ PLTP expression + 0.0722 ∗ EREG expression − 0.5497 ∗ CD68 expression

− 0.1891 ∗ CD69 expression+ 0.2204 ∗ PLAUR expression− 0.1398 ∗ CYP27A1 expression

Figure 2.  Single-cell analysis and acquisition of neutrophil marker genes. (A) Quality control of scRNA-seq 
data of GSE131907. (B) The number of genes detected was positively associated with the depth of sequencing. 
(C) Scatter plots showed the top 2000 highly variable genes. (D) Principal component analysis was employed 
for dimensionality reduction, and the suitable PCs were selected by elbow point. (E) First, 42,431 cells were 
annotated as “immune cells” and “non-immune cells” by the t-SNE algorithm. (F) Second, further detailed 
annotation of immune cells. (G) Finally, 13 clusters were obtained after the thirst-level classification of myeloid 
immune cells, and 9 cell types were identified by marker gene annotation. (H) Heatmap demonstrated the 
marker genes with differential expression in 9 types of cells.
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Nomogram (Fig. 5F). Based on the calibration curves for OS at 1, 3, and 5 years (Fig. 5G), the predicted and 
actual survival rates of this nomogram were very close, suggesting that the nomogram has good predictive value 
in predicting OS of LUAD patients.

Correlation of high‑ and low‑risk groups with clinicopathological characteristics
The clinicopathological characteristics of patients in the high- and low-risk groups in the TCGA cohort were 
shown in Fig. 6A. The risk scores were significantly correlated with clinical characteristics such as tumor stage, 
T-stage, and N-stage (Figs. 6B–D). The time-dependent ROC curves (Figs. 6E–G) constructed based on the 
clinicopathological characteristics showed that the AUC of the risk score predicting 1-year and 3-year survival 
was 0.692 and 0.661, respectively, which were close to the AUC of tumor stage, and the AUC of the risk score 
predicting 5-year survival was 0.660, which was slightly higher than the AUC of tumor stage predicting 5-year 
survival. To further investigate the relationship between prognosis and risk score in different clinicopathological 
characteristics, we divided patients into two different subgroups according to age (Fig. 6H, I), gender (Fig. 6J, 

Figure 3.  Functional enrichment analysis of neutrophil-related genes and construction of a neutrophil-related 
prognostic signature. (A) Acquisition of candidate NRGs. (B,C) Enrichment analysis using the GO database and 
KEGG database. (D) Forest plots showed the prognostic value detection of neutrophil-related genes. (E,F) Lasso 
regression analysis to identify signature genes and 16 neutrophil-related genes were selected to construct the 
LASSO model. (G) 6 genes which were selected by stepwise multiple COX regression analysis for the neutrophil-
related prognostic model.
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K), tumor stage (Fig. 6L, M), T stage (Fig. 6N, O) M stage (Fig. 6P, Q) and N stage (Fig. 6R, S). We found that 
higher risk scores were significantly associated with Stage III–IV, T3–4, and N1–3 stages, and OS was longer 
for patients in the low-risk group than for those in the high-risk group in most clinical subgroups (except for 
patients in the M1 subgroup). These results suggested that the prognostic model remains a strong predictor for 
patients with different clinicopathological characteristics.

Differences in the tumor microenvironment and gene set enrichment between high‑ and 
low‑risk groups
We further investigated the correlation between risk scores and ESTIMATE-related scores. We found a negative 
correlation between Immune, Stromal, and ESTIMATE scores with risk scores (Fig. 7A–E), and a positive cor-
relation between tumor purity and risk scores (Fig. 7F). To identify pathways and functions that were significantly 
enriched between high- and low-risk groups, we performed gene set enrichment analysis (GSEA). In terms of GO 
function, the high-risk group focused on “nucleosome assembly”, “nucleosome organization”, “DNA packaging 

Figure 4.  Identification of the prognostic six-gene risk signature in the TCGA cohort. (A) Kaplan–Meier 
curves of overall survival probability of risk groups in TCGA cohort. (B) ROC curves for 1, 3, and 5 years and 
their AUCs in the TCGA cohort. (C,D) Risk scores and survival status distribution of LUAD patients in high- 
and low-risk groups in TCGA cohort. (E) Heatmap showed the expression difference for 6 neutrophil-related 
genes among the risk groups in TCGA. (F,G) Forest plots of univariate and multivariate Cox regression analyses 
revealed that risk score could be an independent prognostic factor.
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complex”, “protein DNA complex” and “protein DNA complex assembly” (Fig. 7G). The low-risk group focused 
on “adaptive immune response”, “antigen receptor-mediated signaling pathway” and “the external side of plasma 
membrane” (Fig. 7H). In terms of KEGG pathways, mRNAs in the high-risk group were significantly enriched 
in “cell cycle”, “DNA replication”, “pyrimidine metabolism” and “spliceosome” pathways (Fig. 7I). However, 
mRNAs in the low-risk group were significantly enriched in “allograft rejection”, “cell adhesion molecules cams” 
and “primary immunodeficiency” pathways (Fig. 7J).

Immune landscapes and immunotherapy
We used single sample gene set enrichment analysis(ssGSEA) to evaluate the activity of immune-related path-
ways in different risk groups. It was clear that there were significant differences (Fig. 8A) in the vast major-
ity of immune-related function scores between the high- and the low-risk groups (except for TYPEIIFNRE-
PONSE), indicating a strong correlation between high-risk phenotype and immunosuppression. We also studied 

