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Real‑time dual prediction 
of intradialytic hypotension 
and hypertension using 
an explainable deep learning model
Donghwan Yun 1,2, Hyun‑Lim Yang 3,4, Seong Geun Kim 5, Kwangsoo Kim 6, Dong Ki Kim 1, 
Kook‑Hwan Oh 1, Kwon Wook Joo 1, Yon Su Kim 1,2 & Seung Seok Han 1*

Both intradialytic hypotension (IDH) and hypertension (IDHTN) are associated with poor outcomes in 
hemodialysis patients, but a model predicting dual outcomes in real‑time has never been developed. 
Herein, we developed an explainable deep learning model with a sequence‑to‑sequence‑based 
attention network to predict both of these events simultaneously. We retrieved 302,774 hemodialysis 
sessions from the electronic health records of 11,110 patients, and these sessions were split into 
training (70%), validation (10%), and test (20%) datasets through patient randomization. The 
outcomes were defined when nadir systolic blood pressure (BP) < 90 mmHg (termed IDH‑1), a decrease 
in systolic BP ≥ 20 mmHg and/or a decrease in mean arterial pressure ≥ 10 mmHg (termed IDH‑2), or an 
increase in systolic BP ≥ 10 mmHg (i.e., IDHTN) occurred within 1 h. We developed a temporal fusion 
transformer (TFT)‑based model and compared its performance in the test dataset, including receiver 
operating characteristic curve (AUROC) and area under the precision‑recall curves (AUPRC), with 
those of other machine learning models, such as recurrent neural network, light gradient boosting 
machine, random forest, and logistic regression. Among all models, the TFT‑based model achieved the 
highest AUROCs of 0.953 (0.952–0.954), 0.892 (0.891–0.893), and 0.889 (0.888–0.890) in predicting 
IDH‑1, IDH‑2, and IDHTN, respectively. The AUPRCs in the TFT‑based model for these outcomes were 
higher than the other models. The factors that contributed the most to the prediction were age and 
previous session, which were time‑invariant variables, as well as systolic BP and elapsed time, which 
were time‑varying variables. The present TFT‑based model predicts both IDH and IDHTN in real time 
and offers explainable variable importance.

The number of patients on hemodialysis continues to increase, reaching more than 3.9 million  worldwide1. 
Hemodialysis patients have death rates that are 10 to 15 times higher than those of nondialytic controls. Car-
diovascular events, such as arrhythmia and cardiac arrest, account for half of all  deaths2, and both intradialytic 
hypotension (IDH) and intradialytic hypertension (IDHTN) are significant risk factors for these  events3–6. Early 
warning of IDH and IDHTN can assist clinicians in preparing management strategies, and an individualized 
approach may be necessary due to the heterogeneity of patients and their hemodialysis  settings7,8. Accordingly, 
defining risk factors is an important step, and IDH and IDHTN share some characteristics in common, such as 
age and  comorbidities9,10. Nevertheless, known risk factors alone cannot successfully predict IDH and IDHTN 
when varying blood pressures (BPs) on hemodialysis are not  considered11–13. Due to the repeated occurrence 
of IDH and IDHTN, information on previous hemodialysis sessions may help predict outcomes in the next 
 session12. However, most studies used this information as binary features only and not as a concrete structure 
to encode all  information14,15.

