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Binding affinity predictions 
with hybrid quantum‑classical 
convolutional neural networks
L. Domingo 1,2,3,4*, M. Djukic 4, C. Johnson 4 & F. Borondo 3

Central in drug design is the identification of biomolecules that uniquely and robustly bind to 
a target protein, while minimizing their interactions with others. Accordingly, precise binding 
affinity prediction, enabling the accurate selection of suitable candidates from an extensive pool 
of potential compounds, can greatly reduce the expenses associated to practical experimental 
protocols. In this respect, recent advances revealed that deep learning methods show superior 
performance compared to other traditional computational methods, especially with the advent of 
large datasets. These methods, however, are complex and very time‑intensive, thus representing 
an important clear bottleneck for their development and practical application. In this context, the 
emerging realm of quantum machine learning holds promise for enhancing numerous classical 
machine learning algorithms. In this work, we take one step forward and present a hybrid quantum‑
classical convolutional neural network, which is able to reduce by 20% the complexity of the classical 
counterpart while still maintaining optimal performance in the predictions. Additionally, this results 
in a significant cost and time savings of up to 40% in the training stage, which means a substantial 
speed‑up of the drug design process.

The ability to predict the binding affinity between a potential drug and its target protein is important at a funda-
mental  level1, and also crucial for the success of drug discovery at the early stages of drug  design2. The theoretical 
computation of the binding affinities still needs further  development3, and the experimental determination for 
a large number of small molecules and their targets is time-consuming and  expensive1. As a result, alternative 
machine learning methods that can make accurate predictions have been greatly welcomed, and then widely 
used in this field.

Traditional methods are physics-based, meaning that they rely on biophysical models of the proteins-ligand 
structure to estimate their binding affinity. Various strategies exist within the realm of physics-based methods. For 
instance, all-atom molecular dynamics  methods1,4–6 simulate the temporal behavior of drug-protein complexes 
to estimate binding affinities. Unfortunately, such rigorous methods are computationally expensive and often 
require a lot of expert knowledge and domain  expertise7,8. Quantum mechanical calculations, encompassing 
semiempirical, density-functional theory, and coupled-cluster approaches, have also been employed for binding 
affinity  predictions1. Although these methods tend to offer high accuracy, their applicability is hindered by the 
size and complexity of protein–ligand structures, making it impractical to study larger molecules. Finally, force-
field scoring functions are also used to evaluate the energy associated with the complex formed by the ligand 
and  protein9–11. The scoring function considers bonded and non-bonded interactions between the ligand and 
protein, including electrostatic interactions, van der Waals interactions, and bonding terms. While these methods 
are less time-consuming compared to previous approaches, they sacrifice some accuracy in their predictions.

Machine learning techniques, and more specifically deep learning methods, have recently attracted attention 
for their ability to improve upon traditional physics-based methods. Traditional methods need to be adapted 
to every single protein–ligand pair, requiring long computations and domain expertise for every single binding 
affinity prediction. With the recent available big datasets, making individual predictions is no longer worth it. 
On the other hand, data-based methods such as machine learning require only a one-time training process, 
enabling them to provide predictions indefinitely with minimal computational cost. Therefore, the development 
of efficient and accurate data-based methods is crucial for the development of drug design.
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Unlike other traditional machine learning methods, deep learning can learn directly from the atomic struc-
ture of the protein–ligand pair without relying on hand-curated, manually-extracted features from the data. A 
commonly-used deep learning approach for binding affinity prediction is the three-dimensional convolutional 
neural network (3D CNN)12–17. These networks represent atoms and their properties in a 3D space taking into 
account the local 3D molecular structure and the relationships between atoms. The 3D representations used as 
input of the 3D CNN are high-dimensional matrices since millions of parameters are required to describe only 
one data sample. Because of this high dimensionality, a complex deep learning model is required to uncover all 
the hidden patterns that can help predict the binding affinity. Training such a model means finding the optimal 
value for parameters that minimize a suitable loss function. More complex models, having more training param-
eters, require longer execution times, which limits the exploration of different architectures or hyperparameters. 
This training process can be heavily accelerated using powerful GPUs. However, as the size of datasets continues 
to grow, it is crucial to not only scale computational resources, like GPUs but also enhance the efficiency of our 
algorithms to meet the demands of larger datasets Therefore, there is a pressing need to discover more efficient 
training approaches for these networks, which would enable the exploration of novel network architectures 
and innovative pre-processing techniques. This advancement holds the promise of developing highly accurate 
models that not only accelerate the drug design process but also instil greater confidence in the reliability of 
computational methods.

The complexity of a machine learning model also affects its generalisation capacity. According to Hoeffding’s 
 theorem18, highly complex machine learning models require a large amount of data to reduce the variance of the 
model predictions, as stated by Hoeffding’s inequality

where Eout is the error in the test set, Ein is the error in the training set, K is a measure of the complexity of the 
model and Nsamples is the number of data samples, which should be at least comparable to the complexity of the 
model to guarantee low errors in the predictions of new data. In some cases, when the test data is similar enough 
to the training data, a smaller training set can still allow for good performance. Nonetheless, increasing the 
complexity of a model always increases its chances of producing overfitting, and thus it is convenient to resort 
to simpler machine learning models.