Figure 5.  Validation of the prognostic six-gene risk signature in GSE72094 and construction of the nomogram. 
(A) Kaplan–Meier curves of overall survival probability of risk groups in GSE72094. (B) ROC curves for 1, 3, 
and 5 years and their AUCs in GSE72094. (C,D) Risk scores and survival status distribution of LUAD patients in 
high- and low-risk groups in GSE72094. (E) Heatmap showed the expression difference for 6 neutrophil-related 
genes among the risk groups in GSE72094. (F) Nomogram of TCGA cohorts based on the risk scores and other 
clinical characteristics. (G) Calibration graphs investigated that the actual survival rates of LUAD patients were 
close to the nomogram-predicted survival rates.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18226  | https://doi.org/10.1038/s41598-023-45289-8

www.nature.com/scientificreports/

the relationship between risk scores and gene expression levels in immune checkpoints. Correlation analysis 
(Fig. 8C) showed that, except for CD276 and TNFSF9, most immune checkpoint genes were up-regulated in 
low-risk groups. In the aspect of immunotherapy, immune checkpoint blockade (ICB) therapy represented by 
Programmed Death 1 (PD-1) and Cytotoxic T Lymphocyte Antigen-4 (CTLA4) blockers is an effective means 
to treat tumors at present. We obtained IPS (Immune cell Proportion Score) for each TCGA-LUAD patient 
from The Cancer Immune Atlas (TCIA, https:// www. tcia. at/ home) database to explore the role of risk scores in 
predicting response to immunotherapy. We found that the overall average value of IPS in the low-risk group was 
significantly higher than that in the high-risk group, whether in tumor samples that were predicted to be negative 
for both immunotherapy regimens (Fig. 8D) or in samples that were positive for a single regimen (Fig. 8E, F) 
or both regimens (Fig. 8G). In addition, we found that the Tumor Immune Dysfunction and Exclusion (TIDE) 
score (Fig. 8B) of the low-risk group was lower than that of the high-risk group, indicating that patients in the 
low-risk group were more likely to benefit from immunotherapy.

Figure 6.  Correlations analysis between the risk signature and clinicopathological characteristics. (A) Heatmap 
demonstrated the differences in clinicopathological features between high- and low-risk groups in the TCGA 
cohort. (B–D) The bar plot showed the correlation between risk score and Stages (B), T (C), and N (D) of 
LUAD. (E–G) ROC curves for 1-year (E), 3-year (F), and 5-year (G) survival prediction, and clinicopathological 
characteristics. (H–S) Kaplan–Meier plots depicted subgroup survival analysis stratified by age (H,I), sex (J,K), 
tumor stage (L,M), T (N,O), M (P,Q), and N (R,S). *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001.

https://www.tcia.at/home
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Figure 7.  Evaluation of tumor microenvironment and gene set enrichment analysis in high- and low-risk 
groups. (A) Spearman analysis between stromal score and risk score. (B) Spearman analysis between immune 
cell score and risk score. (C–F) Violin plots showed the differences in the stromal score (C), immune scores 
(D), estimate scores (E), and tumor purity (F) in high- and low-risk groups. *p-value < 0.05, **p-value < 0.01, 
***p-value < 0.001. (G,H) Top enriched GO functions in high- (G) and low-risk groups (H). (I,J) Top enriched 
KEGG pathways in high- (I) and low-risk groups (J).
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Figure 8.  Risk signature-related immune landscapes. (A) The ssGSEA scores of 13 immune-related functions 
in high- and low-risk groups. (B) TIDE scores of high- and low-risk groups. (C) The differences of immune 
checkpoint gene expression in high- and low-risk groups. (D–G) Violin plots showed the differences in IPS 
among different risk groups in the four situations: negative immunoresponse to both PD-L1/PD-1 inhibitors 
and CTLA-4 inhibitors (D); positive immunoresponse to PD-L1/PD-1 inhibitors (E); positive immunoresponse 
to CTLA-4 inhibitors (F); positive immunoresponse to both PD-L1/PD-1 inhibitors and CTLA-4 inhibitors (G). 
*p-value < 0.05, **p-value < 0.01, ***p-value < 0.001.
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Selection of targeted and chemotherapeutic agents suitable for patients in the high‑risk group
To explore targeted and chemotherapeutic agents for patients in high-risk groups, we translated the LUAD-
TCGA gene expression profile into a drug sensitivity matrix by the “oncopredict” package. The drug sensitiv-
ity results suggested that a total of 32 drugs differed significantly between high- and low-risk groups. Among 
these, the high-risk LUAD patients were more sensitive to 11 drugs (Fig. 9A–K), including Axitinib(VEGFR 
inhibitor), AZD6482(PI3Kβ inhibitor), BMS-754807(IGF-1R/IR inhibitor), Doramapimod(p38 MAPK inhibi-
tor), GSK269962A(ROCK inhibitor), JQ1(BET BRD inhibitor), PF-4708671(S6K1 inhibitor), Ribociclib(CDK4/6 
inhibitor), SB216763(GSK-3 inhibitor), SB505124(ALK4/5/7 inhibitor), ZM447439(Aurora inhibitor).

Validation of signature genes in LUAD tissue
After obtaining the NRGs and constructing a NRGs-related prognostic signature, we further analyzed the expres-
sion of signature genes in the TCGA-LUAD samples and the samples we obtained from LUAD patients. Fig-
ure 10A showed that the expression of CD68, CD69 and CYP27A1 were significantly downregulated, and the 
expression of PLTP were significantly upregulated in tumor samples. Similarly, the qRT‐PCR results showed 
that the mRNA expression levels of these four genes have significant differences in tumor tissues and adjacent 
normal tissues (Fig. 10B).

Discussion
LUAD is the main pathological type of NSCLC, which is considered to be related to a variety of immune cell infil-
tration in the lung tumor  microenvironment17. The tumor microenvironment refers to the surrounding microen-
vironment of tumor cells, including blood vessels, immune cells, fibroblasts, bone marrow-derived inflammatory 
cells, various signal molecules, and  ECM18. In the past decade, the central role of tumor microenvironment in 
the occurrence and development of primary lung cancer has been  recognized17,19,20. In addition, extrathoracic 
malignant tumors, including breast cancer, colon cancer, and melanoma, reprogram the lung microenvironment 
to support the colonization and growth of spreading tumor cells, resulting in secondary lung  tumors21.

Neutrophils are one of the myeloid immune cells and an important component of the tumor microenviron-
ment. In recent years, neutrophils have received more and more attention. Several studies have found that neu-
trophils are not only involved in the initiation and regulation of inflammation and immune response, but also 
play crucial roles in cancer progression and metastasis, via direct effects on cancer  cells10,12,22,23, remodeling of the 
 ECM24,25, stimulation of  angiogenesis16,26, activation of protumorigenic  macrophages27, inhibition of antitumor 

Figure 9.  Predicted sensitivity scores of drugs that are candidate therapeutic agents for high-risk LUAD 
patients. (A) Axitinib, (B) AZD6482, (C) BMS-754807, (D) Doramapimod, (E) GSK269962A, (F) JQ1, (H) 
PF-4708671, (I) Ribociclib, (J) SB216763, (K) SB505124, (L) ZM447439.
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 immunity16,28, production of  ROS10,26,29, or release of  NETs14,30–32. Therefore, we hope to further explore the 
prognostic relationship between neutrophils and LUAD, and establish an innovative prognostic signature.