The dataset on hemodialysis sessions is complex due to its multiple variables with time series data. While 
some variables may be regularly arranged, others may not, and there may be missing data in certain areas of the 
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sessions. The deep learning method has brought revolutionary advances in controlling the hemodialysis dataset 
because it successfully addresses time-series  variables9. Previously, our recurrent neural network (RNN)-based 
model had favorable performance in predicting  IDH12, although IDHTN was not considered, and the informa-
tion from previous sessions was used as a handcrafted and binary feature. A recent deep learning model, named 
the temporal fusion transformer (TFT)16, efficiently encodes both time-invariant and time-varying variables 
after shrinking unimportant features. It has shown high performance with time-series forecasting tasks, such as 
stock index prediction and traffic occupancy rate prediction, and provides insights into which time step feature 
information is considered  important16. The TFT-based model with a multihorizon forecasting feature yields 
predicted values at many future time steps, and is designed to consider both time-varying inputs (i.e., the future 
variable cannot know in the current time step) and time-invariant variables (i.e., the past observed variable and 
the known future variable we can expect) at a single inference. Nevertheless, the hemodialysis dataset contains 
many missing values, which makes it difficult to directly apply the original version of TFT to handle it. Continu-
ous quantile prediction, used to conservatively estimate and predict outputs for the purpose of risk management 
in the original TFT, did not fit our task. Therefore, we modified the internal structure of TFT to impute the 
missing values by encoding all timestamps from previous sessions. We also adjusted the output types to enable 
real-time prediction of binary outcomes, achieving high performance in predicting both IDH and IDHTN using a 
hemodialysis dataset. Accordingly, the model performance outperformed that of other machine learning models, 
such as RNN, light gradient boosting machine (LGBM), random forest (RF), and logistic regression (LR). The 
explainable attributions for each case may provide clinicians with insights on how to manage the next session 
to reduce the risk of IDH and IDHTN.

Methods
Data source and study approval
A retrospective analysis of electrical medical record (EMR) data was performed. The data from 342,361 sessions 
of 12,200 patients who underwent hemodialysis at Seoul National University Hospital between October 2004 and 
December 2020 were retrieved from the EMR system and our own vital sign registry (named CONTINUAL)17. 
The institutional review board of Seoul National University Hospital approved the study design (no. H-2008-142-
1151), and the study was conducted in accordance with the principles of the Declaration of Helsinki. Our study 
was retrospective analysis, and thus, getting informed consent from subjects was waived from the institutional 
review board of Seoul National University Hospital.

Data collection and preparation
Sessions from patients who were < 18 years old (n = 20,014), had no initial BP records (n = 530), received < 2 h 
or > 6 h of hemodialysis (n = 9,647), and had > 1.5 h of time interval between BPs (n = 9396) were excluded. 
Accordingly, 302,774 sessions from 11,110 patients were ultimately used for model development. When there 
were no specific episodes or complications during hemodialysis, vital signs were monitored every hour. If vital 
signs became unstable, they were monitored more frequently.

The sessions were randomly split into training (70%), validation (10%), and test (20%) datasets based on 
patient information (Fig. 1A). The training and validation datasets were used for model development, while the 
test dataset was kept for evaluation. Each hemodialysis session was matched with up to 5 previous sessions within 
1 month, and the set containing matched sessions was created for analysis (Fig. 1B). If dialysis information was 
not available for any of the previous 5 dialysis sessions within 1 month, the information on previous sessions 
was treated as missing values and ignored by attention masking.

The dataset used to train the model contained a total of 66 variables, such as baseline characteristics, hemo-
dialysis setting, vital signs, laboratory findings, and medications used. The time-varying variables included vital 
signs and hemodialysis setting, while others were time-invariant. The list and relevant missing ratio are available 
in Supplementary Table 1. For time-invariant variables, missing values were imputed by means for continuous 
variables with normal distribution, or medians for both continuous variables without normal distribution and 
categorical variables. A forward-filling method was used for time-varying variables. To enable the model to 

Figure 1.  Dataset development. (A), Flow chart of data collection and randomization. (B), An illustrative 
example of labeling and creating a set of matched sessions.
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recognize missing values, we created an auxiliary column that indicates whether imputation was performed 
at each time step for every time-varying variable. The auxiliary column was encoded with 0 if imputation was 
conducted (i.e., the variable was filled with information from the previous session) or 1 if the original observed 
value was used. After imputation of the missing values, continuous variables were normalized using the mean 
and the standard deviation. Accordingly, 78 variables with 66 original variables and 10 auxiliary variables indicat-
ing imputation and 2 variables of elapsed times (e.g., hemodialysis time and interval with the previous session) 
were used in a training dataset.

