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Transmission of drug‑resistant 
bacteria in a hospital‑community 
model stratified by patient risk
Paweł Brachaczek 1, Agata Lonc 1, Mirjam E. Kretzschmar 2, Rafael Mikolajczyk 3, 
Johannes Horn 3, Andre Karch 4, Konrad Sakowski 5* & Monika J. Piotrowska 5

A susceptible‑infectious‑susceptible (SIS) model for simulating healthcare‑acquired infection spread 
within a hospital and associated community is proposed. The model accounts for the stratification of 
in‑patients into two susceptibility‑based risk groups. The model is formulated as a system of first‑
order ordinary differential equations (ODEs) with appropriate initial conditions. The mathematical 
analysis of this system is demonstrated. It is shown that the system has unique global solutions, 
which are bounded and non‑negative. The basic reproduction number ( R

0
 ) for the considered model 

is derived. The existence and the stability of the stationary solutions are analysed. The disease‑free 
stationary solution is always present and is globally asymptotically stable for R

0
< 1 , while for R

0
> 1 

it is unstable. The presence of an endemic stationary solution depends on the model parameters and 
when it exists, it is globally asymptotically stable. The endemic state encompasses both risk groups. 
The endemic state within only one group only is not possible. In addition, for R

0
= 1 a forward 

bifurcation takes place. Numerical simulations, based on the anonymised insurance data, are also 
presented to illustrate theoretical results.

An important step paving the road for modern medicine was the discovery of antibiotics. Unfortunately, due to 
evolutionary processes, the susceptibility of microorganisms to antibiotics diminishes with time. Widespread 
use of antibiotics intensifies this process and leads to the emergence of antibiotic-resistant  bacteria1–3 and to the 
need for the investigation of the impact of antibiotic use on  mortality4. Multiresistant pathogens are often spread 
within hospital networks by transfers or readmissions of colonised patients from the  community5–7. In recent 
years, multiple modelling studies were conducted to assess the extent of the problem and introduce potential 
 interventions8–10. Modelling studies were most often based on admission and discharge data, which also might 
have contained information on diagnoses of the  patients11–19. Nevertheless, these previous research generally 
did not consider differences between individual patients but rather focused only on patient streams between 
institutions. In consequence, all patients were considered the same.

On the other hand, the considered model belongs to a family of so-called compartmental patch SIS  models20–22 
or multi-group SIS  models23–25. In contrast  to22–25, where incidence is modelled by bilinear term, we assume 
non-linear dependence. Moreover, in modelling our problem, we cannot assume that the connectivity matrix 
is symmetric as  in20, but rather we should consider an asymmetric matrix  following21. Since the interacting 
individuals are stratified into low- and high-risk groups and we also model the screening process, the model 
structure of previously considered models is violated.

In reality, patients differ in their risk of becoming colonised during a hospital stay. The risk of colonisation 
depends on a patient’s diagnosis, since it determines their comorbidities and antibiotic use, as well as which 
hospital ward the patient is admitted to, how frequent their contacts with healthcare workers are, and how long 
they stay in a hospital. In addition, the diagnoses and comorbidities influence how often a patient is readmit-
ted to a hospital. Patients’ diagnoses are stored in hospital records as ICD-10 codes and can be used for risk 
stratification. This was first done  in26, where the authors introduced a risk-stratified transmission model within 
hospitals. Heterogeneity in the risk of colonisation likely influences the transmission dynamics of resistant 
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bacteria in hospitals and, through patient transfers, in the entire healthcare system. In order to design effective 
interventions, it is therefore essential to understand the impact of risk heterogeneity on the dynamics of resist-
ant bacteria transmission.

Here, we extend the previously published model for the hospital-community  pairs17 by adding risk stratifi-
cation of patients. We aim to investigate the impact of risk heterogeneity on the transmission dynamics within 
single disjoint hospital-community pairs. We use data from a German health insurance company to determine 
the parameters of the model. We first present analytical results for an 8-dimensional system of ODEs describ-
ing a hospital-community pair, followed by simulation results discussing the effectiveness of the considered 
interventions. In particular, we discuss the effectiveness of transmission rates reduction in specific risk groups 
and the effectiveness of screening.

Single hospital‑community pair model taking into account patient risk groups
The spread of bacteria within a single hospital-community pair can be modelled by a modified version of a 
susceptible-infectious-susceptible (SIS) model, considered e.g. in Piotrowska et al.17. To distinguish two patient 
risk groups, we introduce additional variables to the model, indexed by i ∈ {1, 2} . Here i = 1 denotes the low-risk 
group and i = 2 the high-risk group.

For each patient risk group i, we define the following variables as fractions of the total population:
susceptible individuals in the hospital Si , colonised individuals in the hospital Ii , susceptible individuals in 

the community Vi , and colonised individuals in the community Wi , and thus 
∑2

i=1(Si + Ii + Vi +Wi) = 1 . 
We assume that pathogen transmission can occur only in the hospital (c.f.17,18), while the clearance of colonisa-
tion takes place in both the hospital and the community. Susceptible individuals (in the hospital) of group i are 
exposed equally to colonised individuals of both risk groups. Moreover,  following26, we assign patients to risk 
groups according to their medical history, so that they do not migrate between risk groups, for details see section 
“Patient stratification and parameter estimation”.

Thus, we assume that model parameters depend on risk group i, and as a consequence parameter βi > 0 
denotes the susceptibility-based transmission rate for i-th risk group, while the corresponding clearance rate is 
denoted by γi > 0.

Patients are discharged from the hospital at rate αi and readmitted at rate εi , where αi , εi ∈ (0, 1]. Further-
more, we assume that patients are screened at admission, and if they are found positive, they are decolonised 
with probability 0 ≤ σ < 1 and then enter the hospital as susceptible.

The process considered above can be described by the following system of ODEs: 

 for i = 1, 2, where S = S1 + S2 , I = I1 + I2 . Terms βi I
I+S Si and γiIi , γiWi represent the processes of colonisation 

of susceptible patients and decolonisation (recovery) of colonised patients, respectively. Terms αiSi ,αiIi describe 
discharge of susceptible and colonised patients, and terms εiVi , εiWi describe admission of susceptible and colo-
nised individuals from the community, respectively. Term σεiWi describes screening and further decolonisation 
of colonised individuals at the admission, while the term (1− σ)εiWi describes admission of colonised patients 
who are not successfully decolonised yet.

To simplify the notation, we write Gi = Si + Ii + Vi +Wi

where G1 and G2 are constants. As all the variables denote fractions of the population, we have 
S1 + S2 + I1 + I2 + V1 + V2 +W1 +W2 = 1 and G1 + G2 = 1 . In addition, the fractions of individuals from 
the i-th group in the hospital and the community are denoted by

respectively. To close system (1), we assume that initial conditions satisfy:

Mathematical properties of the single hospital‑community pair model with patient risk groups
First, we focus on the basic properties of the solutions of the considered system.

(1a)
dSi

dt
= −βi

I

I + S
Si − αiSi + γiIi + εiVi + σεiWi ,

(1b)
dIi

dt
= βi

I

I + S
Si − αiIi − γiIi + (1− σ)εiWi ,

(1c)
dVi

dt
= αiSi − εiVi + γiWi ,

(1d)
dWi

dt
= αiIi − εiWi − γiWi

Hi = Si + Ii and Ci = Vi +Wi ,

(2)
Si(0), Ii(0),Vi(0),Wi(0) ≥ 0 for i = 1, 2,

Si(0)+ Ii(0)+ Vi(0)+Wi(0) = Gi for i = 1, 2,

Hi(0),Ci(0) > 0 for i = 1, 2.
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Statement 1 System (1)–(2) has global and unique solutions which are non-negative and bounded from above 
by 1.

Proof Since the right-hand side of system (1) is continuous with respect to t and locally Lipschitz continuous 
with respect to Si , Ii ,Vi ,Wi , system (1)–(2) has local and unique solutions as a direct consequence of Picard-
Lindelöf theorem.

Let us observe that for t ≥ 0

 so since S(t)+ I(t) = H1(t)+H2(t) , the right-hand side of (1) is a smooth function on the interval of exist-
ence of solutions.