In this study, we found that TCGA-LUAD patients with high neutrophil content had a significantly worse 
prognosis than those with low neutrophil content patients, which proved the correlation between neutrophils 
and the prognosis of LUAD. We combined the modular genes screened by WGCNA crossed with neutrophil 
marker genes obtained from single-cell sequencing analysis to obtain 45 NRGs. Ten prognosis-related genes 
were screened by univariate regression analysis and LASSO regression analysis, and the parameters and genes 
for the final prognosis model (PLTP, EREG, CD68, CD69, PLAUR, CYP27A1) were determined by stepwise 
multiple regression analysis.

Among these genes, some genes have been proven to be related to the occurrence and development of 
malignant tumors, but others have not been deeply studied. Plasma phospholipid transfer protein (PLTP) is a 
protein-encoding gene previously identified as a direct target gene of p53 in HepG2  cells33. The proteins it encodes 
play complex roles in multiple processes from tumor proliferation to immune function. Gnanapradeepan et al. 
found that PLTP was an effective inhibitor of cancer cell colony formation and played an important role in con-
trolling the sensitivity of cells to iron  death33. Desrumaux et al. found that PLTP modulated adaptive immune 
function by regulating the polarization of CD4+ T cells towards the pro-inflammatory Th1  type34. In addition, 
PLTP has recently been reported to regulate the phagocytic activity of macrophages and microglia, increase the 
production of the pro-inflammatory cytokine interleukin 6 (IL-6), and regulate the activation and degranulation 
of  neutrophils35. Epidermal regulatory protein (EREG), one of the ligands of EGFR, is lowly expressed in most 
normal tissues. Elevated ERER levels can lead to aberrant activation of the epidermal growth factor receptor 
(EGFR/ERBB1), and the activated EREG/EGFR pathway further regulates various cellular functions, including 
cancer cell proliferation, survival, metastasis, and  angiogenesis36,37. It has been reported that the EREG protein 

Figure 10.  Measure the signature genes expression in the LUAD tissue. (A) The signature gene expression in 
TCGA-LUAD samples (normal = 54, tumor = 501). (B) The mRNA expression of CYP27A1, CD68, CD69, and 
PLTP in 15 primary tumor tissues and 15 adjacent normal tissues. Statistics were considered significant when 
the *p-value was less than 0.05, **p-value less than 0.01, ***p-value less than 0.001 and ****p-value less than 
0.0001.
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is significantly overexpressed in LUAD and associated with invasive tumor  phenotype38. In bladder cancer, the 
expression of EREG in advanced patients is increased, which is related to the shorter  OS39. In addition, the level 
of EREG protein in colorectal cancer is closely associated with tumor invasion and distant  metastasis40. CD68 is 
a 110 KDa transmembrane glycoprotein, which is widely expressed in myeloid cell lines, including monocytes, 
macrophages, neutrophils, basophils, DCs, and myeloid progenitor  cells41. In a CD68-associated pan-cancer 
analysis, CD68 was found to be highly expressed in many cancer types and associated with immune infiltra-
tion in tumor mutation burden (TMB), microsatellite instability (MSI), and TME, which may become a new 
immune checkpoint in future tumor  immunotherapy42. CD69, a transmembrane type II C lectin  protein40, is 
an early activation marker for a variety of leukocytes, including lymphocytes, granulocytes, macrophages, and 
dendritic cells, and plays an important role in the regulation of inflammatory and immune  responses43,44. The 
role of CD69 in tumor immune response is controversial. For example, in melanoma patients, the expression 
of CD69 on memory CD8T cells in tumor antigen-specific tissues can prevent the growth and spread of cancer 
cells by promoting immune  homeostasis45. In lung cancer patients who responded to PD-1/PD-L1 blocking, 
the expression of CD69 was upregulated, indicating that CD69 expression levels can effectively predict cancer 
response to PD-1/PD-L1 blockade  immunotherapy46. Koyama-Nasu et al. found that anti-CD69 antibody could 
effectively inhibit the occurrence of lung metastasis and reduce the depletion of CD8T cells in tumor-bearing 
mice inoculated with 4T1 breast  cancer47. In addition, it has been reported that anti-CD69 antibodies can 
enhance the anti-tumor effects against the murine renal cell carcinoma (Renca) cell line by promoting T cell 
proliferation, IL-2 expression, and  cytotoxicity48. Thus, CD69 may have a double-edged sword effect on tumor 
immunity. Urokinase-type plasminogen activator receptor (PLAUR) is involved in a variety of biological pro-
cesses, including angiogenesis, monocyte migration, cancer metastasis, trophoblast implantation, and wound 
healing. Its ligand uPA catalyzes plasminogen to form plasminogen and produces a proteolytic cascade, which 
contributes to tissue remodeling and ECM decomposition, and creates favorable conditions for tumor invasion 
and  metastasis49. One study reported that PLAUR was significantly overexpressed in renal clear cell carcinoma 
and the level of PLAUR and PLAUR methylation was significantly correlated with poor prognosis and partici-
pated in the progression of renal clear cell  carcinoma50. Similarly, Zhang et al. demonstrated that PLAUR can 
promote the growth and metastasis of gastric cancer and promote the loss of nesting apoptosis tolerance in 
gastric cancer cells by constructing the MKN45 gastric cancer mouse model and gastric cancer cell suspension 
anoikis model for 24  h51. CYP27A1 encodes a mitochondrial enzyme that is a member of the cytochrome P450 
superfamily and is involved in the synthesis of bile acids, the oxidation of cytochrome P450, and the hydroxyla-
tion of cholesterol and vitamin D3. Liang et al. found that overexpression of CYP27A1 in bladder cancer cells 
can increase intracellular 27-HC production and reduce intracellular cholesterol levels. However, restoration 
of CYP27A1 expression inhibited the progression of T24 and UM-UC-3 bladder cancer cells, suggesting that 
CYP27A1 could inhibit bladder cancer cell proliferation by regulating cholesterol  homeostasis49.Similarly, in 
patients with renal clear cell carcinoma, CYP27A1 could inhibit tumor proliferation and metastasis by activating 
the LXRs/ABCA1  axis52, which provides a new idea for anti-tumor therapy in the future.