Quantum machine learning methods have the potential to solve numerical problems exponentially faster than 
classical  methods19. Although fault-tolerant quantum computers are still not available, a new trend of quantum 
algorithms, called noisy intermediate-scale quantum (NISQ)20 era is devoted to designing quantum algorithms 
that provide a quantum advantage with the quantum computers available today. Because of the exponential 
growth scaling of the Hilbert space dimension, quantum computers can process large amounts of data with few 
 qubits21. It is for this reason that combining quantum algorithms with machine learning allows for reducing the 
complexity of the classical machine learning methods while maintaining their accuracy. Managing large data-
sets is crucial in the field of drug design, considering the remarkable growth in available data for computational 
studies. As an illustration, the PDBBind dataset, which will be utilized in this study (refer to “Data” section), 
included a mere 800 complexes in the general set back in 2002. However, by 2016, this number had risen to 
approximately 9000 samples. The current version (2020) comprises over 14,000 samples, and it is anticipated to 
grow by 20% this  year22. Consequently, it is imperative to develop efficient machine learning models capable of 
handling such vast datasets to effectively address the data revolution. Hybrid quantum-classical machine learn-
ing models have emerged as a promising approach that may hold the key to designing efficient models capable 
of effectively working with these large amounts of data.

In this paper, we propose a hybrid quantum-classical 3D CNN, which by replacing the first convolutional 
layer with a quantum circuit, effectively reduces the number of training parameters of the model. Our results 
show that as long as the quantum circuit is properly designed, the hybrid CNN maintains the performance of 
the corresponding classical CNN. Moreover, the hybrid CNN requires 20% fewer training parameters and the 
training times are reduced by 20–40%, depending on the hardware used for training. We extensively investigate 
various architectures for the quantum layer of the hybrid CNN, revealing that the design of this quantum layer 
plays a crucial role in achieving optimal performance. Therefore, this study offers an optimal strategy for design-
ing hybrid CNNs that excel in machine learning tasks, providing valuable insights for future advancements in 
this field.

It is worth noting that all the quantum circuits used in this work have been executed using quantum simula-
tion due to the current limitations of quantum hardware. The quantum layer has been modified and optimized 
to run effectively on a GPU, just as the classical 3D CNN. Specifically, the quantum circuits within the quantum 
layer correspond to quantum unitary transformations, that were constructed using  PyTorch23 tensors. This 
design choice enables them to be integrated into the neural network’s computational graph, facilitating efficient 
optimization on a GPU. Even though the training was done with classical resources, we additionally provide 
performance benchmarks considering different noise models and error probabilities in our models. Our results 
show that with error probabilities lower than p = 0.01 and circuits with 300 gates, a common error mitigation 
algorithm, namely data regression error mitigation24, can accurately mitigate the errors produced by the quantum 
hardware.

Our findings clearly indicate that hybrid quantum-classical machine learning methods have the potential to 
speed up the training process of classical machine learning methods and reduce the computational resources 
needed to train them.
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Results
In this section, we present the results obtained with the classical CNN and the different variations of the hybrid 
CNN (see “Classical CNN” and “Hybrid quantum-classical CNN” sections for more details). The performance 
of the models is evaluated against the core set of the 2020 PDBBind dataset (see “Data” section). The training 
and validation steps are done with the refined set (separated into training and validation sets) for all the models. 
To reduce overfitting of the training data, we use an early stopping procedure, finishing the training step when 
the performance in the validation set has converged. To evaluate the convergence of the training process, five 
error metrics are considered:

• Root mean squared error (RMSE)
• Mean absolute error (MAE)
• Coefficient of determination R squared (R2): proportion of the variation of the dependent variable (binding 

affinity) that is predictable from the independent variable (prediction of the model).
• Pearson correlation coefficient (Pearson): Linear correlation between two variables (binding affinity and pre-

diction of the model). It ranges between −1 and +1.
• Spearman coefficient: Monotonic correlation coefficient. It ranges between −1 and +1 . A Spearman correla-

tion of +1 or −1 occurs when a variable is a perfect monotone function of the other.

Figure 1 shows the evolution of the five error metrics in the validation set, for the classical CNN and the hybrid 
CNN with 300 quantum gates. We see that for both cases, all the error metrics stabilize after 50 epochs. Further 
training the models with the same data could lead to overfitting of the training data, thus decreasing the gener-
alization capacity. For this reason, the training of all the models was stopped at 50 epochs. The results in Fig. 1 
also show that the Pearson and Spearman coefficients oscillate more than the other error metrics, even when 
the training has converged. For this reason, we conclude that, in this case, the RMSE, MAE and R2 are better 
measures of model convergence.

Once the models have been trained, we evaluate their performance on the test set. Figure 2 shows the results 
obtained for the five error metrics, evaluated on the test set, for all models studied in this work. We compare the 
performance of the hybrid models with 20–600 quantum gates (histogram), with the performance of the classi-
cal CNN (horizontal dashed orange line). The results show that, in general, the performance of the hybrid CNN 
models increases with the number of quantum gates until roughly the same performance as the classical CNN 
is reached, at 300 quantum gates. From that point, the models with 400, 500 and 600 gates oscillate around the 
classical performance and do not significantly improve with the number of quantum gates. Therefore, we con-
clude that the number of quantum gates does affect the performance of the model, for shallow quantum circuits, 
and that it stabilizes when the quantum circuits achieve a certain depth. The minimal number of gates needed to 
achieve classical performance, in this case, is around 300 quantum gates. Thus, for a certain choice of quantum 
circuits, decreasing the complexity of the CNN does not decrease its predictive performance. To further validate 
this claim, Fig. 2 contains the performance of a downsized classical CNN. In this modified model, the initial 
convolutional layer has been entirely omitted. Despite having an equivalent number of training parameters as 
the hybrid CNN models, the performance on the core set, as evaluated using the five error metrics under con-
sideration, falls notably short of that achieved by the standard classical CNN and the most effective hybrid CNN 