In order to prove the non-negativity of the solutions, we recall the Taylor formula. Let g ∈ Cn be a function 
defined on an interval [0, t1) such that g(0) ≥ 0 . By 0 ≤ t0 < t1 we denote the first time point at which g is equal 
to 0. Then

where m ≤ n− 1 and limt→t0
Rm(t,t0)
(t−t0)m

= 0 . Let k be the index of the first non-zero derivative of g at point t0 . If 
dkg(t0)

dtk
 is positive, then there exists δ > 0 such that for all t ∈ (t0, t0 + δ) we have

Then we can repeat this proof for any subsequent roots of g.
Consider system (1)–(2). Let t0 ≥ 0 denote the first time point at which any of the variables Si(t) , Ii(t) , Vi(t) , 

Wi(t) , i = 1, 2 (possibly more than one) is equal to 0 while the remaining variables are positive.
If Si(t0) = 0 , then from (3a) we have Ii(t0) = Hi(t0) > 0 and thus

Similarly, if Vi(t0) = 0 , then (3b) implies that Wi(t0) = Ci(t0) > 0 and

If Wi(t0) = 0 then the sign of dWi(t0)
dt  is the same as the sign of Ii(t0) . For Ii(t0) = 0 , conditions Wi(t0) > 0 or 

I3−i(t0) > 0 yield dIi(t0)dt > 0 . If both Wi(t0) = 0 and Ii(t0) = 0 , then

so d
2Wi(t0)
dt2

 and dIi(t0)dt  both have the same sign as I3−i(t0) . If additionally I3−i(t0) = 0 and W3−i(t0) > 0 , then from 
previous observation we have dI3−i(t0)

dt > 0 . Furthermore,

If all I1(t0) , I2(t0) , W1(t0) , W2(t0) are equal to 0, then I1(0) , I2(0) , W1(0) , W2(0) are also all equal to 0. Otherwise, 
the solution of (1)–(2) would intersect with a solution (S̃1, Ĩ1, Ṽ1, W̃1, S̃2, Ĩ2, Ṽ2, W̃2) describing a population 
without any colonised patients, i.e.

for i = 1, 2 with initial conditions S̃i(0) = Si(t0) , Ṽi(0) = Vi(t0) , i = 1, 2 . Since we proved that the solutions are 
unique, such a situation cannot take place. If I1(0) , I2(0) , W1(0) , W2(0) are all equal to 0, then the solutions of 
system (1)–(2) are non-negative from (3), since Si(t) = Hi(t) and Vi(t) = Ci(t).

(3a)Hi(t) =
εi

αi + εi
Gi + e−(αi+εi)t

(
Hi(0)−

εi

αi + εi
Gi

)
> 0,

(3b)Ci(t) =
αi

αi + εi
Gi + e−(αi+εi)t

(
Ci(0)−

αi

αi + εi
Gi

)
> 0,

(4)g(t) =
m∑

i=0

(t − t0)
i

i!
dig(t0)

dti
+ Rm(t, t0),

g(t) =
(t − t0)

k

k!
dkg(t0)

dtk
+ Rk(t, t0) > 0.

dSi(t0)

dt
≥ γiIi(t0) > 0.

dVi(t0)

dt
≥ γiWi(t0) > 0.

d2Wi(t0)

dt2
= αi

dIi(t0)

dt
= αiβi

I3−i(t0)

I3−i(t0)+ S(t0)
Si(t0),

d3Wi(0)

dt3
= αi

d2Ii(t0)

dt2
= αiβi

Si(t0)

S(t0)

dI3−i(t0)

dt
> 0.

dS̃i

dt
= −αi S̃i + εiṼi ,

dṼi

dt
= αi S̃i − εiṼi ,

Ĩi(t) = 0, W̃i(t) = 0,
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Thus, Si(t), Ii(t),Vi(t),Wi(t) ∈ [0, 1] for every t from the interval of existence. From this observation and the 
fact that S(t)+ I(t) > 0 , it is trivial to check that the right-hand side of system (1) is bounded. Hence, solutions 
of system (1)–(2) are bounded functions with bounded first-order derivatives and the solutions can be extended 
globally.   �

Existence of steady states
Let the upper asterisk denote the values of the variables at a steady state. Direct calculations of steady states of 
(1) lead to the following dependencies

Moreover, we have

since H∗
i + C∗

i = Gi > 0. Thus, the disease-free steady state of (1) is given by

and it exists for all values of the parameters.
Let us consider steady states of (1), for which I∗1 , I

∗
2 > 0 . Using W∗

i  from (5) and dI
∗
i

dt = 0 in (1b), we get

which is equivalent to

where

describes the probability that an individual from the i-th group, colonised on the discharge, remains colonised 
on the readmission.

Furthermore, we denote

Parameter ψi is a product of two factors. The first one, βi
αi+γi

 , indicates the number of secondary cases one infec-
tious individual would cause during their stay in the hospital, if all individuals belonged to the i-th group. The 
second factor describes the sum of probabilities that a patient from that group remains colonised upon any sub-
sequent admission to the hospital. Parameter ψi is simply a basic reproduction number for a model describing 
a single risk group i, which is equivalent to the model presented  in17.

Since Si = Hi − Ii , from (8) we derive

In order to find explicit formulae for I∗1 , I
∗
2 , we transform (11)–(12), obtaining

where

(5)V∗
i =

1

εi

(
αiS

∗
i +

αiγi

εi + γi
I∗i

)
and W∗

i =
αiI

∗
i

εi + γi
.

(6)H∗
i =

εi

αi
C∗
i =

εi

αi + εi
Gi > 0,

(7)
E0 =

(
S01, S

0
2, I

0
1 , I

0
2 ,V

0
1 ,V

0
2 ,W

0
1 ,W

0
2

)

=
(
ε1(1− G2)

α1 + ε1
,

ε2G2

α2 + ε2
, 0, 0,

α1(1− G2)

α1 + ε1
,

α2G2

α2 + ε2
, 0, 0

)

S∗i =
(
I∗ + S∗

) 1

βi

(
αi + γi −

(1− σ)εiαi

εi + γi

)
I∗i

I∗1 + I∗2
,

(8)S∗i =
(
H∗
1 +H∗

2

)αi + γi

βi

(
1− qi

) I∗i
I∗1 + I∗2

,

(9)qi =
(1− σ)εiαi

(εi + γi)(αi + γi)
, 0 ≤ qi < 1

(10)ψi :=
βi

αi + γi

(
1

1− qi

)
> 0.

(11)I∗1 = H∗
1 −

(
H∗
1 +H∗

2

) 1

ψ1

I∗1
I∗1 + I∗2

,

(12)I∗2 = H∗
2 −

(
H∗
1 +H∗

2

) 1

ψ2

I∗2
I∗1 + I∗2

.

(13)0 = A
(
I∗1
)2 + BI∗1 + C,

(14)I∗2 = −I∗1 +
I∗1 r1

H∗
1 − I∗1

,
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and

Clearly,

Theorem 2 The following statements are true: 

1. System (1) always has a single disease-free steady state ( E0).
2. System (1) has a single endemic steady state ( E∗ ) if and only if model parameters satisfy condition 

 where H∗
i  and ψi are given by (6) and (10), respectively.

Proof The existence of the disease-free steady state is obvious. By (14), we find that

Thus, any non-negative endemic steady state of (1) is given by real solutions I∗1  to Eq. (13) satisfying

If ψ2 > ψ1 (i.e. A > 0 ), then Eq. (13) is quadratic. We find that A > 0 and C ≥ 0 implies B > 0. Hence, by Vieta’s 
formulae, Eq. (13) has a single positive real solution if and only if C < 0. Similarly, if ψ2 = ψ1 , then we get B > 0 
and the positive solution to linear Eq. (13) exists only for C < 0. In both cases, it can be easily shown that such 
solutions satisfy condition (17).

Since H∗
i > 0, inserting formula (15) into condition C < 0 yields

On the other hand, when ψ1 > ψ2 , due to the symmetry of a problem, it is sufficient to consider polynomial 
analogous to (13), but with respect to I∗2  instead. It would be equivalent to swapping indices and the considered 
equation would also have a single positive real solution, which would satisfy condition analogous to (17).

Concluding, if (16) holds, then system (1) has a single endemic steady state. Otherwise, it has no non-negative 
steady states other than the disease-free steady state x0.   �

Remark 3 Theorem 2 illustrates the impact of the introduction of two risk groups interacting with each other. 
If these groups were separate, the endemic state would be present independently in these groups, provided that 
ψi > 1 for the given group (using results  of17). If both groups are present in the same hospital and they interact 
with each other, their individual basic reproduction numbers ψi lose their previous interpretations. Instead, the 
endemic state of the system depends on the sum of these numbers with weights, i.e. H∗

i ψi/
(
H∗
1 +H∗

2

)
 . These 

weights are simply proportions of the given group population to the total population of the hospital. From the 
proof, we also conclude that there cannot be an endemic state within one group, with a disease-free state in the 
other group, as either I∗1 = I∗2 = 0 , or I∗1 > 0 and I∗2 > 0.

Basic reproduction number and stability of steady states
To analyse the local stability of steady states of system (1), we use the next generation matrix approach proposed 
by Diekmann et al.27 and van den Driessche and  Watmough28 and derive the formula for the so-called basic 
reproduction number R0.

Using Vi = Gi − Si − Ii −Wi , we reduce and rewrite system (1) as

where

(15)ri :=
H∗
1 +H∗

2

ψi
> 0 for i = 1, 2

A = 1−
r2

r1
, B = r1 −H∗

1 − r2 +H∗
2 + 2H∗

1

r2

r1
, C = H∗

1

(
r2 −H∗

2 −
r2

r1
H∗
1

)
.

ψ2 > ψ1 ⇐⇒ r1 > r2 > 0 ⇐⇒ 1−
r2

r1
> 0.

(16)
H∗
1ψ1 +H∗

2ψ2

H∗
1 +H∗

2

> 1,

I∗2 > 0 ⇐⇒ 0 < I∗1 <
I∗1 r1

H∗
1 − I∗1

⇐⇒ r1 > H∗
1 − I∗1 > 0.

(17)H∗
1 > I∗1 > max(0,H∗

1 − r1).

r2 < H∗
2 +

r2

r1
H∗
1 ⇐⇒

1

ψ2

(
H∗
1 +H∗

2

)
< H∗

2 +
ψ1

ψ2
H∗
1 ⇐⇒

H∗
1ψ1 +H∗

2ψ2

H∗
1 +H∗

2

> 1.