Study outcomes
IDH was defined when systolic BP < 90 mmHg (termed IDH-1) and a decrease in systolic BP ≥ 20 mmHg and/or 
a decrease in mean arterial pressure ≥ 10 mmHg from the initial BP (termed IDH-2)  occurred18,19. IDHTN was 
defined as an increase in systolic BP ≥ 10 mmHg from the initial systolic  BP20,21. Because previous randomized 
controlled studies adopted the definition of IDHTN over multiple  sessions22–25, we defined IDHTN-2 as cases 
with IDHTN occurring ≥ 4 of 6 consecutive sessions and applied it as a sensitivity analysis. Mean arterial pres-
sure was calculated as ([2 × diastolic BP] + systolic BP) / 3. The occurrence of IDH and IDHTN within 1 h was 
labeled for model training (Fig. 1B).

Model development
To predict IDH and IDHTN, time-varying and time-invariant variables were considered simultaneously, all of 
which were dealt with in the TFT-based model. The TFT architecture was originally proposed to address mul-
tihorizon forecasting problems in various  domains16, and we employed the architecture and modified several 
components of the original model to fit our task. The model has been designed to consider both short- and 
long-term temporal relationships to produce predictions with sequence-to-sequence and attention mechanisms, 
respectively.

To address the challenge of determining the precise relationship between unforeseen exogenous input vari-
ables and targets, we employed the gated residual network (GRN) as the primary computing layer in the TFT 
architecture. It comprised four dense layers and two activation layers (i.e., an exponential linear unit function 
and a sigmoid function) (Fig. 2A), and determined whether to skip the features. Note that GRN is used in the 
encoding module (detailed in Fig. 2B), the input layer of the single-headed attention module (the fourth layer 
of Fig. 2C), and the input layer of the classifier (the last layer of Fig. 2C).

The TFT architecture could yield importance scores among time-varying and time-invariant variables and 
timestamps from the variable selection module and single-headed attention module, respectively. The variable 
selection module chose pertinent input variables at each time step, and we extracted the attention weight that 
explained the feature importance from the module. The higher attention weight indicates a higher contribution 
to predicting the output (see the second layer of Fig. 2C). Figure 2B represents the encoding flow of generating 
variable selection weights. The processed inputs were multiplied by this module, and unnecessary inputs at each 
time step could be removed. The single-headed attention module captured the long-term relationships within 
inputs by preserving the causality information flow across multiple time steps. We extracted the attention weight 
that explained the temporal importance of the timestamps (see the fourth layer of Fig. 2C). This operation is 
identical to the structure of the paper that was first proposed, and a detailed process can be found in that  paper26.

Finally, Fig. 2C summarizes the entire pipeline of data processing of the TFT architecture. Time-invariant and 
time-varying inputs were separately transformed by dense or embedding layers for continuous and categorical 
inputs, respectively. The features from the first layer were sequentially processed by encoding, RNN, single-
headed attention, and classifier modules. In particular, the RNN module analyzed the short-term relationship 

Figure 2.  Schematic diagram of the model structure. (A), The internal structure of gated residual units (GRNs). 
(B), Encoding module with GRN. Encoded feature shapes are presented as (B, F, H) or (B, H). (C), Feature 
processing pipeline. B, batch size; F, feature shape; H, hidden shape. RNN, recurrent neural network; SHA, 
single-headed attention.
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of inputs by leveraging local context using a gated recurrent  unit27, and the classifier module produced output 
by composing features from the previous layer with a single dense layer. Information on previous sessions was 
re-entered into the encoding module as time-invariant features of the current session after passing the pipeline. 
If there was no available information on previous sessions, the feature weight of the corresponding session in 
the encoding module was set to zero and did not affect the downstream calculation. The model finally calculated 
the probabilities of IDH-1, IDH-2, and IDHTN as outcomes. The detailed structure and source codes in Python 
are provided in https:// github. com/ dacty logram/ HD_ IDH_ predi ction/.