Figure 1.  Error metrics evaluated in the validation set as a function of the training epochs for the classical CNN 
(left) and the hybrid CNN with 300 gates (right). Both models are seen to converge after 50 epochs.
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models. Hence, merely reducing the size of the classical CNN model does not suffice to preserve its predictive 
capabilities. Achieving optimal performance while reducing training time necessitates the incorporation of an 

Figure 2.  Evaluation of the five error metrics in the core set and comparison of the hybrid CNN models 
constructed from the Ising model and the G3 family with 20,50,100,200,300,400,500 and 600 gates, together 
with the classical CNN results (horizontal dashed orange line). Additionally, the performance of a smaller 
classical CNN model, with the same number of training parameters as the hybrid CNN, is given (horizontal 
dotted purple line). All models have been trained with the refined set.
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additional quantum layer. Figure 2 also shows the performance of the hybrid model constructed from the Ising 
model, which is a bit worse than the one for our optimal G3 hybrid model.

The main motivation for designing a hybrid CNN model was to reduce the complexity and thus the training 
time of the neural network. A measure of complexity that does not depend on the hardware where the model is 
trained is the number of training parameters. Table 1 shows the training parameters of the classical CNN and 
all the hybrid CNN models used in this work. As can be seen, the classical CNN uses around 10 million param-
eters, while the hybrid CNNs only use around 8 million parameters, demonstrating a 20% reduction in model 
complexity. Notice that the number of quantum gates of the quantum layer does not affect the number of training 
parameters of the network, since the parameters of the quantum circuit are carefully selected and fixed during 
training. This is precisely one of the advantages of using quantum reservoirs as the quantum transformation. On 
the other hand, the training times depend on the hardware where the training is executed. Table 1 shows that 
training the CNNs with only CPUs requires much longer execution times. Using GPUs highly accelerates the 
training process, thus reducing the training time from many days to hours. In our experiments, the models have 
been trained using only CPUs and with two types of GPUs. Details of the used hardware are shown in Table 2.

As can be seen in Table 1, the improvement in training times of the hybrid model over the classical varies 
from 26 to 42%. Using more powerful GPUs reduces the difference in training times, but the hardware is also 
more expensive. The difference in training times in all cases is limited by the difference in training parameters, 
which is a hardware-agnostic measure of complexity.

After analyzing the results from the models trained with the refined set, we repeated the experiments train-
ing the models with the general set. The general set has almost three times more data than the refined set, and 
thus the training takes more time and computational resources. We observed that the models required more 
epochs for the performance to converge in the validation set. The performance metrics evaluated in the test set 
are displayed in Fig. 3. We see that the performance results are equivalent to the ones from the models trained 
with the refined set. The performance of the hybrid G3 models increases with the number of quantum gates until 
it converges at around 300 gates. Then, the performance oscillates around the classical performance. The Ising 
model has suboptimal performance compared to the classical CNN or the hybrid G3 CNN with 300 gates. From 
these results, we conclude that training the models with the general set leads to equivalent results to training the 
models with the refined set, but it requires longer training times and more computational resources.

CNNs are widely used models to learn from data such as time series, images or volumetric representations. 
Their goal is to unravel hidden patterns from the input data and use them to predict the target. Thus, the com-
plexity of a CNN model highly depends on the complexity of the data. Hybrid quantum-classical CNN models 
can help reduce the number of parameters of the neural network while maintaining its prediction capacity. One 
natural question that arises here, is how this reduction of training parameters scales with the size of the data. 
Let us consider that each sample has size (C, N, N, N), where C is the number of features and N is the size of the 
volume side. The reduction of model complexity corresponds to the number of parameters of the first layer of 
the network. Therefore, the reduction of training parameters scales linearly with the number of features C. The 
number of training parameters does not explicitly depend on N, since each filter is applied locally to a portion 
of the data, as many times as needed to cover the whole sample. However, when the dimensionality of the data 
increases, usually more filters are needed for the CNN to converge. As the data complexity increases, more 
complex models are needed to learn useful information from it.

After analyzing the results of the noiseless quantum circuits, we perform noisy simulations for three different 
quantum channels and analyze the corresponding performance. An example of the output of a quantum circuit 
for different noise models and different error probabilities is shown in Fig. 4. We see that the three noise models 
reduce the probability amplitude of the circuits’ outputs. The main difference between the behavior of the noise 
models is that the phase damping channel reduces the probability amplitude slower than the other two models.

Table 1.  Training time and number of training parameters for the classical and hybrid 3D CNN trained with 
the refined set of the PDBBind dataset.

Hardware Hybrid CNN Classical CNN Difference (%)

Azure CPU 10.7 days 18.3 days 42

Azure GPU 24 h 39 h 38

Purdue Anvil GPU 16.3 h 22.1 h 26

Number of training parameters 8,088,499 10,137,129 20

Table 2.  Hardware specification for the different devices used to train the classical and hybrid 3D CNNs.

Azure CPU Azure GPU Purdue Anvil GPU

CPU Intel Xeon E5-2673 v3 2.4 GHz Intel Xeon E5-2690 v3 2 × 3rd Gen AMD EPYC 7763

Cores 4 6 128

GPU – 1 × NVIDIA Tesla K80 1× NVIDIA A100

Memory size 14 GB 56 GB 512 GB



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17951  | https://doi.org/10.1038/s41598-023-45269-y

www.nature.com/scientificreports/

In all cases, when the error probability reaches p = 0.03 , the quantum information is lost, since the amplitude 
peaks can no longer be distinguished. On the other hand, when the error rate is smaller than p = 0.03 , the DRER 
algorithm can successfully mitigate the noisy outputs. An example of the performance of the DRER algorithm for 
p = 0.01 is shown in Fig. 5. Even though the noise of the quantum device significantly reduces the amplitudes of 
the distribution, the DRER algorithm can recover the original amplitudes with significant accuracy.