(18)
dx

dt
= f (x) = F (x)−V (x) = F (x)− (V−(x)−V

+(x)),

x = (x1, x2, x3, x4, x5, x6) := (I1, I2,W1,W2, S1, S2)
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and

The dynamics of colonised patient populations, i.e. I1, I2,W1,W2, are described by the first four equations. Func-
tions defined in (19) are interpreted as follows: Fi(x) is the rate of appearance of new infections in compartment 
i, V+

i (x) is the rate of transfer of individuals into compartment i by all other means, and V−
i (x) is the rate of 

transfer of individuals out of compartment i.
Let us define

where disease-free steady state reads

The next generation matrix of system (1) is given by FV−1(x0), while the basic reproduction number R0 — by 
the spectral radius of this matrix.

For system (18), matrices F and V have the following form:

where

Direct calculations of the next generation matrix yield

where

Thus, FV−1(x0) has only one non-zero eigenvalue and we have

(19)

F (x) =




β1
x1+x2

x1+x2+x5+x6
x5

β2
x1+x2

x1+x2+x5+x6
x6

0

0

0

0




; V
−(x) =




(α1 + γ1)x1
(α2 + γ2)x2
(ε1 + γ1)x3
(ε2 + γ2)x4

β1
x1+x2

x1+x2+x5+x6
x5 + α1x5

β2
x1+x2

x1+x2+x5+x6
x6 + α2x6




;

V
+(x) =




(1− σ)ε1x3
(1− σ)ε2x4

α1x1
α2x2

γ1x1 + ε1(G1 − x5 − x1 − x3)+ σε1x3
γ2x2 + ε2(G2 − x6 − x2 − x4)+ σε2x4




.

(20)F(x0) =
[
∂Fi

∂xj
(x0)

]
and V(x0) =

[
∂Vi

∂xj
(x0)

]
for i, j = 1, 2, . . . , 4,

(21)x0 =
(
0, 0, 0, 0,

ε1(1− G2)

α1 + ε1
,

ε2G2

α2 + ε2

)
.

F(x0) =




dI1(x0) dI1(x0) 0 0

dI2(x0) dI2(x0) 0 0

0 0 0 0

0 0 0 0


 , V(x0) =



α1 + γ1 0 (σ − 1)ε1 0

0 α2 + γ2 0 (σ − 1)ε2
−α1 0 ε1 + γ1 0

0 − α2 0 ε2 + γ2


 ,

(22)

dIi (x0) =
∂

∂xj

(
βi

x1 + x2

x1 + x2 + x5 + x6
x4+i

)∣∣∣∣
x=x0

=βi

(
H∗
i

H∗
1 +H∗

2

)
, i, j = 1, 2.

FV−1(x0) =




dI1(x0)
detV1

(ε1 + γ1)
dI1(x0)
detV2

(ε2 + γ2)
dI1(x0)
detV1

(1− σ)ε1
dI1(x0)
detV2

(1− σ)ε2
dI2(x0)
detV1

(ε1 + γ1)
dI2(x0)
detV2

(ε2 + γ2)
dI2(x0)
detV1

(1− σ)ε1
dI2(x0)
detV2

(1− σ)ε2
0 0 0 0
0 0 0 0


 ,

detVi = (αi + γi)(εi + γi)
(
1− qi

)
, i = 1, 2.

(23)

R0 =
2∑

1=1

dIi (x0)

detVi
(εi + γi)

=
1

H∗
1 +H∗

2

(
H∗
1β1

(α1 + γ1)
(
1− q1

) +
H∗
2β2

(α2 + γ2)
(
1− q2

)
)

=
H∗
1ψ1 +H∗

2ψ2

H∗
1 +H∗

2

,



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18593  | https://doi.org/10.1038/s41598-023-45248-3

www.nature.com/scientificreports/

where H∗
i  and ψi are given by (6) and (10), respectively. Clearly, R0 is a weighted arithmetic mean of the repro-

duction numbers for the model of disjoint risk groups (10) with weights given by (6) (see also Remark 3).
Let us recall that if R0 > 1, then by Theorem 2 system (1) has an endemic steady state.

Theorem 4 Consider R0 and E0 given by (23) and (7), respectively. Then 

1. For R0 < 1 system (1) has exactly one non-negative globally asymptotically stable steady state E0 (called the 
disease-free);

2. For R0 > 1 system (1) has two non-negative steady states: E0 , which is unstable, and endemic steady state E∗ , 
which is globally asymptotically stable.

3. For R0 = 1 we observe a forward bifurcation for system (1).

Proof Since system (18) satisfies conditions (A1)–(A5) postulated  in28, disease-free steady state E0 is locally 
asymptotically stable for R0 < 1 and unstable for R0 > 1 due to Theorem 2  in28.

Let us rewrite system (1) into an equivalent form 

 for i = 1, 2 . System (24a, 24b) consists of two cascading subsystems (24a) and (24b). Subsystem (24a) com-
prises 2 equations and describes the changes in the total populations of given risk groups in the hospital, while 
subsystem (24b) includes remaining 4 equations and describes the changes in the colonised populations in 
both hospital and community. Clearly, solutions of subsystem (24a) do not depend on the variables described 
by subsystem (24b).

First, consider subsystem (24a). From (3) it follows that this subsystem has a globally asymptotically stable 
steady state given by

Next, consider subsystem (24b) at the equilibrium of system (24a), namely

for i = 1, 2 . Note that 4-dimensional set K = {0 ≤ Ii ≤ H∗
i  , 0 ≤ Wi ≤ C∗

i , i = 1, 2} is positively invariant with 
respect to (26). We prove the non-negativity of the variables using the same method as in the proof of State-
ment 1. Similarly, let t0 denote the first time any of the variables I1 , I2 , W1 , W2 reaches its upper bound in set K. 
By (6), for Wi(t0) = C∗

i  we have

and for Ii(t0) = H∗
i  we have

Furthermore, since system (26) is cooperative and its Jacobian matrix is irreducible in the interior of K, it gener-
ates a monotone flow on K and a strongly monotone flow on interior of K, giving a strongly monotone flow on K 
as a result (29, Theorem 1.7). It is easy to verify that the Jacobian matrix of system (26) is also antimonotone.  By29, 
Theorem 6.1 restricted to the set K instead of Rn

+ , we obtain that either all solutions tend to 0 (corresponding 
to the case R0 < 1 ), or they tend to a unique steady state 

(
I∗1 , I

∗
2 ,W

∗
1 ,W

∗
2

)
 with all coordinates positive (cor-

responding to the case R0 > 1).
If R0 < 1 , then the attractor 0 of system (26) is stable by Theorem 2  in28. On the other hand, if R0 > 1 , then 

the Jacobian matrix evaluated at (I∗1 , I
∗
2 ,W

∗
1 ,W

∗
2 ) is a Metzler matrix that is element-wise less than 

(24a)
dHi

dt
= −αiHi + εi(Gi −Hi),

(24b)

dIi

dt
= βi

I1 + I2

H1 +H2
(Hi − Ii)− αiIi − γiIi + (1− σ)εiWi ,

dWi

dt
= αiIi − εiWi − γiWi ,

(25)H∗
1 =

ε1

α1 + ε1
G1, H∗

2 =
ε2

α2 + ε2
G2.

(26)

dIi

dt
=βi

I1 + I2

H∗
1 +H∗

2

(
H∗
i − Ii

)
− αiIi − γiIi + (1− σ)εiWi ,

dWi

dt
=αiIi − εiWi − γiWi ,

dWi(t0)

dt
= αiIi(t0)− (εi + γi)C

∗
i ≤ αiH

∗
i − (εi + γi)C

∗
i

= εiC
∗
i − (εi + γi)C

∗
i < 0,

dIi(t0)

dt
= −(αi + γi)H

∗
i + (1− σ)εiWi(t0) ≤ −(αi + γi)H

∗
i + εiC

∗
i

= −(αi + γi)H
∗
i + αiH

∗
i < 0.
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Positive vector (I∗1 , I
∗
2 ,W

∗
1 ,W

∗
2 ) belongs to the kernel of matrix (Metzler matrix), so, by Perron-Frobenius 

Theorem, 0 is a simple eigenvalue of (Metzler matrix) and the remaining eigenvalues have negative real parts. 
Furthermore, there exists a > 0 such that after adding the matrixa · Id , both Jacobian matrix evaluated at 
(I∗1 , I

∗
2 ,W

∗
1 ,W

∗
2 ) and matrix (Metzler matrix) are non-negative and irreducible. By Corollary 2.1.530, all eigen-

values of the Jacobian matrix evaluated at (I∗1 , I
∗
2 ,W

∗
1 ,W

∗
2 ) have negative real parts. Thus, for R0 > 1 steady state 

(I∗1 , I
∗
2 ,W

∗
1 ,W

∗
2 ) of system (26) is stable.

Let us define a point P as a combination of stable steady states of subsystems (24a) and (26)

For R0 < 1 the point P corresponds to the disease-free steady state E0 given by (7), while for R0 > 1 it corre-
sponds to the endemic steady state E∗ , where values I∗i  , W∗

i  satisfy (5), (13) and (14). In order to prove the global 
stability of P as a steady state of (24), we use arguments inspired by proof  of31, Theorem 4.2.