The prognostic risk model was constructed according to the selected 6 NRGs, and the risk score of TCGA-
LUAD patients was calculated. The patients were then divided into high- and low-risk groups based on median 
values. We found that patients in the high-risk group had a worse prognosis. The results of univariate regres-
sion analysis, multifactor regression analyses, and ROC curves suggest that our risk signature can predict the 
prognosis of LUAD independently of other indicators. We used GSE70294 as the test set to verify the prognostic 
signature externally, and the results were consistent with those of the TCGA-LUAD queue. Similarly, the prog-
nostic signature remained applicable across different subgroups of clinicopathological features. The above results 
prove the universal applicability and validity of the signature. In addition, we constructed nomograms based on 
the signature and the clinicopathological indexes of the patients, The ROC curves of 1 year, 3 years, and 5 years 
illustrate its effectiveness in predicting OS in LUAD patients.

With the continuous understanding of TME, the view on the occurrence and development of cancer has grad-
ually changed from tumor cells as the center to a complex tumor ecosystem that supports tumor growth, metas-
tasis, and spread. Exploring differences in the tumor microenvironment can help guide and improve the role 
of various cancer therapies, particularly immunotherapies that act by enhancing the host’s anti-tumor immune 
 response53. In our study, the high-risk group had lower immune and interstitial scores and higher tumor purity 
than the low-risk group. It has been suggested that "hot" or inflammatory tumors show higher immunogenicity 
and tend to have a better immunotherapeutic response, according to the level of immune cell infiltration in the 
tumor  microenvironment54. Therefore, the poor prognosis of patients in high-risk groups may be related to the 
immunosuppression of the LUAD tumor microenvironment. GSEA analysis shows that the mRNAs associated 
with the high-risk group were enriched in common tumor-related functions and pathways, such as nucleosome 
assembly, cell cycle, DNA replication, and so on. The mRNAs associated with the low-risk group were enriched in 
immune-related aspects, such as adaptive immune response and antigen receptor mediation. The results suggest 
that samples from the high-risk group may be more active in biological processes related to tumor development, 
which may contribute to the poorer prognosis of patients in the high-risk group.

In addition to effectively predicting the prognosis of LUAD patients, our study also found a significant 
correlation between risk groups and immune landscape and immunotherapy response. The results of ssGSEA 
showed that the scores of most immune function activities in the low-risk group were higher than those in the 
high-risk group. Immune checkpoint inhibitors (ICIs), including PD-1, PD-L1, and CTLA-4 inhibitors, can 
reactivate the anti-tumor response of the innate immune system by blocking the inhibitory immune checkpoint 
receptors present in TME or on tumor  cells55,56. To further investigate the effect of immunotherapy in different 
risk groups, we compared the gene expression levels of immune checkpoints between the two groups. The major-
ity of immune checkpoint gene expression levels are higher in the low-risk group than in the high-risk group, 
which means that patients in the low-risk group may have a stronger immune response and be more sensitive to 
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immune checkpoint inhibitors. The IPSs of patients in both risk groups indicated that the patients in the low-risk 
group had a better response to PD-1 and CTLA-4 blocking therapy, The same results were found for the TIDE 
calculation system based on tumor immune escape mechanisms. The higher TIDE scores in the high-risk group 
indicate that these patients are more likely to experience immune escape and have poorer efficacy with ICB 
therapy. The above results confirm our conclusions based on TME correlation analysis. Therefore, the differences 
in the immune landscape revealed by the risk groupings based on our model suggest that the differences in the 
prognosis of LUAD patients may stem from heterogeneity in TME, which provides a new idea for our future 
research. In addition, we screened 11 targeted or chemotherapeutic agents that are sensitive to the high-risk 
group through drug sensitivity analysis. This evidence could also help guide chemotherapy and targeted therapy 
for high-risk LUAD patients. After constructing a prognostic signature, the expression of these genes in LUAD 
tissues remained unknown, We, therefore, measured their expression in the TCGA-LUAD samples and the 
tissues we collected. We found that the mRNA expression CD68, CD69 and CYP27A1 levels were significantly 
downregulated, and PLTP levels was significantly up regulated in tumor samples. These results suggested the 
signature genes may be potential therapeutic targets in LUAD.

However, our study still has some limitations. Firstly, the prognostic predictions and subsequent analyses in 
this study were based on data from the TCGA and GEO databases, and all samples were obtained retrospectively, 
which may lead to bias. Secondly, the stability of the signature performance needs to be confirmed in more 
prospective studies. Finally, the sensitivity of LUAD patients to chemotherapy and targeted agents also needs to 
be further validated in clinical studies with large samples.

In summary, we constructed a prognostic model composed of 6 NRGs through the comprehensive analysis of 
bulk RNA sequencing and single-cell sequencing, which can accurately predict the prognosis of LUAD patients. 
To some extent, this signature reveals the TME and immune landscape of LUAD, which can help guide more 
effective comprehensive treatment of LUAD patients.

Methods
Data source and acquisition
The single-cell mRNA expression file, GSE131907 was downloaded from the GEO database to screen neutrophil 
marker genes for LUAD. The mRNA transcriptome data of 555 LUAD patients (including 501 tumor samples and 
54 normal paracancerous tissue samples) were downloaded from TCGA database. The gene expression data of 
TCGA-LUAD were downloaded and analyzed in the format of fragments per kilobase per million (FPKM). To 
verify the predictive effect of the constructed model on the prognosis of LUAD patients, the dataset containing 
442 LUAD samples, GSE72094, was downloaded from the GEO database for external validation of the prognos-
tic models. A summary of the clinicopathological characteristics of patients from TCGA and GEO database is 
shown in Supplementary Table S1. This study used publicly available datasets that had received ethical approval 
from the original study Each participant received informed consent.