For every noise model and error rate p, we performed a hyperparameter optimization to obtain the best 
linear model to mitigate the quantum errors. The results are shown in Table 3. In addition to evaluating the 

Figure 3.  Same as Fig. 2, trained with the general set.
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mean squared error (MSE), we also evaluate the tendency accuracy, that is, the fraction of times the DRER 
algorithm modifies the output in the correct direction. Let ynoisy , ynoiseless , ymitigated be the noisy, noise-
less and mitigated counts respectively. Then, the tendency accuracy measures the proportion of times 
|ymitigated − ynoiseless| < |ynoisy − ynoiseless|.

Table 3 shows that when p ≤ 0.01 the MSE of the mitigated circuits is smaller than the MSE of the noisy 
circuits. On the other hand, for p = 0.03 the MSE of the mitigated circuits is similar or even larger than the MSE 
of the noisy circuits, and the tendency accuracy is barely better than random guessing. This result agrees with 
the results in Fig. 4 since the noisy simulations with p = 0.03 are basically a constant value. Table 3 also shows 
that the tendency accuracy increases as the error probability p decreases.

For the depolarizing quantum channel, the tendency accuracy reaches the value 0.8 when p = 0.008 and 
increases to 0.89 with p = 0.001 . The amplitude damping noise seems to be the hardest to mitigate since the 
tendency accuracy increases slower than the tendency accuracy of the other noise models. This is because the 
amplitude damping channel introduces non-zero counts apart from mitigating the amplitudes of the noiseless 
 simulation25. On the other hand, the tendency accuracy increases faster with the phase damping channel, where 
it reaches the value 0.81 with p = 0.01 . All in all, these results show that as long as the error rates are smaller 
than p = 0.01 , the DRER algorithm can successfully mitigate the errors introduced by the quantum device on 
the quantum convolutional layer with 300 gates.

Figure 4.  Example of an output of the quantum circuit used in the quantum convolutional layer for three noise 
models and different error rates. For easier visualization, only the first 20 outputs are displayed in the figure.

Figure 5.  Example of an output of the quantum circuit used in the quantum convolutional layer for three 
noise models and error rate p = 0.01 , together with the output of the error mitigation algorithm. For easier 
visualization, only the first 20 outputs are displayed in the figure.
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Conclusions
Understanding the binding affinity of a drug candidate can provide valuable insights into its potential efficacy and 
help to identify potential side effects. Additionally, predicting the binding affinity can help with the design of new 
molecules that bind more strongly to their target protein. This is especially important in the drug development 
process when dealing with new treatments that work on previously unexplored biological mechanisms. For this 
reason, designing efficient computational methods that can accurately predict the binding affinity between a 
molecule and a target protein is essential to speed up the drug discovery process.

Deep learning methods such as 3D CNNs provide promising results in this aspect since they learn directly 
from the atomic structure of the protein–ligand pair. Unfortunately, one of the biggest challenges of deep learn-
ing methods is the high complexity of the networks, which require learning millions of training parameters. 
This fact makes the training process long and costly, limiting the exploration of different network architectures. 
Quantum machine learning is a field that seeks to leverage the advantages of quantum computing to improve 
machine learning algorithms. Because of the exponential scaling of the Hilbert space, quantum computers can 
handle large and high-dimensional datasets and speed up machine learning algorithms.

In this paper, we present a hybrid quantum-classical 3D CNN, which reduces the complexity of the classical 
3D CNN while maintaining an optimal prediction performance. With the proper design of quantum circuits, 
the hybrid CNN reduces the number of training parameters by 20%, which implies a reduction of training times 
of 20%-40%, depending on the hardware where the algorithm is executed. Apart from testing the performance 
of the algorithm in classical hardware, our work also proves the potential effectiveness of the method with noisy 
real hardware aided with a relevant error mitigation technique. Our results show that if the error probability is 
smaller than 0.01, a commonly-used error mitigation technique can accurately recover the noiseless outputs of 
the quantum circuit. All in all, this work shows how quantum machine learning offers the potential to reduce 
the complexity and long training times of classical neural networks by leveraging the advantages of quantum 
computing to handle large and high-dimensional datasets and speed up machine learning algorithms.

Methods
This section provides an overview of the classical and quantum machine learning algorithms used in this study. 
It starts by discussing the PDBBind dataset and the per-processing methods used in our neural network models; 
the architecture of a classical 3D CNN is then described. All the processing algorithms and the architecture of the 
classical 3D CNN are the same as the ones in Ref.12 to support a reproducible and comparable pipeline. Finally, 
the design of the hybrid quantum-classical CNN is described in detail.

Data
The data used for this study is sourced from the PDBBind  database22 -a curated subset from the Protein Data 
Bank (PDB)-, which contains a collection of protein–ligand biomolecular complexes, manually collected from 
the associated publications. For each protein–ligand complex, the data files contain information about the 3D 
morphology, types of bonds between their constituent atoms, together with the protein–ligand binding affinity. 
Binding affinities were experimentally obtained by measuring the equilibrium dissociation constant between 

Table 3.  Performance of the error mitigation algorithm evaluated using mean squared error (MSE) and 
tendency accuracy for different noise models and error rates.