First,  by32, Theorem 2  or33, Theorem 3.1 P is locally asymptotically stable steady state of (24). Thus, we only 
need to prove the global attractivity of the point P.

Consider a trajectory of system (24) starting at any point satisfying the initial conditions (2).
The non-negativity of solutions (see Statement 1) indicates that, for all positive t the following conditions 

are satisfied

Since (H∗
1 ,H

∗
2 ) is a globally asymptotically stable steady state of (24a), for every ε > 0 there exists T > 0 such 

that after time T the considered trajectory of system (24) is contained in set

Therefore, the ω-limit set of this trajectory is a subset of

Assume that in the ω-limit set of the considered trajectory there is a point P1 = (H∗
1 ,H

∗
2 , i

∗
1 , i

∗
2 ,w

∗
1 ,w

∗
2 ) �= P . 

Choose ε > 0 such that ε < ||P − P1|| . From the local asymptotic stability of P there exists such δ > 0 that solu-
tions starting at any point in δ-neighbourhood of P do not leave ε-neighbourhood of P.

Observe that the last four variables of the solution to system (24) with initial point P1 are equal to the solution 
of system (26) with an initial point (i∗1 , i

∗
2 ,w

∗
1 ,w

∗
2 ) . Since i∗i ∈ [0,H∗

i ] and w∗
i ∈ [0,C∗

i ] for i = 1, 2 , we obtain that 
the trajectory starting at P1 converges to P. In particular, for any 0 < η < δ there exists T > 0 such that after time 
T solution starting at P1 does not leave η-neighbourhood of P.

From the continuity of solutions with respect to initial conditions, there exists a small enough neighbourhood 
of P1 such that after time T all the trajectories starting at this neighbourhood belong to δ-neighbourhood of P 
and, thus, these trajectories do not leave the ε-neighbourhood of P. Hence, P1 cannot belong to the ω-limit set 
of the initially chosen trajectory and P is the only element in this ω-limit set.

Since system (24) and system (1) are equivalent, for R0 < 1 the state E0 is globally asymptotically stable 
and for R0 > 1 the endemic steady state E∗ is globally asymptotically stable. As a consequence, for R0 = 1 we 
observe a forward bifurcation. Alternatively, to investigate the type of the bifurcation at R0 = 1 one can follow 
the approach proposed by van den Driessche and Watmough and check the assumptions of Theorem 4  from28; 
for details see Statement 5 and its proof.   �

Statement 5 The following statements are true: 

1. For R0 < 1 system (18) has exactly one non-negative locally asymptotically stable steady state x0 (called the 
disease-free);

2. For R0 > 1 system (18) has two non-negative steady states: x0 , which is unstable, and endemic steady state 
x∗ . Moreover, there exists ε > 0 such that x∗ is locally asymptotically stable for R0 satisfying 1+ ε > R0 > 1

;
3. For R0 = 1 we observe a forward bifurcation for system (18),

where R0 and x0 are given by (23) and (21), respectively.
Proof Since system (18) satisfies conditions (A1)-(A5) postulated  in28, the statements regarding the stability of 
disease-free steady state x0 are the direct consequences of Theorem 2  in28. Namely, x0 is locally asymptotically 
stable for R0 < 1 and unstable for R0 > 1.

In order to investigate the stability of the endemic steady state and also the type of the bifurcation occurring 
at R0 = 1, we use an approach based on the centre manifold theory, as proposed  in28. Let us define a bifurcation 
parameter µ = β2 − β̄ , where




β1(H
∗
1−I∗1 )

H∗
1+H∗

2
− α1 − γ1

β1(H
∗
1−I∗1 )

H∗
1+H∗

2
(1− σ)ε1 0

β2(H
∗
2−I∗2 )

H∗
1+H∗

2

β2(H
∗
2−I∗2 )

H∗
1+H∗

2
− α2 − γ2 0 (1− σ)ε2

α1 0 − ε1 − γ1 0

0 α2 0 − ε2 − γ2


 .

P =
{
(H∗

1 ,H
∗
2 , 0, 0, 0, 0) ifR0 < 1,

(H∗
1 ,H

∗
2 , I

∗
1 , I

∗
2 ,W

∗
1 ,W

∗
2 ) ifR0 > 1.

0 ≤ Ii(t) ≤ Hi(t) and 0 ≤ Wi(t) ≤ Ci(t), i = 1, 2.

{
|Hi −H∗

i | ≤ ε, 0 ≤ Ii ≤ H∗
i + ε, 0 ≤ Wi(0) ≤ C∗

i + ε, i = 1, 2
}
.

{H∗
1 } × {H∗

2 } × [0,H∗
1 ] × [0,H∗

2 ] × [0,C∗
1 ] × [0,C∗

2 ].
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Clearly, for such parameter β̄ we have µ = 0 ⇐⇒ β2 = β̄ ⇐⇒ R0 = 1, while

Below we show that there exists a δ > 0 such that there is a locally asymptotically stable endemic steady state near 
the disease-free steady state for δ > µ > 0 . To do so, we follow van den Driessche and Watmough and check the 
assumptions of Theorem 4  in28, i.e. we verify that a < 0 , b  = 0 , for a and b given by

where v and w are left and right null-vectors of Dxf (x0, β̄) . Furthermore, we check if zero is a simple eigenvalue 
of Dxf (x0, β̄) i.e. the Jacobian matrix of the system (18) evaluated at the point (x0, β̄) . Direct calculations lead to

where, for i = 1, 2,

Clearly, for x = x0 we have dSi = dHi = 0 . Denoting dIi (x0) = dIi , we get

It is clear that at least two eigenvalues of Dxf (x0, β̄) are non-zero, thus it is enough to consider 4× 4 upper left 
block of the matrix. Calculating the coefficients of that block’s characteristic polynomial directly, it can be shown 
that the constant term is equal to 0,  while the linear-term coefficient is non-zero. Hence, the zero eigenvalue of 
Dxf (x0, β̄) is simple.

In addition, the only non-zero second-order derivatives of the right-hand side of (18) are equal to the first-
order derivatives of dIi , d

S
i , d

H
i  with respect to x1, . . . , x6 :

(27)β̄ =
H∗
1

H∗
2

(α2 + γ2)
(
1− q2

)(
1− ψ1 +

H∗
2

H∗
1

)
.

(28)µ > 0 ⇐⇒ β2 > β̄ ⇐⇒ R0 > 1, and µ < 0 ⇐⇒ β2 < β̄ ⇐⇒ R0 < 1.

(29)a =
v

2
Dxxf (x0, β̄)w

2 =
1

2

6∑

i,j,k=1

viwjwk
∂2fi

∂xj∂xk
(x0, β̄),

(30)b = vDxβ f (x0, β̄)w =
6∑

i,j=1

viwj
∂2fi

∂xj∂β2
(x0, β̄).

(31)

Dxf (x,β) =




dI1(x)− (α1 + γ1) dI1(x) (1− σ)ε1 0 dS1 (x) dH1 (x)

dI2(x) dI2(x)− (α2 + γ2) 0 (1− σ)ε2 dH2 (x) dS2 (x)

α1 0 − ε1 − γ1 0 0 0

0 α2 0 − ε2 − γ2 0 0

−dI1(x)+ (γ1 − ε1) − dI1(x) (σ − 1)ε1 0 − dS1 (x)− (α1 + ε1) − dH1 (x)

−dI2(x) − dI2(x)+ (γ2 − ε2) 0 (σ − 1)ε2 − dH2 (x) − dS2 (x)− (α2 + ε2)




,

(32)
dIi (x) =

∂

∂xj

(
βi

x1 + x2

x1 + x2 + x5 + x6
x4+i

)
= βi

(
x5 + x6

(x1 + x2 + x5 + x6)
2

)
x4+i , j = 1, 2,

dSi (x) =
∂

∂x4+i

(
βi

x1 + x2

x1 + x2 + x5 + x6
x4+i

)
= βi

(
x1 + x2

(x1 + x2 + x5 + x6)
2

)
(x1 + x2 + x7−i),

(33)dHi (x) =
∂

∂x7−i

(
βi

x1 + x2

x1 + x2 + x5 + x6
x4+i

)
= −βi

(
x1 + x2

(x1 + x2 + x5 + x6)
2

)
x4+i .