Other machine learning models, such as RNN, Light Gradient Boosting Machine, Random forest, and logistic 
regression were compared with the TFT-based model in predicting outcomes. The RNN model had the same 
structure as that in a previous  study12, and it could handle time-varying features but did not use the information 
from the previous session. Other models could handle tabular datasets alone, and three timestamps, such as 
initiation, prediction, and the previous entry. The detailed methods and designs of canonical machine learning 
and deep learning models are presented in the Supplementary Methods.

Model evaluation
The area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve 
(AUPRC) were used to evaluate the model performance. Comparisons between AUROCs was calculated by the 
DeLong test. Calibration ability was applied using a calibration plot. Evaluation metrics of precision, recall, and 
F1 score were also evaluated. All evaluation metrics were obtained from the test dataset. We set a threshold of 0.5 
to determine the binary outcomes. The formulae with true positive (TP), false positive (FP), and false negative 
(FN) counts are represented as follows.

Results
Baseline characteristics
The baseline characteristics of clinical information and the hemodialysis sessions are presented in Table 1. Sta-
tistics for the variables in the dataset were described for each session. The mean age of the patients across the 
sessions was 62 ± 15 years, and 57.7% were female. The prevalence rates of diabetes mellitus and hypertension 
were 48.7% and 72.9%, respectively. The median values of initial systolic and diastolic BPs were 139 mmHg and 
73 mmHg, respectively. The number of BP recordings per session was 7.1 ± 3.5.

IDH occurred in 54.1% (IDH-1 in 10.7%, and IDH-2 in 51.9%), and IDHTN occurred in 40.5%. IDHTN-2 
definition was available in 95.5% of hemodialysis sessions, and the prevalence of IDHTN-2 was 23.1%. The 
occurrences of IDH-1, IDH-2 and IDHTN as the dialysis progressed were present in Supplementary Fig. 1. While 
the occurrence of IDH-1, IDH-2 and IDHTN did not largely change as the dialysis progressed, we observed 
an increase in IDH-1, IDH-2 and a decrease in IDHTN after nearly 4 h of dialysis. Detailed statistics from the 
training, validation, and test datasets are available in Supplementary Table 1.

Model performance
Table 2 represents AUROCs and AUPRCs as model performance. The TFT-based model achieved the highest 
AUROC value among the models evaluated (Ps < 0.001), and the AUROCs for IDH-1, IDH-2, and IDHTN 
were 0.953 (0.952–0.954), 0.892 (0.891–0.893), and 0.889 (0.888–0.890), respectively (Fig. 3A). The values of 
AUPRCs for IDH-1, IDH-2, and IDHTN in the TFT-based model were also higher than those obtained from 
other machine learning models (Fig. 3B). The TFT-based model achieved the highest F1 scores compared to the 
other machine learning models in predicting IDH-1 (0.630), IDH-2 (0.738), and IDHTN (0.668, Supplementary 
Table 2). The TFT-based model was well calibrated (Supplementary Fig. 2).

The values of AUROCs and AUPRCs remained consistent over the course of hemodialysis time (Fig. 3C,D), 
except for the AUPRC values at the beginning and end of the period. The AUPRCs of all three labels were rela-
tively low at the start, and the predictive performance for IDH-1 and IDH-2 improved after approximately 3.5 h, 
while the predictive performance for IDHTN decreased. These changes in AUPRC appeared to correlate with 
the label prevalence over the duration of hemodialysis, as described in Supplementary Fig. 1.

When predicting IDHTN-2, the predictability of the model for IDH-1 and IDH-2 remained consistent, while 
there was an increase in AUROC (from 0.889 to 0.917) and a decrease in AUPRC (from 0.774 to 0.728). The 
changes in evaluation metrics might be associated with the change in prevalence.

Explainable feature importance
The TFT-based model provides attention weights of features that indicate which is the most important part of the 
data to which the model paid attention, and the sum of attention weights is equal to one. The information of pre-
vious sessions, age, dialyzer type, and predialytic weight showed higher attention weights among time-invariant 

Precision =
TP

TP+ FP

Recall =
TP

TP+ FN

F1score = 2×
Precision× Recall

Precision+ Recall

https://github.com/dactylogram/HD_IDH_prediction/
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variables (Fig. 4A). Among the time-varying variables, systolic BP was highly ranked, and elapsed time, diastolic 
BP, and ultrafiltration rate were the most important variables for the prediction of IDH and IDHTN (Fig. 4B).