Error model Error rate p Regularization α MSE noisy circuits MSE mitigated circuits Tendency accuracy

Depolarizing

0.030 10
−1

9.7 · 10−7
9.7 · 10−7 0.59

0.010 10
−2

7.7 · 10−7
2.1 · 10−7 0.75

0.008 10
−5

6.7 · 10−7
1.0 · 10−7 0.80

0.005 10
−5

4.3 · 10−7
3.4 · 10−8 0.84

0.003 10
−5

2.3 · 10−7
1.1 · 10−8 0.87

0.001 10
−6

4.0 · 10−8
1.4 · 10−9 0.89

Amplitude damping

0.030 10
−1

1.1 · 10−6
9.9 · 10−7 0.54

0.010 10
−4

7.3 · 10−7
5.3 · 10−7 0.62

0.008 10
−4

6.2 · 10−7
3.4 · 10−7 0.66

0.005 10
−5

3.9 · 10−7
6.8 · 10−8 0.75

0.003 10
−5

2.0 · 10−7
2.1 · 10−8 0.80

0.001 10
−5

3.2 · 10−8
2.4 · 10−9 0.84

Phase damping

0.030 10
−5

8.2 · 10−7
4.0 · 10−7 0.67

0.010 10
−5

3.2 · 10−7
3.7 · 10−8 0.81

0.008 10
−5

2.4 · 10−7
2.4 · 10−8 0.82

0.005 10
−5

1.2 · 10−7
9.4 · 10−9 0.85

0.003 10
−5

5.1 · 10−8
3.6 · 10−9 0.85

0.001 10
−6

6.9 · 10−9
5.0 · 10−10 0.85
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protein–ligand, kd , and the inhibition constant, kI . Then, the binding affinity is defined as − log (kd/kI ) . Because 
of its completeness and extension, the PDBBind dataset has recently become a common benchmark for binding 
affinity prediction with both biophysics-based and machine learning  methods1726,27. The PDBBind dataset comes 
already split into two non-overlapping sets: the general and the refined set. The refined set is compiled in order 
to contain higher-quality complexes based on several filters regarding binding data (e.g complexes with IC50 but 
no ki or kd measurements), crystal structures (e.g low crystal resolution or missing fragments in the complex), 
as well as the nature of the complexes (e.g ligand-protein covalent bond binding). A segregated subset from the 
refined set, called core set provides a small, high-quality data collection for testing purposes.

The 2020 version of the PDBBind dataset is used for this study. The general set (excluding the refined set) 
contains 14,127 complexes, while the refined set contains 5316 complexes. The core set is significantly smaller, 
with only 290 data samples.

Data processing
In order to train classical and hybrid CNNs, the raw PDBBind data has to be transformed first into an appropriate 
input format for the convolutional layers. Before reshaping the data into the appropriate format, a common pro-
cessing protocol was applied, following the same process as Ref.12,28. Hydrogens were added to all protein–ligand 
complexes according to each atom’s valence. The partial charge of all the bonds is solved using UCSF  Chimera29 
with the default settings. This protocol converts the PDB files to Mol2  files30 (Molecular 2D files which store 
information about atoms, bonds, and molecular properties). A 3D spatial representation was then used to repre-
sent the features of the data. This method uses 3D volume grids to capture the atomic relationships in a voxelized 
space. That is, each data sample has size (C, N, N, N), where N is the size of each dimension in space, and C is 
the number of features extracted from the protein–ligand pair. Here, we use a volume space size of 48Å and a 
voxel size of 1Å, so that N = 48. This size allows covering all the pocket regions without having too large input 
sizes for the CNN models. Having set the dimension of the space, the following 19 features were extracted from 
each protein–ligand pair ( C = 19):

• Atom type: One-hot encoding of the elements B, C, N, O, P, S, Se, halogen, or metal.
• Atom hybridization: Gives information about the number of σ and π bonds (i.e. geometry) connecting a 

particular atom to a neighboring atom. Takes values 1, 2 and 3 for sp, sp2 and sp3 hybridizations, respectively.
• Number of heavy atom bonds: Heavy atoms are all but H.
• Number of bonds with other heteroatoms: Heteroatoms are those atoms different from H or C.
• Structural properties: one-hot encoding of hydrophobic, aromatic, acceptor, donor, and ring properties.
• Partial charge: Distribution of charge of an atom as a result of its chemical environment.
• Molecule type: Indicates whether it is a protein or a ligand atom (− 1 or 1, respectively).

The feature extraction process was done with the OpenBabel tool (version 3.1.1.1)31. The Van der Waals radius 
was used to determine the size of each atom in the voxelized space. In this way, an atom could occupy one or 
more voxels depending on its Van der Waals radius. For atom overlaps, the features were added element-wise. 
The resulting 3D representations of the features resulted in sparse 3D matrices, which may make the training 
of neural networks harder since the input samples are too similar to each other, and to a zero-valued sample. 
Therefore, neural networks can have difficulties differentiating useful information from noise. For this reason, 
a Gaussian blur with amplitude σ = 1 is applied to the voxelized features, populating the neighbouring atoms 
and thus reducing the number of zero-value voxels. Figure 6 shows a representation of the initial protein–ligand 
pair and the two main processing steps. Notice that these 3D volume representations are very high-dimensional 
since more than 2 million real numbers are needed to represent only one data sample. For this reason, large 

Figure 6.  Example of a data sample and further processing from the PDBBind dataset. The protein–ligand pair 
corresponds to the 1br6 sample from the refined set (left). The first step of the processing is feature extraction, 
where 19 features are voxelized in a 3D space (middle). Then, a Gaussian blur is applied to produce a dense 
representation of the data (right).
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amounts of data samples and complex neural network models are needed to make accurate predictions without 
overfitting the training data.