(34)

Dxf (x0, β̄) =




dI1 − (α1 + γ1) dI1 (1− σ)ε1 0 0 0
dI2 dI2 − (α2 + γ2) 0 (1− σ)ε2 0 0
α1 0 − ε1 − γ1 0 0 0
0 α2 0 − ε2 − γ2 0 0

−dI1 + (γ1 − ε1) − dI1 (σ − 1)ε1 0 − α1 − ε1 0
−dI2 − dI2 + (γ2 − ε2) 0 (σ − 1)ε2 0 − α2 − ε2



.
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For x = x0 we have x1, x2 = 0, and x4+i = H∗
i  , hence evaluating those derivatives at point (x0, β̄) we get

Lemma 3  in28 indicates that v5 = v6 = 0 . Thus, formula (29) for a can be rewritten as

where

Having calculated the required derivatives at (x0, β̄), we can factor out (H∗
1 +H∗

2 )
−2 and write down the terms 

of a1:

Analogously, for a2 we obtain

Direct calculations of right eigenvector of Dxf (x0, β̄) show that w1 = −w5 and w2 = −w6, implying that

∂dIi
∂x1

=
∂dIi
∂x2

= −2βi
x5 + x6

(x1 + x2 + x5 + x6)3
x4+i , i = 1, 2,

∂dS1
∂x1

=
∂dS1
∂x2

=
∂dI1
∂x5

= β1
2(x1 + x2)x5 + (x1 + x2 + x5)x6 + x26

(x1 + x2 + x5 + x6)3
,

∂dS2
∂x1

=
∂dS2
∂x2

=
∂dI2
∂x6

= β2
2(x1 + x2)x6 + (x1 + x2 + x6)x5 + x25

(x1 + x2 + x5 + x6)3
,

∂dHi
∂x1

=
∂dHi
∂x2

=
∂dIi
∂x7−i

= βi
x1 + x2 − x5 − x6

(x1 + x2 + x5 + x6)3
x4+i , i = 1, 2,

∂dSi
∂x7−i

=
∂dHi
∂x4+i

= −βi
(x1 + x2)(x1 + x2 + x7−i − x4+i)

(x1 + x2 + x5 + x6)3
, i = 1, 2,

∂dHi
∂x7−i

= 2βi
x1 + x2

(x1 + x2 + x5 + x6)3
x4+i , i = 1, 2,

∂dSi
∂x4+i

= −2βi
(x1 + x2)(x1 + x2 + x7−i)

(x1 + x2 + x5 + x6)3
, i = 1, 2.

∂dI1
∂x1

(x0, β̄) =
∂dI1
∂x2

(x0, β̄) = −2β1
H∗
1

(H∗
1 +H∗

2 )
2
,

∂dI2
∂x1

(x0, β̄) =
∂dI2
∂x2

(x0, β̄) = −2β̄
H∗
2

(H∗
1 +H∗

2 )
2
,

∂dS1
∂x1

(x0, β̄) =
∂dS1
∂x2

(x0, β̄) =
∂dI1
∂x5

(x0, β̄) = β1
H∗
2

(H∗
1 +H∗

2 )
2
,

∂dS2
∂x1

(x0, β̄) =
∂dS2
∂x2

(x0, β̄) =
∂dI2
∂x6

(x0, β̄) = β̄
H∗
1

(H∗
1 +H∗

2 )
2
,

∂dH1
∂x1

(x0, β̄) =
∂dH1
∂x2

(x0, β̄) =
∂dI1
∂x6

(x0, β̄) = −β1
H∗
1

(H∗
1 +H∗

2 )
2
,

∂dH2
∂x1

(x0, β̄) =
∂dH2
∂x2

(x0, β̄) =
∂dI2
∂x5

(x0, β̄) = −β̄
H∗
2

(H∗
1 +H∗

2 )
2
,

∂dSi
∂x5

(x0, β̄) =
∂dSi
∂x6

(x0, β̄) =
∂dHi
∂x5

(x0, β̄) =
∂dHi
∂x6

(x0, β̄) = 0, i = 1, 2.

a =
1

2

6∑

i,j,k=1

viwjwk
∂2fi

∂xj∂xk
(x0, β̄) =

1

2
(v1a1 + v2a2 − v5a1 − v6a2) =

1

2
(v1a1 + v2a2),

ai =
6∑

j=1

wj

(
(w1 + w2)

∂dIi
∂xj

(x0, β̄)+ w4+i
∂dSi
∂xj

(x0, β̄)+ w7−i
∂dHi
∂xj

(x0, β̄)

)

j = 1 : w1β1
(
−2(w1 + w2)H

∗
1 + w5H

∗
2 − w6H

∗
1

)
,

j = 2 : w2β1
(
−2(w1 + w2)H

∗
1 + w5H

∗
2 − w6H

∗
1

)
,

j = 5 : w5β1(w1 + w2)H
∗
2 ,

j = 6 : −w6β1(w1 + w2)H
∗
1 .

j = 1 : w1β̄
(
−2(w1 + w2)H

∗
2 − w5H

∗
2 + w6H

∗
1

)
,

j = 2 : w2β̄
(
−2(w1 + w2)H

∗
2 − w5H

∗
2 + w6H

∗
1

)
,

j = 5 : −w5β̄(w1 + w2)H
∗
2 ,

j = 6 : w6β̄(w1 + w2)H
∗
1 .
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and as a consequence we have

Clearly if v1, v2,w1,w2 > 0, then the expression (35) is negative. From Lemma 3  of28 we have v1, v2,w1,w2 ≥ 0. 
Moreover, direct calculations show that v1w1, v2w2 > 0, yielding a < 0. On the other hand, we find that the only 
second-order derivatives that appear in (30) that are non-zero are

However, evaluating them at (x0, β̄) gives us

Thus,

We showed above that v2 > 0 and w1  = −w2, so b  = 0 , which completes the proof.   �

In conclusion, we have shown that for R0 < 1 , independently of the initial conditions, all the solutions of 
system (18) converge to the disease-free steady state, meaning that the prevalence of colonisation, defined as 
the size of colonised population divided by the size of total population, fades over time. On the other hand, for 
R0 > 1 there is an endemic steady state, with a constant prevalence of colonisation over time. In this case, all 
solutions with non-zero initial colonised population converge to the endemic steady state.

Numerical simulations
To illustrate the pathogen spread in hospital-community pairs, we perform numerical simulations using the 
proposed model. First, we describe the dataset used to estimate the parameters of system (1). It allows us to 
estimate transfer parameters, and to compute various quantities characterising each hospital-community pair j, 
such as its basic reproduction number R j

0  or the average percentage of high-risk patients in the hospital. Next, 
we investigate how the pathogen spread is influenced by particular risk groups. Finally, we illustrate the impact 
of interventions on the basic reproduction numbers as well as the bacteria prevalence.

Dataset description
The dataset was provided by AOK Lower Saxony (AOK LS), a German health insurance company. It consists of 
all hospitalisation records of patients insured by AOK LS between January 1st, 2008 and December 31st, 2015. 
Each record contains the following information: patient’s anonymised ID, birth year, sex, dates of admission and 
discharge, medical diagnosis codes (ICD-10 codes), anonymised ID of the healthcare facility where the patient 
has been admitted, and the code of state where the facility is located.

The AOK LS dataset contains 5 254 492 records in total, out of which 4 573 584 are from the facilities located 
in Lower Saxony. Since we do not have representative records from the facilities located in other states (due to 
the low coverage), we do not consider these data in our further analysis.

According to the data, there are 223 healthcare facilities in Lower Saxony. Among these, 60 have been inactive 
for at least 90 consecutive days, with no ongoing hospitalisations during that time span, hence we omit records 
from these facilities. As a consequence, we consider 163 facilities with 4 223 397 hospitalisations of 1 482 176 
distinct patients. However, after removing hospitalisation records from timely inactive facilities, there are 62 313 
patients with no hospitalisation records at all. These patients are excluded from further analysis as they do not 
contribute to any characteristic of any hospital nor community. Average yearly numbers of admissions vary 
between facilities, from 46.75 to 16343.38 hospitalisations. Further analysis of this dataset may be found  in34.

a1 = −
2(w1 + w2)β1

(H∗
1 +H∗

2 )
2

(
w1H

∗
2 + w1H

∗
1

)
= −

2(w1 + w2)β1

H∗
1 +H∗

2

w1,

a2 = −
2(w1 + w2)β̄

(H∗
1 +H∗

2 )
2

(
w2H

∗
1 + w2H

∗
2

)
= −

2(w1 + w2)β̄

H∗
1 +H∗

2

w2,

(35)a = −
w1 + w2

H∗
1 +H∗

2

(
β1v1w1 + β̄v2w2

)
.

∂2f2

∂x1∂β2
(x,β) =

∂2f2

∂x2∂β2
(x,β) = −

∂2f6

∂x1∂β2
(x,β) = −

∂2f6

∂x2∂β2
(x,β) =

dI2(x)

β2
,

∂2f2

∂x5∂β2
(x,β) = −

∂2f6

∂x5∂β2
(x,β) =

dH2 (x)

β2
,

∂2f2

∂x6∂β2
(x,β) = −

∂2f6

∂x6∂β2
(x,β) =

dS2(x)

β2
.

∂2f2

∂x1∂β2
(x0, β̄) =

∂2f2

∂x2∂β2
(x0, β̄) = −

∂2f6

∂x1∂β2
(x0, β̄) = −

∂2f6

∂x2∂β2
(x0, β̄) =

dI2(x0)

β2
=

H∗
2

H∗
1 +H∗

2

,

∂2f2

∂x5∂β2
(x0, β̄) = −

∂2f6

∂x5∂β2
(x0, β̄) =

∂2f2

∂x6∂β2
(x0, β̄) = −

∂2f6

∂x6∂β2
(x0, β̄) = 0.

b =
H∗
2

H∗
1 +H∗

2

(v2w1 + v2w2 − v6w1 − v6w2) =
H∗
2

H∗
1 +H∗

2

v2(w1 + w2).
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Patient stratification and parameter estimation
Following the criteria proposed  in26, we assign patients to the high-risk group if during any hospitalisation

they have been diagnosed with at least one of the following diseases (defined by ICD-10 codes):

• C00–C96 (cancer),
• E10–E14 (diabetes mellitus),
• I50 (heart failure),
• N18.3–N18.6 (chronic kidney disease, moderate or severe),
• D80–D89 (immune system disease),
• M34–M35 (systemic sclerosis and other systemic involvement of connective tissue),
• L40 (psoriasis),
• R76 (abnormal immunological findings in serum).