Neutrophil infiltration and related survival analysis
To explore the relationship between neutrophil content and survival of LUAD patients, we calculated the rela-
tive neutrophil content of each TCGA-LUAD sample by the “CIBERSORT”  package57. The “survminer” package 
(https:// rdocu menta tion. org/ packa ges/ survm iner/), and the “surv-cutpoint” function were used to calculate 
the optimal cut-off value (cut. off) to distinguish between the high and low neutrophil content groups in the 
TCGA-LUAD samples. Survival analysis was carried out using the "survival" package (https:// cran.r- proje ct. org/ 
web/ packa ges/ survi val/ index. html) and the Kaplan-Meier method was used to analyze and compare survival 
differences between the high and low neutrophil content groups.

Construction of the WGCNA co‑expression network
After grouping the TCGA-LUAD samples according to the characteristics of high or low neutrophil content, 
the gene expression data of TCGA-LUAD were analyzed with the “WGCNA”  package58 to obtain the genes most 
related to neutrophil content. The samples were clustered to determine the overall correlation of all samples in 
the dataset and to exclude outliers (missing values and outliers). Correlation coefficient weighting was used to 
ensure that the connections between genes in the network followed a scale-free network distribution, and the 
soft threshold power β was selected based on the lowest power with a high value of the scale-free topological 
fitting index, with the minimum gene/module set to 100, to filter out highly similar modules for constructing 
the co-expression network. Finally, we conducted a correlation analysis between modules and traits to identify 
the modular genes most correlated with neutrophil content.

Identification of neutrophil marker genes by single‑cell sequencing analysis
We selected 11 primary LUAD samples from the single-cell dataset GSE131907 for subsequent analysis. We used the 
"Seurat"  package59,60 to process 10× scRNA-seq data to build an S4 object and filter out low-quality cells according 
to the quality control standards: 300 < nFeature < 7500; 200 < nCount < 50,000; percent.mt < 10. First, we used the 
“NormalizedData” function to normalize the scRNA-seq data with the default normalization method and scaling 
factor. Then, we used the “FindVariableFeatures” function to identify the top 2000 highly variable genes and used 
the “ScaleData” function to normalize the scRNA-seq data. We performed PCA on the highly variable genes using 
the “RUNPCA” function to identify significant PCs. Based on the Euclidean distance of PCA, we used the “Find-
Neighbors” function, “FindClusters” function, and “RunTSNE” function for cell clustering analysis of the top 20 
PCs, and then used the “FindAllMarkers” function to calculate the differentially expressed genes for each cluster. 
To identify marker genes for neutrophils, we used the “SingleR”  package61,62, the CellMarker database (http:// xteam. 

https://rdocumentation.org/packages/survminer/
https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/survival/index.html
http://xteam.xbio.top/CellMarker/
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xbio. top/ CellM arker/), and the PanglaoDB database (https:// pangl aodb. se/) to annotate cells in different clusters, 
and genes with log2FC absolute value > 1 and adjust p-value < 0.05 were considered as marker genes.

Functional enrichment analysis of GO and KEGG
The obtained modular genes were intersected with the neutrophil marker genes acquired from analyses of 
scRNA-seq data to filter NRGs. We used the “clusterProfiler”  package63 to perform the GO and KEGG functional 
enrichment  analysis64,65 on the screened NRGs. GO analysis was performed using the “enrichGO” function, 
and GO annotation was based on the genome-wide annotation package published by the Bioconductor project 
(org.Hs.eg.db). KEGG analysis was performed using the “enrichKEGG” function. Adjust p-value < 0.05 was 
considered significantly enriched.

Construction and validation of a prognostic model based on NRGs
We used the “survival” package to perform univariate COX regression analysis to evaluate the prognostic value of 
NRGs on OS in TCGA-LUAD patients, with p-value < 0.05 considered to be associated with prognostic relevance. 
Next, the LASSO regression algorithm in the “glmnet” package was used to establish the penalty coefficient and 
selection variables, and the ten-fold cross-validation method was used to determine the penalty coefficient (λ) 
of the regression model. Finally, based on the Lasso regression analysis of the selected optimal number of vari-
ables, the multivariate Cox regression analysis was further carried out with the “Coxph” function and the “step” 
function in R software. We calculated the risk score for each LUAD patient in the TCGA cohort according to 
the following formula:

The formula was determined from the linear combination of gene expression levels and weighted with the cor-
responding regression coefficients from the stepwise multivariate Cox proportional risk regression model. Based 
on the median cut-off values of the risk scores, we divided the TCGA-LUAD patients into high- and low-risk 
groups. Kaplan–Meier method and log-rank tests were used to analyze and compare the statistical significance of 
OS and survival differences between different risk groups. The result was considered to be statistically significant 
when p-value < 0.05. Time-dependent ROC curves were then plotted at 1, 3, and 5 years using the “timeROC” 
package to assess the efficacy of the prognostic model. When the AUC is greater than 0.6, it is considered to 
have great prediction ability. In addition, we used the “pheatmap” package and the “ggplot2” package to plot 
risk curves, survival status maps, and genetic risk heat maps for LUAD patients based on different risk groups to 
explore the relationship between risk scores, patients’ survival, and prognostic gene expression. Finally, we used 
the univariate and multifactorial COX analyses to identify the prognostic significance of risk score and clinical 
characteristics. To validate the predictive power of the model, GSE72094 was used as the validation set and the 
model was externally validated using K-M survival analysis and AUC. Based on the prognostic signature and 
clinical characteristics of samples, the “rms” package (https:// cran.r- proje ct. org/ web/ packa ges/ rms/ index. html) 
was used to construct the nomogram. The performance of the nomogram was evaluated using calibration curves 
and 1-, 3-, and 5-year ROC curves.

Correlation analysis of clinicopathological characteristics of prognostic models
To explore the correlation between risk scores and clinicopathological characteristics (age, gender, tumor stage), 
only TCGA-LUAD samples with complete clinical information were retained. We used the “complexheatmap” 
package to create heat maps of individual clinical characteristics between high and low-risk groups and per-
formed correlation analyses. The “ggplot2” package and the “ggpubr” packages were used for graphic visualiza-
tion. We then used the “timeROC” package to construct a ROC curve based on risk scores and clinicopatho-
logical characteristics to compare the predictive power for 1-, 3- and 5-year survival in LUAD patients. Finally, 
we grouped patients according to different clinicopathological characteristics to compare the difference in OS 
between high- and low-risk groups.