The data processing is done independently for each of the datasets considered in this study. Apart from the 
general, refined and core sets, we further partitioned the general and refined sets into training and validation sets. 
This split is done to maintain the probability distribution of the binding affinities in both training and validation 
sets. For this reason, the binding affinities were separated into quintiles. Then for each quintile, we randomly 
selected 10% of the data for the validation set and kept the rest for the training set. In this way, we obtained 
training and validation sets for both the general and refined sets.

Classical CNN
CNNs have provided very successful results in deep learning applications. This type of network is specialised in 
processing high-dimensional data in the form of spatial arrays, such as time series (in 1D), images (in 2D) or 
volumes (in 3D). The name stems from the fact that instead of general matrix multiplication, it employs a math-
ematical convolution in at least one of its layers. The output of the convolution is another array that represents 
some information that was present in the initial array in a very subtle way. In this way, a filter of a convolutional 
neural network is responsible for detecting one feature of the network input. The kernel matrices are free param-
eters that must be learned to perform the optimal feature extraction. The convolutional operation is followed 
by a nonlinear activation function which adds non-linearity to the system. Following the convolutional layers, 
a pooling layer is added to progressively reduce the spatial size of the array. After a series of convolutional and 
pooling layers, a flattening layer and some feed-forward layers are used to combine the extracted features and 
predict the final output.

A representation of the layers of a 3D CNN is shown in Fig. 7 (Top). 3D CNNs have been used for mul-
tiple applications such as volume image  segmentation32, medical imaging  classification33 and human action 
 recognition34. A diagram of the 3D classical CNN used in this work is shown in Fig. 7 (Bottom). The architecture 
is the same as the one proposed in Ref.12, again for comparison purposes. The network contains five 3D con-
volutional layers, with 64,64,64,128 and 256 filters respectively. The kernel size is 7 for all the layers except for 
the last one, which has kernel 5. The CNN contains two residual connections, as proposed in  ResNet35, which 
allow passing gradients to the next layers without a nonlinear activation function. Batch normalization is used 
after each convolutional layer, and we use Rectified Linear Unit (ReLU) as an activation function. The network 
contains two pooling layers and two fully-connected layers with 10 and 1 neurons respectively.

Hybrid quantum‑classical CNN
In this paper, we propose a hybrid (quantum-classical 3D) CNN, which is designed to reduce the complexity of 
the classical 3D CNN, while maintaining its prediction performance. Hybrid CNNs replace one or more con-
volutional layers with quantum convolutional  layers36–38. That is, each classical convolutional filter is replaced 
by a quantum circuit, which acts as a quantum filter. These quantum circuits have significantly fewer training 
parameters than the classical convolutional layer, in order to reduce the overall complexity of the network. 
Each quantum circuit is divided into two blocks: the data encoding, which maps the input data into a quantum 
circuit, and the quantum transformation, where quantum operations are applied to retrieve information from 
the encoded data. In our case, our hybrid CNN replaces the first classical convolutional layer with a quantum 
convolutional layer. The final architecture of the hybrid CNN is depicted in Fig. 8. The processed protein–ligand 
data is fed to both a classical and a quantum convolutional layer. The outputs are aggregated by using a residual 
connection and then fed to the subsequent classical convolutional and pooling layers. The rest of the network 
is the same as its classical version. With this architecture, the first convolutional layer has been replaced by its 
quantum counterpart, while leaving the rest of the network unchanged.

Figure 7.  Schematic representation of the components of a 3D convolutional neural network (top), and 
architecture of the 3D CNN used in this study (bottom), which was proposed in Ref. citeATOM.
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Data encoding
The quantum convolutional layer aims to extract local features from the input data, just as the classical convo-
lutional layer would. For this reason, we split the input data into (n× n× n) , n ∈ N blocks and process each 
block individually. Given a block B, the data encoding process converts B to a quantum state |B� . Because of the 
high dimensionality of our data, we need to find a data encoding method that minimizes the number of qubits 
of the resulting quantum circuit. A suitable encoding should scale logarithmically with the dimension of the 
blocks. A popular data encoding mechanism that fulfills this property is called amplitude  encoding39, which 
requires ⌈log2(n3)⌉ qubits to encode a block. However, the amplitude encoding scheme normalizes each block 
independently to produce a normalized quantum state. Therefore, the different blocks of the data would have 
different normalization constants and would not be comparable with each other. For this reason, we decided to 
choose the Flexible Representation of Quantum  Images40 (FRQI) method, which normalizes the whole image 
before the encoding, avoiding this problem, and uses only ⌈log2(n3)⌉ + 1 qubits. FRQI was proposed to provide 
a normalized quantum state which encodes both the value (colour) of a pixel and its position in an image. Given 
an image with θ = (θ0, θ1, · · · , θ2n−1 ) pixels, where the pixels have been normalized such that θi ∈ [0, 2π), ∀i , 
the encoded state is given by Eq. (2).

where |i�, i = 0, 1, · · · 22n−1 are the basis computational states,  which is normalized since 

|||I(θ)�|| = 1
2n

√

∑22n−1
i=0 (cos2(θi)+ sin2(θi)) = 1. For each θi , the FRQI is composed of two parts: 

cos θi|0� + sin θi|1� encodes the color of the pixel, and |i� encodes the position of the pixel in the image. As a 
simple example, a (2× 2) image and its representation are displayed as:

(2)|I(θ)� =
1

2n

22n−1
∑

i=0

(cos θi|0� + sin θi|1�)⊗ |i�

(3)

θ0, (00) θ1, (01)
θ2, (10) θ3, (11)

,

|I� =
1

2
[ (cos θ0|0� + sin θ0|1�)⊗ |00�

+ (cos θ1|0� + sin θ1|1�)⊗ |01�

+ (cos θ2|0� + sin θ2|1�)⊗ |10�

+ (cos θ3|0� + sin θ3|1�)⊗ |11� ].