We provide an example of a session in which the presented TFT-based model can offer real-time probabilities 
for all outcomes (Fig. 5A). The occurrence of IDH and IDHTN could be explained by the attention weights of 
time-invariant and time-varying variables (Fig. 5B,C). Weights of time-varying variables from the encoding 
module and sequence positions from the single-headed attention module had slightly different values accord-
ing to the timestamps (Fig. 5C,D), and systolic BP of the time-varying variable and the first timestamp (i.e., the 
initial recording of hemodialysis) of the single-headed attention sequence were highly related to the performance.

Slim version of the TFT model
According to the variable attention weights, we selected the top 10 (i.e., 2 time-varying and 8 time-invariant) or 
30 (i.e., 6 time-varying and 24 time-invariant) variables to develop the slim TFT-based model. The slim TFT-
based model achieved acceptable performance compared to the parent model; particularly, the slim model with 
30 variables had noninferior AUROCs to the parent model (Table 3). The AUPRCs were also similar between 
the slim model and the parent models (Table 3). The results indicate that the single-headed attention module of 
the TFT-based model efficiently prioritized the most crucial parts of the input data while disregarding irrelevant 
parts, effectively ranking variables in a significant order.

Implication of the previous session in the model performance
To determine whether adding information about previous sessions to the model improves performance, AUROCs 
and AUPRCs were calculated depending on the number of previous sessions used in the model. Herein, the 

Table 1.  Baseline characteristics of the hemodialysis sessions.

Variables Total (n = 302,774)

Age (years) 62.1 ± 15.2

Female (%) 57.7

Hemodialysis type (%)

 Hemodialysis 92.6

 Online hemodiafiltration 7.0

 Ultrafiltration 0.2

 Others 0.2

Vascular access (%)

 Arteriovenous fistula 71.5

 Subcutaneously tunneled catheter 17.5

 Nontunneled venous catheter 5.7

 Arteriovenous graft 5.3

Predialytic weight (kg) 59.5 ± 12.2

Initial blood flow rate (ml/min) 250 (230–280)

Initial systolic blood pressure (mmHg) 139 (121–155)

Initial diastolic blood pressure (mmHg) 73 (65–83)

Initial heart rate (/min) 75 (66–86)

Initial respiratory rate (/min) 18 (16–18)

Initial body temperature (°C) 36.3 (36.1–36.6)

Blood findings

 Hemoglobin (g/dL) 10.4 (9.4–11.2)

 Albumin (g/dL) 3.7 (3.2–4.0)

 Calcium (mg/dL) 8.9 (8.3–9.4)

 Phosphate (mg/dL) 4.4 (3.4–5.4)

 Sodium (mmol/L) 137 (135–139)

 Potassium (mmol/L) 4.6 (4.1–5.2)

Comorbidities (%)

 Diabetes mellitus 48.7

 Hypertension 72.9

 Coronary artery disease 24.6

Medications (%)

 Antihypertensive drugs 72.2

 Oral hypoglycemic agents 11.7

 Subcutaneous insulin 25.6

 Statins 35.5
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Table 2.  Model performance for predicting intradialytic hypotension and hypertension. IDH-1, nadir systolic 
blood pressure < 90 mmHg; IDH-2, a decrease in systolic blood pressure ≥ 20 mmHg and/or a decrease in 
mean arterial pressure ≥ 10 mmHg; IDHTN, an increase in systolic blood pressure ≥ 10 mmHg. AUROC, area 
under the receiver operating characteristic curve; CI, confidence interval; AUPRC, area under the precision-
recall curve; TFT, Temporal Fusion Transformer; RNN, recurrent neural network; LightGBM, Light Gradient 
Boosting Machine.