Tumor microenvironment analysis and gene set enrichment analysis
We used the “ESTIMATE” package for tumor microenvironment analysis and quantified the data of LUAD 
transcriptome profiling by stromal cell score (Stromal Score) and immune cell score (Immune score). The sum 
of the Stromal Score and Immune score is equal to the tumor microenvironment score (ESITIMAT Score). The 
ESITIMAT Score can be used to estimate tumor purity, the lower the ESITIMAT Score, the higher the tumor 
purity. Then, we explored the relationship between risk score and Stromal Score, Immune score, ESITIMAT Score, 
and tumor purity to investigate the correlation between tumor heterogeneity and risk scores. The pathways and 
functions enrichment analysis for the mRNAs associated with high- or low-risk groups was carried out using 
c5.go.symbols.gmt and c2.cp.kegg.symbols.gmt as gene sets database at 1,000 random sample permutations by 
the “GSEA” function of the “clusterProfiler” package. The enrichment functions or pathways were statistically 
significant when the p-value < 0.05.

Immune correlation analysis
The “GSVA”  package66 and the “GSEABase” package were used to analyze the differences in immune-related 
functions between high- and low-risk groups, and we further compared the expression levels of immune check-
point-related genes between high- and low-risk groups. In order to investigate the response of high- and low-risk 
groups to different immunotherapies, the TIDE scores were calculated separately for each sample on the TIDE 

risk score =
∑n

i=1
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)

∗ expression
(
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website (http:// TIDE. dfci. harva rd. edu/67, and the IPS of each TCGA-LUAD sample was obtained from  TCIA68 
to predict the sensitivity of different risk groups to CTLA-4 and PD-1 blockers.

Drug screening and sensitivity analysis
We hope to further identify new potential targets and more effective drugs for the treatment of LUAD, and 
conduct drug screening and sensitivity analysis. The “oncoPredict” package was used to predict the therapeutic 
response of common targeted drugs and chemotherapeutic agents in cancer  patients69. The package matches the 
gene expression profile to the half-maximal inhibitory concentration (IC50) of tumor cell lines to drugs, which 
comes from Genomics of Drug Sensitivity in Cancer (GDSC, https:// www. cance rrxge ne. org/) and Cancer Cell 
Line Encyclopedia (CCLE, https:// sites. broad insti tute. org/ ccle/). Non-paired t-test was used to analyze the drug 
sensitivity between the two groups. The p-value < 0.01 was considered to be statistically significant.

Tissue samples collection and quantitative real‑time PCR (qRT‑PCR)
15 primary tumor tissues and adjacent normal tissues were collected from the LUAD patients in the Third 
Xiangya Hospital of Central South University, and informed consent was obtained from all patients. None of the 
patients had undergone chemotherapy, radiotherapy, target therapy or immunotherapy. The study was approved 
by the Medical Ethics Committee of the Third Xiangya Hospital of Central South University. Total RNA from 
tissues was extracted using Trizol reagent (Invitrogen, USA) following the manufacturer’s instructions. cDNA 
was synthesized using a reverse transcription kit (Accurate Biology, Hunan, China), qRT-PCR was performed 
using SYBR Green premix qPCR Kit (Accurate Biology, Hunan, China) on Roche LightCycler 480 II (Roche, 
Basel, Switzerland). ACTB was used as internal controls for the normalization. Relative mRNA expression levels 
were calculated using the 2−ΔΔCt method. The primer sequences are shown in Supplementary Table S2.

Statistical methods
All statistical analyses were carried out by R software (version 4.2.1). Wilcoxon test and Kruskal–Wallis test were 
used to compare the two groups and more groups. Kaplan–Meier method was used to draw a prognostic survival 
curve, and a Log-rank test was used to evaluate the significance of statistical differences. The Spearman test was 
used for correlation analysis and correlation coefficient calculation.

Institutional review board statement
The study was conducted in accordance with the Decla-ration of Helsinki, and approved by the Institutional 
Review Board of Third Xiangya Hospital OF Central South University (Fast 23438, 2023.07.03) for studies 
involving humans. Exemption from informed consent of all subjects involved in the study, subject to review and 
approval by the In-stitutional Review Board of Third Xiangya Hospital of Central South University.

Informed consent statement
Exemption from informed consent of all subjects involved in the study, subject to review and approval by the 
Institutional Review Board of Third Xiangya Hospital of Central South University.

Data availability
The data presented in this study are openly available in the TCGA and GEO databases. The names of the reposi-
tory/repositories and accession number(s) can be found below: https:// portal. gdc. cancer. gov/, TCGA.GDC; 
https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE13 1907, GSE131907; https:// www. ncbi. nlm. nih. gov/ 
geo/ query/ acc. cgi? acc= GSE13 1907,GSE72 094.

Received: 22 July 2023; Accepted: 18 October 2023

References
 1. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 

countries. CA Cancer J. Clin. 71, 209–249 (2021).
 2. Sher, T., Dy, G. K. & Adjei, A. A. Small cell lung cancer. Mayo Clin. Proc. 83, 355–367 (2008).
 3. Travis, W. D. et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of genetic, clinical and radiologic 

advances since the 2004 classification. J. Thorac. Oncol. 10, 1243–1260 (2015).
 4. Bruni, D., Angell, H. K. & Galon, J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat. 