Figure 8.  Schematic representation of the hybrid quantum-classical 3D CNN. The original data is processed 
by both a classical convolutional layer and a quantum convolutional layer. The outputs of both layers are then 
aggregated. The result is then fed to a set of convolutional and pooling layers, following the same architecture as 
the classical 3D CNN.
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The number of qubits needed to construct the FRQI state increases logarithmically with the number of pixels 
(angles) of the image since the dimension of the computational basis increases exponentially with the number of 
qubits of the Hilbert space. In Ref.40, it is proven that the FRQI state can be implemented with simple quantum 
gates (Hadamard gates, CNOTs and Ry rotations). The number of quantum gates is polynomial with 22n , the 
number of pixels of the image. Even though the FRQI was designed for 2D colour images, the generalization to 3D 
blocks is straightforward. Let B be a (n× n× n) block, with normalized values (θ0, θ1, · · · , θn3−1), θi ∈ [0, 2π), ∀i . 
The FRQI state would then be given by

Notice that the only difference between Eqs. (2) and (4) is the number of angles of the quantum state. When n3 is a 
power of 2 (i.e. n3 = 2l , l ∈ N ), the state in Eq. (4) has non-zero components in all the states of the computational 
basis. Therefore, choosing n3 as a power of 2 mostly exploits the use of the Hilbert space. For this reason, we set 
n = 4 for our experiments. Figure 9 shows an example of the scaling of the number of qubits and the number 
of gates with the block size n. The number of qubits needed for the FRQI encoding is ⌈log2(n3)⌉ + 1 , so it scales 
logarithmically with the dimension of the block.

On the other hand, we have calculated the number of gates needed to implement the FRQI on a real quantum 
device. The number of gates depends on the values of the block θi . If there are some angles with the same value, 
the quantum circuit can be compressed to reduce the number of gates. In Ref.40, the authors show how the FRQI 
quantum circuits can be simplified by minimizing boolean expressions. As an example of how the number of 
gates can scale with the block size, we have considered blocks from our data with the highest mean absolute 
sum, to ensure that we chose blocks with highly different angles. Figure 9 shows that the number of gates of a 
general FRQI encoding scales linearly with the dimension of the block, n3 . Recall that FRQI serves as an effec-
tive quantum encoding method tailored for handling high-dimensional arrays, such as images or volumes. 
Consequently, it is well-suited for quantum convolutional layers. However, when dealing with other types of 
neural networks, such as the widespread graph neural  network12,41–43, different quantum circuit configurations 
need to be  considered44,45.

Quantum transformation
After the data has been encoded in a quantum circuit, a set of quantum gates is applied to perform the quan-
tum transformation, followed by a set of measurements that convert the data back to a classical representation 
(see the quantum circuit in Fig. 8). In a quantum convolutional layer, the quantum transformation is usually a 
parameterized quantum circuit (PQC), where the optimal parameters of the circuit need to be learned. However, 
because of the challenge represented by the high dimensionality of our data, many quantum complex circuits are 
needed to process a single data sample. By splitting the image in (4× 4× 4) blocks, 32832 quantum circuits are 
required to span the whole sample. The current hardware has limitations not only on the number of qubits and 
quantum gates but also on the number of quantum circuits that can be executed. For this reason, it is not possible 
to train our whole neural network model with the current hardware. Another option would be to run the PQC 
on quantum simulation. However, in this case, even though the quantum layer would still have fewer training 

(4)|B� =
1

n3

n3−1
∑

i=0

(cos θi|0� + sin θi|1�)⊗ |i�.

Figure 9.  Example of scaling of the Flexible Representation of Quantum Images (FRQI). The number of qubits 
scales logarithmically, and the number of gates of the quantum circuit scales linearly with the dimension of the 
block n3.
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parameters than the classical convolutional layer, the training of quantum neural networks is not prepared to be 
run on GPUs, as compared with classical convolutional layers. For this reason, even though the hybrid model 
with PQCs has lower complexity, in our experiments the training time was longer than the classical CNN.

Another good alternative is using quantum reservoirs (QRs), an emerging approach in quantum machine 
learning, which has provided excellent results in multiple  tasks46–48. It exploits the quantumness of a physical 
system to extract useful properties of the data that are then used to feed a machine learning model. In gate-based 
quantum computation, a QR is a random quantum circuit applied to an initial state, which encodes the input 
data, followed by measurements of local operators. These measurements are the features extracted by the model, 
which are then fed to a classical machine learning algorithm to predict the desired output. The main advantage 
of using QRs is the low complexity of the model, and thus, its easy training strategy. Instead of using PQC and 
finding its optimal parameters, QRs use carefully selected quantum systems with no training parameters to 
transform the input data. QRs have been used for temporal tasks (quantum reservoir  computing47,49) and also 
to predict the excited properties of molecular  data50,51.