Outcomes Models AUROC (95% CI) P AUPRC (95% CI)

IDH-1

TFT-based 0.953 (0.952–0.954) Reference 0.716 (0.714–0.717)

RNN 0.929 (0.928–0.930)  < 0.001 0.624 (0.622–0.626)

LightGBM 0.928 (0.926–0.929)  < 0.001 0.633 (0.631–0.635)

Random forest 0.922 (0.921–0.924)  < 0.001 0.620 (0.618–0.621)

Logistic regression 0.913 (0.911–0.915)  < 0.001 0.583 (0.582–0.585)

IDH-2

TFT-based 0.892 (0.891–0.893) Reference 0.838 (0.836–0.839)

RNN 0.864 (0.863–0.865)  < 0.001 0.803 (0.801–0.804)

LightGBM 0.862 (0.861–0.863)  < 0.001 0.799 (0.797–0.800)

Random forest 0.838 (0.836–0.839)  < 0.001 0.765 (0.763–0.766)

Logistic regression 0.848 (0.847–0.849)  < 0.001 0.782 (0.780–0.783)

IDHTN

TFT-based 0.889 (0.888–0.890) Reference 0.774 (0.773–0.776)

RNN 0.868 (0.866–0.869)  < 0.001 0.745 (0.743–0.746)

LightGBM 0.862 (0.861–0.864)  < 0.001 0.734 (0.732–0.735)

Random forest 0.831 (0.830–0.833)  < 0.001 0.682 (0.681–0.684)

Logistic regression 0.847 (0.846–0.849)  < 0.001 0.714 (0.713–0.716)

Figure 3.  Plots of the model performance. (A), Area under the receiver operating curve (AUROC) in 
predicting outcomes. (B), Area under the precision-recall curve (AUPRC) in predicting outcomes. (C), AUROC 
of outcomes and timestamp count histogram according to the elapsed time. (D), AUPRC of outcomes and 
timestamp count histogram according to the elapsed time.



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18054  | https://doi.org/10.1038/s41598-023-45282-1

www.nature.com/scientificreports/

Figure 4.  Mean weights of time-invariant and time-varying features from the attention module in the model. 
(A), Weights of time-invariant features. (B), Weights of time-varying features. BP, blood pressure.

Figure 5.  Explainability of one case with intradialytic hypotension (IDH) and hypertension (IDHTN). (A), 
Real-time prediction of outcomes using the model. Round circles on the lines of a probability represent true 
label positions. (B) Weights of time-invariant features by the model explainability. (C) Weights of time-varying 
features by the model explainability. (D) Weights of the sequence from single-headed attention according to the 
timestamps. The positions of the future sequences were masked, and their values were set to 0.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18054  | https://doi.org/10.1038/s41598-023-45282-1

www.nature.com/scientificreports/

slim TFT-based model was used because of our limit in GPU memory. Both the AUROC and AUPRC achieved 
maximum values when 5 to 10 previous sessions were used in the model (Fig. 6). The model performance did not 
improve significantly even with > 10 previous sessions, implying that information on the most recent previous 
session was more valuable for prediction than data from the remote sessions.

Discussion
The present TFT-based model could encode information from previous sessions as a time-invariant variable 
and achieve state-of-the-art performance in predicting both IDH and IDHTN in real-time. Another strength of 
the model was its ability to provide explainable variable importance and timestamps through attention weights. 
Model explainability could be utilized to reduce the number of required input variables without compromising 
performance. Information from previous sessions significantly contributed to predicting outcomes, with data 
from recent sessions proving more valuable than remote sessions in enhancing model performance.

Deep learning has been applied to predict the binary occurrence of intradialytic complications, such as IDH, 
IDHTN, and other clinical symptoms, using a tabular dataset of hemodialysis  sessions14,15,28,29. We developed 
the RNN model to predict IDH in real-time using a time-series dataset, and its performance was  acceptable12. 
In this study, to further enhance performance, we employed the TFT architecture with specific modifications, 
including handling missing values and implementing binary classification methods. As a result, our performance 
exceeded that of other machine learning or deep learning models. Although the number of input variables used 
has decreased, the slim TFT-based model still outperformed other machine learning or deep learning models in 
prediction outcomes. The results are attributable to the internal characteristics of the TFT architecture, such as 
effective feature extraction by removing unimportant features using GRN and encoding modules.