Rev. Cancer 20, 662–680 (2020).
 5. Zhang, Y. & Zhang, Z. The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating 

immune cells and their therapeutic implications. Cell Mol. Immunol. 17, 807–821 (2020).
 6. Ren, X. et al. Insights gained from single-cell analysis of immune cells in the tumor microenvironment. Annu. Rev. Immunol. 39, 

583–609 (2021).
 7. Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 

(2013).
 8. Quail, D. F. et al. Neutrophil phenotypes and functions in cancer: A consensus statement. J. Exp. Med. 219, 11 (2022).
 9. Knaapen, A. M. et al. Neutrophils cause oxidative DNA damage in alveolar epithelial cells. Free Radic. Biol. Med. 27, 234–240 

(1999).
 10. Wculek, S. K., Bridgeman, V. L., Peakman, F. & Malanchi, I. Early neutrophil responses to chemical carcinogenesis shape long-term 

lung cancer susceptibility. iScience 23, 101277 (2020).
 11. Antonio, N. et al. The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer. EMBO 

J. 34, 2219–2236 (2015).
 12. Houghton, A. M. et al. Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat. Med. 16, 219–223 

(2010).

http://TIDE.dfci.harvard.edu/
https://www.cancerrxgene.org/
https://sites.broadinstitute.org/ccle/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE131907
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE131907,GSE72094
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE131907,GSE72094


17

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18226  | https://doi.org/10.1038/s41598-023-45289-8

www.nature.com/scientificreports/

 13. Xu, W. et al. Immune-checkpoint protein VISTA regulates antitumor immunity by controlling myeloid cell-mediated inflammation 
and immunosuppression. Cancer Immunol. Res. 7, 1497–1510 (2019).

 14. Zhang, Y. et al. Interleukin-17-induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic 
cancer. J. Exp. Med. 217, 90354 (2020).

 15. Mollaoglu, G. et al. The lineage-defining transcription factors SOX2 and NKX2-1 determine lung cancer cell fate and shape the 
tumor immune microenvironment. Immunity 49, 764–7799 (2018).

 16. Faget, J. et al. Neutrophils and snail orchestrate the establishment of a pro-tumor microenvironment in lung cancer. Cell Rep. 21, 
3190–3204 (2017).

 17. Chen, Z., Fillmore, C. M., Hammerman, P. S., Kim, C. F. & Wong, K. K. Non-small-cell lung cancers: A heterogeneous set of 
diseases. Nat. Rev. Cancer 14, 535–546 (2014).

 18. Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).
 19. Hanahan, D. & Coussens, L. M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell 

21, 309–322 (2012).
 20. Schulz, M., Salamero-Boix, A., Niesel, K., Alekseeva, T. & Sevenich, L. Microenvironmental regulation of tumor progression and 

therapeutic response in brain metastasis. Front. Immunol. 10, 1713 (2019).
 21. Peinado, H. et al. Pre-metastatic niches: Organ-specific homes for metastases. Nat. Rev. Cancer 17, 302–317 (2017).
 22. Di Mitri, D. et al. Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer. Nature 515, 134–137 (2014).
 23. McLoed, A. G. et al. Neutrophil-derived IL-1beta impairs the efficacy of NF-kappaB inhibitors against lung cancer. Cell Rep. 16, 

120–132 (2016).
 24. Gong, L. et al. Promoting effect of neutrophils on lung tumorigenesis is mediated by CXCR2 and neutrophil elastase. Mol. Cancer 

12, 154 (2013).
 25. Tohme, S. et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. 

Cancer Res. 76, 1367–1380 (2016).
 26. Deryugina, E. I. et al. Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the 

tumor microenvironment. Neoplasia 16, 771–788 (2014).
 27. Wang, Y. et al. Neutrophil infiltration favors colitis-associated tumorigenesis by activating the interleukin-1 (IL-1)/IL-6 axis. 

Mucosal Immunol. 7, 1106–1115 (2014).
 28. Kusmartsev, S., Nagaraj, S. & Gabrilovich, D. I. Tumor-associated CD8+ T cell tolerance induced by bone marrow-derived immature 

myeloid cells. J. Immunol. 175, 4583–4592 (2005).
 29. Wilson, C. L. et al. NFkappaB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat. Commun. 6, 6818 (2015).
 30. Teijeira, A. et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that 

interfere with immune cytotoxicity. Immunity 52, 856-871e8 (2020).
 31. Guglietta, S. et al. Coagulation induced by C3aR-dependent NETosis drives protumorigenic neutrophils during small intestinal 

tumorigenesis. Nat. Commun. 7, 11037 (2016).
 32. van der Windt, D. J. et al. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in 

nonalcoholic steatohepatitis. Hepatology 68, 1347–1360 (2018).
 33. Gnanapradeepan, K. et al. PLTP is a p53 target gene with roles in cancer growth suppression and ferroptosis. J. Biol. Chem. 298, 

102637 (2022).
 34. Desrumaux, C. & Lagrost, L. Plasma phospholipid transfer protein (PLTP) as an emerging determinant of the adaptive immune 

response. Cell Mol. Immunol. 15, 1077–1079 (2018).
 35. Ochieng, P. et al. Phospholipid transfer protein and alpha-1 antitrypsin regulate Hck kinase activity during neutrophil degranula-

tion. Sci. Rep. 8, 15394 (2018).
 36. Cheng, W. L. et al. The role of EREG/EGFR pathway in tumor progression. Int. J. Mol. Sci. 22, 12828 (2021).
 37. Riese, D. J. 2nd. & Cullum, R. L. Epiregulin: Roles in normal physiology and cancer. Semin. Cell Dev. Biol. 28, 49–56 (2014).
 38. Sunaga, N. et al. Oncogenic KRAS-induced epiregulin overexpression contributes to aggressive phenotype and is a promising 

therapeutic target in non-small-cell lung cancer. Oncogene 32, 4034–4042 (2013).
 39. Thogersen, V. B. et al. A subclass of HER1 ligands are prognostic markers for survival in bladder cancer patients. Cancer Res. 61, 

6227–6233 (2001).
 40. Li, X. D. et al. Amphiregulin and epiregulin expression in colorectal carcinoma and the correlation with clinicopathological 

characteristics. Onkologie 33, 353–358 (2010).
 41. Aikat, M. & Gupta, A. N. Critical evaluation of vaginal cytology, urinary oestriol and pregnanediol in pregnant women with bad 

obstetric history without obvious cause. Indian J. Med. Res. 67, 771–778 (1978).
 42. Zhang, J., Li, S., Liu, F. & Yang, K. Role of CD68 in tumor immunity and prognosis prediction in pan-cancer. Sci. Rep. 12, 7844 