Otherwise, we assign them to the low-risk group. The assignment of patients to specific groups based on ICD-10 
diagnoses is related to the assumption that their immune systems can be compromised, or to their longer and 
more frequent stays in the hospitals.

In the considered dataset, we identify 226 607 high-risk patients and 1 193 256 low-risk patients. High-risk 
patients are generally older (see Fig. 1) and on average they have 5.18 hospitalisations during the considered 
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Figure 1.  Birth year structure of the AOK LS patients hospitalised in years 2008–2015, for high-risk and low-
risk groups.
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Figure 2.  (a) Number of AOK LS patients with a given number of admissions/hospitalisations for high-risk 
and low-risk groups. (b) Proportion of AOK LS patients with a given number of admissions/hospitalisations 
for high-risk and low-risk groups with respect to the total population of the risk groups. We see that there are 
proportionally more high-risk patients for almost all numbers of hospitalisations greater than 2.
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period, while low-risk patients have 2.55 hospitalisations. For both groups, the majority of patients (low-risk: 
98.36%; high-risk: 90.08%) have not been hospitalised more than 10 times, c.f. Fig. 2.

For each patient, we compute the average length of the hospitalisation based on their records. The results 
are presented in Fig. 3. By taking the average of this value over the respective risk groups, we conclude that a 
high-risk patient spends on average 10.56 days in a hospital during a single hospitalisation, while a low-risk 
patient — 7.56 days. For individual patients from the low-risk group, we observe a peak in the distribution of 
average length of hospitalisation between days 2 and 5, while for the high-risk patients, the peak lies between 
days 6 and 9, as presented in Fig. 3. On average, high-risk patients visit 1.93 facilities and low-risk patients — 
1.43 facilities (c.f. Fig. 4).

Using hospitalisation records, sorted by the admission date, we track the hospital and community stays of each 
patient. Every hospitalisation record is interpreted as a stay in a given hospital for a given number of days. The 
period between the date of discharge of a hospitalisation and the date of admission of the subsequent hospitalisa-
tion (including the discharge and admission dates) is interpreted as a stay in the community corresponding to 
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Figure 3.  The average length of stay in a hospital for each patient from high-risk and low-risk groups in 
AOK LS dataset presented as a histogram (a) and as survival curves truncated at 80 days (b). For survival curves, 
we normalise the number of patients by dividing it by the total population of the respective risk group. We can 
see that for values not greater than 25 days (indicated by the dashed line) there are proportionally more low-risk 
patients with an average hospitalisation length shorter than the given value. However, for values greater than 
25 days, the situation is the opposite. This means that low-risk patients often have either very short or very long 
average lengths of hospital stay.
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Figure 4.  (a) Number of AOK LS patients with a given number of visited hospitals for high-risk and low-risk 
groups. (b) Proportion of AOK LS patients with a given number of visited hospitals for high-risk and low-risk 
groups with respect to the total population of the risk group.
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the former (i.e. most recently visited) hospital. Hence, each patient is considered to stay outside of the considered 
hospitals and communities before their first hospitalisation record and after their last hospitalisation record.

For each hospital-community pair and each risk group, we calculate the average length of stay in the hospital 
and in the corresponding community and denote them as (LOHj

i ) and (LOCj
i ) , respectively, where i ∈ {1, 2} 

indicates the risk group (1 – low-risk group, 2 – high-risk group) and j ∈ {1, . . . , 163} – the considered hospital-
community pair. Let us emphasise that we consider a system of separated hospital-community pairs rather than 
an interconnected network model. Thus, we do not track patient transfers between such pairs.

We also characterise hospital-community pairs by average pair size PSj , i.e. the average daily number of 
patients present in the pair j (in either hospital j or community j), according to the previously described rules. 
The sum of all average pair sizes, denoted by N, is the total population. Furthermore, for each hospital, we 
compute pjHR , which stands for the average proportion of high-risk patients in the hospital for each day with a 
non-zero total hospital population. The results, presented in Fig. 5, vary substantially across different hospitals, 
as they range between 0.002 and 0.994, with the majority lying between 0.2 and 0.5 and the average being 0.318.

Next, we estimate the parameters of the model. Parameters αj
i and εji of system (1) describing the discharge 

and admission rates, respectively, are approximated as

see Fig. 6a,b. The values of parameters γ j
i = γ1 = γ2 are taken  from17,18,35 (c.f. (36)). As the base values for the 

transmission parameters, we take β j
1 = β1 and β j

2 = β2 = 2β1 , since we assume that in all hospitals the trans-
mission risk is the same and that high-risk patients are more vulnerable to susceptibility-based transmission. 
Moreover, β1 is selected in such a way that the average bacteria prevalence in the community, defined as the sum 
of the percentages of the colonised population in the community in the endemic steady state of each hospital-
community pair, multiplied by weights representing the ratio of average pair size to the total population, that is

is close to 8.6%, i.e. the prevalence of carriage of ESBL-producing Enterobacteriaceae in a representative sample 
of the general adult Dutch society

reported by Reuland et al.36. Thus, as a base value for the simulations, we use

The values of transmission rates β1,β2 can be additionally impacted by the interventions. In section “Prevalence 
of multiresistant pathogens”, we discuss two such cases. In one of them, only β2 is affected, with its value set as 
low as 0.0503 day−1 . In the other case, both transmission rates are decreased by up to 30% of the original values.

Parameter values estimated from data for each hospital-community pair j are shown in Fig. 6. Hospitals 
are sorted in ascending order according to R j

0  value (calculated using formula (39)), c.f. Fig. 7b. For the vast 
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(36)γ1 = γ2 = 1/365 day−1 and β1 = 0.0503 day−1, β2 = 0.1006 day−1.
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Figure 5.  Proportion of high-risk and low-risk patients in each hospital averaged over time. Hospitals are 
sorted in ascending order based on R j

0  value, calculated using (39).
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majority of hospital-community pairs the lengths of stay of high-risk patients in the community between the 
hospitalisations ( LOCj

2 ) are shorter than for the low-risk group ( LOCj
1 ), yielding that ε2 > ε1 (159 pairs out of 

163 considered). Additionally, for the majority of hospital-community pairs high-risk patients stay longer in 
hospitals than low-risk patients, thus α2 < α1 (131 pairs out of 163), see Fig. 6a,b.

Characterisation of hospital‑community pairs
For each hospital-community pair j, we estimate parameters Gj

1 and Gj
2. First, we postulate the following relation 

between the average proportion of high-risk patients in the j-th hospital ( pjHR ) based on the data and theoretical 
populations in the endemic steady state

Figure 6.  (a) Discharge parameters αj
1 and αj

2; (b) admission parameters εj1 and εj2 . Pairs are sorted in ascending 
order based on R j

0  value. Vertical dashed line indicates the first pair for which R j
0 > 1. The size of markers is 

proportional to the average pair size PSj.

(a) (b)

Figure 7.  (a) The fraction of high-risk patients per hospital Gj
2, estimated for each hospital-community pair 

( j = 1, . . . , 163) ; (b) hospital specific reproduction number R j
0  calculated according to formula (39). Pairs are 

sorted in ascending order based on R j
0  value. Vertical dashed line indicates the first pair for which R j

0 > 1. The 
size of markers is proportional to the average pair size PSj.
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where H∗,j
i  are fractions of individuals from the i-th group in j-th hospital in any steady state.

Clearly,

Having in mind that Gj
1 = 1− G

j
2 and plugging (6) instead of H∗,j

i  yields

which is equivalent to

Hence,

For values of Gj
2 estimated from the data, see Fig. 7a. Evidently, from (23) and (37) it follows that for each hospital-

community pair j we have

where ψ j
i  is an analogue of (10), easily calculated based on already estimated parameters, see Remark 3 and 

Fig. 7b. We found that 17 (out of 163 considered) pairs have Rj
0 < 1 . However, this number depends on the trans-

mission rates and thus it may be specific for a given pathogen and individual situation in the hospital. The latter is 
not taken into account in our simulations, as we assume that the transmission rates are the same in all hospitals.

In the following, we would also require the values of H∗,j
i  and C∗,j

i , which one can estimate as

using previously estimated parameters.
In Fig. 8a, we report β̄ j values defined in (27) for each hospital-community pair j. As described in Sec-

tion “Mathematical properties of the single hospital-community pair model with patient risk groups”, β̄ j is the 
critical value of the transmission parameter for the high-risk group for which we observe forward bifurcation in 
the system, assuming other parameters to be fixed. For 25 out of 163 pairs, the bifurcation occurs in the biologi-
cally non-feasible parameter region. In such cases the computed β̄ j is negative, which follows from the fact that 
in these cases we have

c.f. Eq. (27) for β̄ . Thus, for the parameters estimated from the data, the bifurcation cannot occur for these pairs, 
no matter what the value of β2 is. In such a case the disease-free steady state is always unstable and there always 
exists the endemic steady state.

In Fig. 8b, we report the average yearly number of admissions to each of 163 hospitals and classify the pairs 
according to ψ j

i  values. Clearly, condition ψ2 ≥ ψ1 holds for all hospital-community pairs.