In any case, the design of the random quantum circuit is crucial to determine the performance of the quantum 
machine learning model. Complex quantum circuits are the ones which better exploit the quantum properties 
of the system, and thus provide useful features for learning the target. In a recent  work51, it was shown that the 
majorization  principle52 is a good indicator of both  complexity53 and  performance51 of a QR. That is, the QRs with 
higher complexity according to the majorization principle are the ones which give better results in the quantum 
machine learning tasks. In particular, seven families of quantum circuits, with different complexity, were used 
as QRs. For a given family, a quantum circuit is built by adding a fixed number of random quantum gates from 
such family. The G3={CNOT,H,T} family, where CNOT is the controlled-NOT gate, H stands for Hadamard, 
and T is the π/8 phase gate, provided the best results when training the algorithm. Moreover, the performance 
of the QR increased with the number of gates of the circuit, until the performance reached its optimal value, 
and then it remained constant even if the number of gates increased. The role of noise in these computations 
was also taken into account in Ref.25

In this paper, the quantum transformation consists of a quantum circuit randomly generated with gates from 
the G3 family. Then, the qubits are measured on the computational basis, providing the output of the quantum 
convolutional layer. The hybrid CNN is trained with QRs with 20, 50, 100, 200, 300, 400, 500 and 600 quantum 
gates. In this way, we can evaluate how the depth of the QR influences the performance of the model. Figure 10 
shows an example of the output of the quantum convolutional layer. We see that with a low number of gates, the 
quantum layer extracts simpler quantum features than with a higher number of gates.

Another widely used QR is the transverse-field Ising  model46,47,50,54. In this case, the quantum circuit performs 
the time evolution of a quantum state under the random transverse-field Ising Hamiltonian

where Xi and Zj are Pauli operators acting on the site i, j-th qubit. The coefficients Jij and hi are chosen according 
to Ref.49, which provides a state-of-the-art method to select optimal parameters of the Ising model for quantum 
reservoir computing. In this case, Jij are sampled from the uniform distribution U(−Js/2, Js/2) and hi = h are 
constant. The optimal parameters fulfill h/Js = 0.1 . The system is evolved until time T = 10 . We will compare the 
performance of the hybrid CNNs trained with QRs generated from the G3 family as well as the performance of 
the models with QRs generated from the Ising model. Since the current quantum computers have limited avail-
ability and high access queue times, which limit the number of iterative runs we can do for training, the hybrid 
CNNs are run using quantum simulation on classical hardware. The code has been optimized using Qiskit and 
PyTorch and adapted so that it could be trained on GPUs, just like the classical CNN.

Error mitigation
One of the biggest challenges of the current quantum devices is the presence of noise. They perform noisy 
quantum operations with limited coherence time, which affects the performance of quantum algorithms. Even 
though the quantum circuits used for this study are run using quantum simulation, we have also evaluated the 
corresponding performance of the noisy quantum circuits using three different noise models for a small set of 
samples. The first noise model is the amplitude damping channel, which reproduces the effect of energy dissipa-
tion, that is, the loss of energy of a quantum state to its environment. The second noise model is described by 
the phase damping channel, which models the loss of quantum information without loss of energy. The last error 
model is described by the depolarizing channel. In this case, a Pauli error X, Y or Z occurs with the same prob-
ability p. For more information about the error models see Ref.21.

We perform here noisy simulations with error probabilities p = 0.03, 0.01, 0.008, 0.005, 0.003, 0.001 . Error 
mitigation methods aim to reduce the noise of the outputs after the quantum algorithm has been executed. In 
this work, the data regression error mitigation (DRER) algorithm is used to mitigate the noise of the quantum 
circuits. The DRER algorithm trains a machine learning model to correct the errors of noisy quantum circuits. 
To obtain the training set, random quantum circuits with 300 gates sampled from the G3 family are executed 
with both noisy and noiseless simulations. Thus, the training set consists of pairs (Xi , yi) where Xi contains the 
counts of the noisy distribution and yi contains the counts of the noiseless distribution. In this case, the machine 
learning model we used is ridge regression, a regularized linear model which minimizes the mean squared error:

(5)HIsing =

N−1
∑

i,j=0

JijZiZj +

N−1
∑

i

hiXi ,
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where Ns is the number of samples in the training set, W is the matrix of the linear model, α is the regularization 
parameter, and || · || is the L2 norm. The DRER is trained with 1000 samples derived from the quantum layer’s 
output, which are generated from data sourced from the refined set. Subsequently, its performance is evaluated 
using 500 noisy quantum circuits, also originating from the quantum layer’s output, but this time using data 
from the core set. In this case, the 3D volumetric space is divided into blocks of size n = 8 , leading to quantum 
circuits of 9 qubits and 300 gates. The DRER algorithm is suitable for this task since, once the machine learning 
model is trained, it can be used to mitigate multiple quantum circuits requiring very few classical computational 
resources. This makes it practical for use with large datasets.

Data availability
The data used for this study is publicly available at http:// www. pdbbi nd. org. cn/22.

(6)MSER =
1

Ns

Ns
∑

i=0

[

W · Xi − yi
]2

+ α||W ||2

Figure 10.  Example of an output of the quantum convolutional layer for different numbers of random gates in 
the G3 family, together with its input. The quantum convolutional layer is composed of a FRQI encoding layer 
followed by a quantum transformation generated with a random quantum circuit with different number of gates 
taken from the G3 family.

http://www.pdbbind.org.cn/
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Code availability
The code used for this work can be found at Ingenii’s open access library: https:// github. com/ ingen ii- solut ions/ 
ingen ii- quant um- hybrid- netwo rks/.
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