(2022).
 43. Testi, R., D’Ambrosio, D., De Maria, R. & Santoni, A. The CD69 receptor: A multipurpose cell-surface trigger for hematopoietic 

cells. Immunol. Today 15, 479–483 (1994).
 44. Sancho, D., Gomez, M. & Sanchez-Madrid, F. CD69 is an immunoregulatory molecule induced following activation. Trends 

Immunol. 26, 136–140 (2005).
 45. Park, S. L. et al. Tissue-resident memory CD8(+) T cells promote melanoma-immune equilibrium in skin. Nature 565, 366–371 

(2019).
 46. Hu, Z. W. et al. CD69 and SBK1 as potential predictors of responses to PD-1/PD-L1 blockade cancer immunotherapy in lung 

cancer and melanoma. Front. Immunol. 13, 952059 (2022).
 47. Koyama-Nasu, R. et al. The cellular and molecular basis of CD69 function in anti-tumor immunity. Int. Immunol. 34, 555–561 

(2022).
 48. Wei, S. M. et al. Combination therapy with dendritic cell-based vaccine and anti-CD69 antibody enhances antitumor efficacy in 

renal cell carcinoma-bearing mice. Turk. J. Med. Sci. 47, 658–667 (2017).
 49. Wang, Y. The role and regulation of urokinase-type plasminogen activator receptor gene expression in cancer invasion and metas-

tasis. Med. Res. Rev. 21, 146–170 (2001).
 50. Wang, Z., Wang, K., Gao, X., Liu, Z. & Xing, Z. Comprehensive analysis of the importance of PLAUR in the progression and 

immune microenvironment of renal clear cell carcinoma. PLoS One 17, e0269595 (2022).
 51. Zhang, T. et al. TCF7L2 promotes anoikis resistance and metastasis of gastric cancer by transcriptionally activating PLAUR. Int. 

J. Biol. Sci. 18, 4560–4577 (2022).
 52. Liang, Z. et al. CYP27A1 inhibits proliferation and migration of clear cell renal cell carcinoma via activation of LXRs/ABCA1. 

Exp. Cell Res. 419, 113279 (2022).
 53. Pitt, J. M. et al. Targeting the tumor microenvironment: Removing obstruction to anticancer immune responses and immuno-

therapy. Ann. Oncol. 27, 1482–1492 (2016).
 54. Thommen, D. S. et al. A transcriptionally and functionally distinct PD-1(+) CD8(+) T cell pool with predictive potential in non-

small-cell lung cancer treated with PD-1 blockade. Nat. Med. 24, 994–1004 (2018).
 55. Wei, S. C. et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170, 1120-1133e17 

(2017).



18

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18226  | https://doi.org/10.1038/s41598-023-45289-8

www.nature.com/scientificreports/

 56. Altorki, N. K. et al. The lung microenvironment: An important regulator of tumour growth and metastasis. Nat. Rev. Cancer 19, 
9–31 (2019).

 57. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).
 58. Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).
 59. Cao, Y. et al. Integrated analysis of multimodal single-cell data with structural similarity. Nucleic Acids Res. 50, e121 (2022).
 60. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587e29 (2021).
 61. Zhao, X., Wu, S., Fang, N., Sun, X. & Fan, J. Evaluation of single-cell classifiers for single-cell RNA sequencing data sets. Brief 

Bioinform. 21, 1581–1595 (2020).
 62. Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 

20, 163–172 (2019).
 63. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 

16, 284–287 (2012).
 64. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annota-

tion. Nucleic Acids Res. 44, D457–D462 (2016).
 65. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
 66. Hanzelmann, S., Castelo, R. & Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 

14, 7 (2013).
 67. Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558 

(2018).
 68. Charoentong, P. et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of 

response to checkpoint blockade. Cell Rep. 18, 248–262 (2017).
 69. Maeser, D., Gruener, R. F. & Huang, R. S. oncoPredict: An R package for predicting in vivo or cancer patient drug response and 

biomarkers from cell line screening data. Brief Bioinform. 22, 312 (2021).

Acknowledgements
We thank all individuals who participate in this research and funding from the Hunan Provincial Natural Science 
Foundation of China (No. 2018JJ6053) and the National Natural Science Foundation of China (No. 82303525). 
The authors express sincere gratitude to the TCGA, GEO, GSEA, and TIDE databases for the availability of data.

Author contributions
Q.Z. collected the data and performed the analyses. Q.Z. and Y.C. validated and interpreted the results. Q.Z., L.J. 
and W.F. conceived the project and designed the workflow. The manuscript was written with contributions from 
all authors. All authors have read and agreed to the published version of the manuscript.

Funding
This research was funded by the Hunan Provincial Natural Science Foundation of China (No. 2018JJ6053) and 
the National Natural Science Foundation of China (No. 82303525).

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 45289-8.

Correspondence and requests for materials should be addressed to W.F.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-45289-8
https://doi.org/10.1038/s41598-023-45289-8
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Construction and validation of a novel prognostic model of neutrophil-related genes signature of lung adenocarcinoma
	Results
	Screening for genes associated with neutrophil content by weighted gene co-expression network analysis (WGCNA)
	Identification of neutrophil marker genes
	Functional enrichment of neutrophil-related genes (NRGs)
	Construction of the risk model based on NRGs in LUAD
	Correlation of high- and low-risk groups with clinicopathological characteristics
	Differences in the tumor microenvironment and gene set enrichment between high- and low-risk groups
	Immune landscapes and immunotherapy
	Selection of targeted and chemotherapeutic agents suitable for patients in the high-risk group
	Validation of signature genes in LUAD tissue

	Discussion
	Methods
	Data source and acquisition
	Neutrophil infiltration and related survival analysis
	Construction of the WGCNA co-expression network
	Identification of neutrophil marker genes by single-cell sequencing analysis
	Functional enrichment analysis of GO and KEGG
	Construction and validation of a prognostic model based on NRGs
	Correlation analysis of clinicopathological characteristics of prognostic models
	Tumor microenvironment analysis and gene set enrichment analysis
	Immune correlation analysis
	Drug screening and sensitivity analysis
	Tissue samples collection and quantitative real-time PCR (qRT-PCR)
	Statistical methods
	Institutional review board statement
	Informed consent statement

	References
	Acknowledgements