Prevalence of multiresistant pathogens
Using the open-source SciPy  library37, we perform numerical simulations of system (1) with parameters esti-
mated for each of the separate 163 hospital-community pairs as presented above. Assuming that at the initial 
time ( t = 0 ) there are 8.6% colonised patients in communities (c.f.36) and 17.2% , i.e. twice as many colonised 
patients in hospitals, for each simulation we set the following initial condition:
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where H∗,j
i ,C

∗,j
i  are calculated according to (40).

Figure 9a–f shows how the percentage of colonised patients changes over 3 000 days for each of the separate 
hospital-community pairs. In Fig. 9a,b, we illustrate the changes in bacteria prevalence within the whole popula-
tion, while in Fig. 9c–f—for low-risk and high-risk groups, respectively. Plots in the left column represent the 
changes of the prevalence in the hospitals, whereas plots in the right column — changes in the communities.

In each figure, we observe a clear pattern that for considered hospital-community pairs with R0 < 1 bacte-
ria prevalence fades over time, while for pairs with R0 > 1 it stabilises on some non-zero level. In addition, we 
observe that for the majority of hospital-community pairs with R0 > 1, the prevalence in the high-risk group is 
much higher than in the low-risk group, see also Fig. 10a–f, where the point prevalence (at day 3000) in hospitals 
and communities for the cases presented in Fig. 9a–f is reported.

In Fig. 11, we present the solutions of system (18) over 10 000 days for two specific hospital-community pairs 
(pair number 12, where R 12

0 ≈ 0.866 , and pair number 100, where R 101
0 ≈ 1.364 ). Depending on whether R0 

is greater or less than 1, we observe different dynamics of the solutions to system (18). For R0 < 1, solutions 
converge to the disease-free steady state, while for R0 > 1, they converge to the endemic steady state. This agrees 
with the analytical results presented in Section “Mathematical properties of the single hospital-community pair 
model with patient risk groups”.

In Tables 1 and 2, we present the sample Pearson correlation coefficients weighted by pair size for hospital 
(or community) prevalence and different characteristics of hospital-community pairs calculated using the fol-
lowing formula:

where

and x and y are the investigated variables represented by vectors, mw(x,w) is the weighted mean of vector x with 
weights vector w reporting the pair sizes.

Clearly, characteristics R0 , ψ1 and ψ2 are strongly correlated with the prevalences, see Table 1, however, ψ1 
is less strongly correlated compared to R0 and ψ2 . In all cases, except parameters αi , correlations are positive. 
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Figure 8.  (a) β̄ j value evaluated for the fixed model parameters as described in Section “Patient stratification 
and parameter estimation” (with omitted values: 2.58, −21.48, −6.45), biologically non-feasible values marked 
in red; (b) average yearly number of admissions, for each hospital-community pair ( j = 1, . . . , 163 ). There are 
no red markers in (b), as for all pairs ψ j

2 ≥ ψ
j
1. Pairs are sorted in ascending order based on R j

0  value. Vertical 
dashed line indicates the first pair for which R j

0 > 1. The size of markers is proportional to the average pair size 
PSj.
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Figure 9.  Bacteria prevalence in the hospitals (left column) and communities (right column), for (a,b) 
both risk groups (expressed as a percentage of Ij1 + I

j
2 among the whole hospital population and percentage 

of Wj
1 +W

j
2 among the whole community population, respectively); (c,d) low-risk group (expressed as 

the percentage of Ij1 among the hospital population from low-risk group and percentage of Wj
1 among the 

community population from high-risk group); (e,f) high-risk group (expressed as the percentage of Ij2 among 
the hospital population from high-risk group and percentage of Wj

2 among the community population from 
high-risk group), over 3 000 days for each of the separate hospital-community pairs ( j = 1, . . . , 163 ), calculated 
from the solutions to system (1) with initial condition (41). Hospital-community pairs are sorted in ascending 
order based on R j

0  value. Vertical dashed line indicates the first pair for which R j
0 > 1..
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Figure 10.  Point prevalence in the hospitals (left column) and communities (right column), for (a,b) both risk 
groups (expressed as a percentage of Ij1 + I

j
2 among the whole hospital population and percentage of Wj

1 +W
j
2 

among the whole community population, respectively); (c,d) low-risk group (expressed as the percentage of Ij1 
among the hospital population from low-risk group and percentage of Wj

1 among the community population 
from high-risk group); (e,f) high-risk group (expressed as the percentage of Ij2 among the hospital population 
from high-risk group and percentage of Wj

2 among the community population from high-risk group), calculated 
at the end of the 3000 days long simulation for each of the separate hospital-community pairs ( j = 1, . . . , 163 ), 
based on the solutions to system (1) with initial condition (41). Hospital-community pairs are sorted in 
ascending order based on R j

0  value. Vertical dashed line indicates the first pair for which R j
0 > 1. The size of 

markers is proportional to the average pair size PSj.
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Figure 11.  Solutions of system (18) with initial condition (41) for two selected hospital-community pairs, in 
which (a) R j

0 ≈ 0.866; (b) R j
0 ≈ 1.364 . Cross-marks indicate values of variables at the (a) disease-free steady 

state; (b) endemic steady state calculated analytically as indicated in “Mathematical properties of the single 
hospital-community pair model with patient risk groups” section.

Table 1.  Pearson weighted correlation coefficients for the hospital (or community) prevalence and: basic 
reproduction number R0 , basic reproduction number of a given risk group ψi , discharge rates αi and 
admission rates εi. The weights correspond to the pair sizes. Hosp. prev. general stands for the fraction of 
colonised individuals in the hospital; Hosp. prev. LR–the fraction of colonised low-risk individuals in the 
hospital; Hosp. prev. HR – the fraction of colonised high-risk individuals in the hospital.

R0 ψ1 ψ2 α1 α2 ε1 ε2

Hosp. prev. general 0.9428 0.6796 0.8584 −0.5049 −0.4153 0.6089 0.5572

Hosp. prev. LR 0.9193 0.743 0.8493 −0.5005 −0.3851 0.6215 0.4669

Hosp. prev. HR 0.9063 0.6228 0.8195 −0.5161 −0.426 0.592 0.6105

Comm. prev. general 0.9407 0.7149 0.8585 −0.5059 −0.4012 0.634 0.5293

Comm. prev. LR 0.9067 0.7486 0.8365 −0.4926 −0.3734 0.6289 0.4488

Comm. prev. HR 0.8874 0.6266 0.8044 −0.5205 −0.4164 0.6135 0.6144

Table 2.  Pearson weighted correlation coefficients for the hospital (or community) prevalence and: the pair 
sizes, hospital and community populations of risk groups i in a steady state, respectively H∗

i  and C∗
i  , the average 

proportion of high-risk patients in a hospital pHR and the total population of the high-risk group G2. The 
weights correspond to the pair sizes. Hosp. prev. general stands for the percent of colonised individuals in the 
hospital; Hosp. prev. LR – the percent of colonised low-risk individuals in the hospital; Hosp. prev. HR – the 
percent of colonised high-risk individuals in the hospital.

Pair size H∗

1
H∗

2
C∗

1
C∗

2
pHR G2

Hosp. prev. general 0.1689 0.6265 0.7331 −0.3963 0.192 0.1814 0.2277

Hosp. prev. LR 0.0972 0.6934 0.6525 −0.3504 0.1354 0.0673 0.1687

Hosp. prev. HR 0.2281 0.5621 0.7589 −0.4347 0.244 0.2409 0.279

Comm. prev. general 0.1387 0.6651 0.7038 −0.3787 0.1671 0.1285 0.2021

Comm. prev. LR 0.0722 0.7019 0.6317 −0.3393 0.1237 0.0447 0.1563

Comm. prev. HR 0.2398 0.5655 0.7434 −0.4252 0.2347 0.2153 0.2693
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The strongest correlation is observed between the basic reproduction numbers and the percent of colonised 
individuals in the hospitals (hosp. prev. general) and between the basic reproduction numbers and the percent of 
colonised individuals in communities (comm. prev. general), as well as between the basic reproduction numbers 
and the prevalences limited to particular risk groups. Thus, in both risk groups R0 can be expected to be a better 
predictor of bacteria prevalence than the group’s ψi . We also note the fact that in terms of the absolute value, 
prevalences are more strongly correlated with εi than with αi.

Pair sizes, pHR , G2 , and C∗
2 reported in Table 2 do not correlate strongly with the prevalences. On the other 

hand, H∗
1 and H∗

2 are strongly positively correlated with the percentages of colonised individuals in both hospital 
and the community, whereas C∗

1 is the only one correlated negatively with prevalences.
In conclusion, the simulations demonstrate that quantitatively different cases are present in the regional 

healthcare system for Lower Saxony, under the assumption that inter-hospital ties are neglected. Depending 
on the basic reproduction number, the disease either eventually vanishes ( R0 < 1 ), or it becomes endemic 
( R0 > 1 ). Since R0 is derived from hospital admission/discharge statistics and pathogen transmission/recovery 
rates, it may be used to estimate the susceptibility of individual hospital-community pairs for a given pathogen.