There have been several studies that utilized the hand-crafted (e.g., the lowest systolic BP) or selected (e.g., 
pre- or post-dialysis BP) information on the previous sessions to predict events in the subsequent  session30,31. 
To the best of our knowledge, the present study represents the first attempt to incorporate entire sequences 
of previous hemodialysis sessions. The information on previous sessions could be encoded and integrated as 
time-invariant features in the model training. This process amplified the prediction performance, although a 
plateau in improvement was observed after the number of previous sessions exceeded 10. The results suggest 

Table 3.  Performance in the slim version of the model. IDH-1, nadir systolic blood pressure < 90 mmHg; 
IDH-2, a decrease in systolic blood pressure ≥ 20 mmHg and/or a decrease in mean arterial 
pressure ≥ 10 mmHg; IDHTN, an increase in systolic blood pressure ≥ 10 mmHg. CI, confidence interval; 
AUROC, area under the receiver operating characteristic curve; AUPRC, area under the precision-recall curve; 
NA, not applicable. *P values compared to the parent model using all variables.

Model with 10 variables Model with 30 variables

Outcomes Performance Matric value (CI) P* Matric value (CI) P*

IDH-1
AUROC 0.948 (0.947–0.950)  < 0.001 0.952 (0.951–0.953) 0.376

AUPRC 0.699 (0.698–0.701) NA 0.712 (0.711–0.714) NA

IDH-2
AUROC 0.889 (0.888–0.890) 0.002 0.891 (0.889–0.892) 0.128

AUPRC 0.834 (0.833–0.835) NA 0.836 (0.835–0.837) NA

IDHTN
AUROC 0.888 (0.887–0.889) 0.153 0.890 (0.888–0.891) 0.478

AUPRC 0.773 (0.772–0.775) NA 0.777 (0.772–0.775) NA

Figure 6.  Changes in AUROC (A) and AUPRC (B) according to the number of previous sessions used in the 
slim version model. *Maximum point of the performance metrics.
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that information on the recent previous session was more useful in prediction than that on the remote session, 
and a proper number of previous sessions was sufficient to achieve good performance, which would lead to less 
computational cost.

The present TFT-based model could provide information on feature attention weights, which we named 
explainability. There are indirect post-hoc methods to rank features, such as SHapley Additive  exPlanations32 
and class activation  maps33, whereas the TFT-based model can directly correlate the rank of features with the 
internal single-headed attention module. The slim TFT-based model showed similar performance to the parent 
model only with subset variables because the importance ranking of features produced by the model was reliable.

Although the study results are informative, there are certain limitations to be discussed. Session informa-
tion was mainly derived from patients with end-stage kidney disease; thus, our model performance may differ 
in the cases involving acute kidney injury requiring hemodialysis. The model primarily emphasized BP-related 
outcomes and did not address other intradialytic complications, such as arrhythmia, high pulse pressure, and 
sudden death. Certain time-invariant or time-varying variables (e.g., dialysis vintage and electrocardiogram) 
would be additionally helpful to predict IDH or IDHTN.

Conclusion
The present study introduces a novel model for real-time simultaneous prediction of IDH and IDHTN by 
incorporating information from previous sessions. Furthermore, the model provides feature attention weights 
to elucidate the significance of variables in the context of IDH or IDHTN. Accordingly, this explainable model 
assists clinicians in preparing for IDH and IDHTN in advance. The results of this study may also serve as an 
inspiration for other researchers to leverage information from previous sessions to improve the model perfor-
mance in predicting intradialytic complications.

Data availability
Python code for model structure and describing dataset structures are provided in https:// github. com/ dacty 
logram/ HD_ IDH_ predi ction/. The other data including model training are available from the corresponding 
author upon request.
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