Interventions
In order to evaluate the efficiency of prevention strategies, let us first consider the relationship between basic 
reproduction number R0 and transmission rates for risk groups β1 , β2 . Clearly, from Eqs. (23), (10), (6) it follows 
that we have linear relationship between R0 and βi ( i = 1, 2)

where Ki = H∗
i

(H∗
1+H∗

2 )(αi+γi)(1−qi)
> 0 is independent of both β1 and β2 for i = 1, 2 . Thus, the basic reproduction 

number is constant on lines l = K1β1 + K2β2 for l > 0.
The line R0 = 1 , combined with lines β1 = 0 and β2 = 0 are boundaries of a triangle T within which R0 < 1 

and, consequently, disease-free steady state is globally asymptotically stable, see Fig. 12a. The hospital-level 
interventions are represented as the changes of one or both transmission rates. A successful eradicating interven-
tion transforms a point from the area where R0 > 1 to the area where R0 < 1 (i.e. the triangle T). As presented 
in Fig. 12b, the intervention can impact only the first or only the second risk group (arrows A and C, respectively) 
or both of them at the same time (arrow B). In order to perform a successful eradicating intervention, the line 
between the initial and the final state must intersect the interior of the red triangle (Fig. 12b). In particular, it 
means that if bi ≥ β̃i then any intervention that influences only transmission rate β3−i cannot successfully eradi-
cate the bacteria. An example of such a situation for i = 1 is presented as point (b1, b2) in Fig. 12b, i.e. it shows 
a case in which any intervention targeted to reducing the transmission among the high-risk patients only is 
insufficient for the complete bacteria eradication. There is an open interval of angles for which the arrow can 
transport the initial point to triangle T and it is given by 

(
π + arctan

(
b2−β̃2
b1

)
, 3π2 + arctan

(
β̃1−b1
b2

))
 . So it is 

possible, that in some cases one of the transmission rates increases, but, nonetheless, the basic reproduction 
number will get less than 1. Thus, from a theoretical perspective, there can exist interventions that successfully 
eradicate bacteria, despite increasing transmission rate among one risk group.

One can also consider the introduction of more successful patient screening on admission (parameter σ 
impacted). The effects of all proposed types of interventions are shown in Fig. 13, where the decrease in bacteria 
prevalence in the respective hospital-community pairs is presented. These three types of interventions can be 
scaled to have similar effectiveness. The results of different interventions in the same hospital-community pair 
are comparable in the pairs with pair indices less than 135. Nevertheless, the differences are more pronounced 
for the remaining pairs, which are characterised by the smaller average pair size PSj or the unusually high or 
low proportion of the high-risk patients pjHR , c.f. Fig. 5. Therefore, to choose the most appropriate course of the 

R0 = K1β1 + K2β2,

Figure 12.  (a) The value of basic reproduction number as a function of risk-based transmission rates; (b) 
Examples of possible interventions A, B, C for initial point (b1, b2) for which R0 > 1 . The red triangle represents 
the area that each successful intervention must cross.
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(a) (b)

(c) (d)

(e) (f)

Figure 13.  Decrease in bacteria prevalence in the hospitals (left column) and communities (right column) for 
both risk groups, measured in percentage points (p.p.), after intervention (a,b) introducing patient screening 
and thus increasing parameter σ ; (c,d) reducing transmission rate in the high-risk group and thus decreasing 
parameter β2 ; (e,f) reducing transmission rate population-wide and thus decreasing parameters β1 and β2 at the 
same rate. Prevalence is expressed as the percentage of Ij1 + I

j
2 among the whole hospital population and the 

percentage of Wj
1 +W

j
2 among the total community node population, respectively, after 3000 days from the 

start of the simulation, for each of the separate hospital-community pairs ( j = 1, . . . , 163) , calculated from the 
solutions to system (1) with initial condition (41). Hospital-community pairs are sorted in the same order as in 
9. The size of markers is proportional to the average pair size PSj.
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intervention, a more advanced, optimisation-based decision process is needed, which would also take the costs 
of the intervention into consideration.

On the other hand, Fig. 14 shows how the R j
0  can change in comparison with the original value when 

recalculated after the considered interventions. Clearly, the most extreme interventions result in the largest 
reduction of basic reproduction numbers. We observe the same pattern as in Fig. 5, namely two distinct groups 
of hospital-community pairs: one consisting of pairs indexed from 1 to around 135, where we see a similar 
response to the interventions, and the other with a large diversity in results. Interestingly, Fig. 14b indicates that 
interventions focusing on the high-risk group applied to the hospitals with a low fraction of such patients may 
not achieve a satisfactory effect. This is not the case for the interventions focused on raising the effectiveness 
of screening or interventions concerning both risk groups simultaneously, where the effects are similar for all 
hospital-community pairs.

Discussion and summary
Model (1) is intended for simulations of hospital-acquired infection dynamics in a hospital and a community 
of patients coupled with this hospital. The model extends a previously published  model17 by stratification into 
low- and high-risk patients. Depending on the basic reproduction number, two scenarios are possible: either it 
is low enough for there to be only a disease-free steady state, or it is high enough to indicate the simultaneous 
existence of an endemic steady state. Moreover, the basic reproduction number for model (1) is simply a convex 
combination of basic reproduction numbers  of17 for decoupled risk groups. The mathematical analysis indicates 
that it is not possible to attain a mixed steady state, in which the endemic state is present in only one group 
(Remark 3): either it is disease-free, or endemic simultaneously in both groups. The mixed steady state would 
be only possible if these groups would be separated from each other.

Heterogeneity in prevalence for simulation results in different healthcare facilities is observed for both this 
and  previous17 model, and for both models, it is correlated with respective basic reproduction numbers. In addi-
tion, as expected, the simulations indicate that the prevalence in the high-risk group is generally higher than in 
the low-risk group. On the other hand, prevalence results for communities coupled with those facilities are not 
representative of the communities as a whole, since during simulations only a small community subset, present 
in the hospital records, was considered.

Thus, the theoretical analysis, as well as simulation results, indicate that the division into low/high-risk groups 
does not lead to qualitatively new dynamics at the population level, whereas quantitative behaviour depends 
on the exact parameter values. However, new light is shed on how the pathogen transfer dynamics affects the 
risk groups.

The strength of model (1) lies in the capability to simulate interventions addressed to a particular risk group. 
For the model without risk groups, targeted interventions lead to a substantial decrease in the  prevalence19. 
However, the problem to overcome is the cost of such interventions. Simulations with model (1) demonstrate 
how division into risk groups may lower these costs. As demonstrated in Fig. 13a,b, a great reduction of the 
prevalence could be achieved by screening and decolonising patients on admission. But this is hardly a viable 
option, as such decolonisation or perfect isolation of positively-tested patients is not possible in practice, not to 
mention the additional burden due to intensive initial testing. However, it is a reference point. By introducing 
increased preventive countermeasures aimed at high-risk patients alone it is possible to obtain similar effects 
as through the process of screening (c.f. Fig. 13c,d). Moreover, the high-risk group is smaller than the low-risk 
group in most healthcare facilities, so the interventions would be applied to only a fraction of the patients. It 

Figure 14.  Values of R j
0  calculated according to formula (39) before and after applying the interventions (a) 

introducing patient screening and thus increasing parameter σ ; (b) reducing transmission rate in the high-risk 
group and thus decreasing parameter β2 ; (c) reducing transmission rate population-wide and thus decreasing 
parameters β1 and β2 at the same rate. Hospital-community pairs are sorted in the same order as in 9. Each 
vertical dashed line indicates the first pair for which recalculated R j

0 > 1 – the greater the intervention, the 
closer the line is to the right. The size of markers is proportional to the average pair size PSj.
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must be noted that despite the satisfactory reduction in the prevalence, these interventions do not guarantee a 
switch from the endemic state regime to the disease-free regime, as this may require a substantial reduction in 
transmission parameters, possibly in both risk groups (see Section “Prevalence of multiresistant pathogens”).

Some limitations of this model come from the nature of the SIS-type ODE systems, as it is assumed that all 
the considered populations are homogeneous within themselves and well-mixed. Additionally, when it comes 
to the bacteria transmission process, we assume homogeneous mixing between the risk groups in hospitals.

As mentioned before, the simulation results might not realistically depict the transmission dynamics within 
the entire community outside of hospitals, as the considered dataset only accounts for individuals who visited a 
hospital at least once during the eight-year period. Furthermore, the results presented in this study are based on 
hospitals decoupled from each other. In further work, it would be beneficial to extend the model to introduce 
direct and indirect patient transfers between hospitals and to simulate targeted interventions within one or both 
risk groups. In particular, it is important to determine if the interventions based on the risk groups would be 
more effective than the interventions ignoring them.

Ethical approval and informed consent
The study was conducted in accordance with the Declaration of Helsinki. The analyses were performed using 
a pre-existing claims dataset created as part of the routine administrative activities of a statutory health insur-
ance provider. Its scientific use is regulated by German law in the German Social Code “Sozialgesetzbuch” and 
the data is anonymized. The data protection officer of the Local Statutory Health Insurance of Lower Saxony-
AOK Niedersachsen (Germany) has given permission for this study to use the data for scientific purposes. The 
project was reviewed by the ethical commission of the Medical Faculty of the Martin Luther University Halle-
Wittenberg on March, 22nd 2017, which provided a written votum on March, 28th 2017 that informed consent 
of the patients is not required.
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