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Efficient ship noise classification 
with positive incentive noise 
and fused features using a simple 
convolutional network
Xu Lin 1*, Ruichun Dong 1, Yuqing Zhao 1 & Rui Wang 2

Ship noise analysis is a critical area of research in hydroacoustic remote sensing due to its practical 
implications in identifying ship direction, type, and even specific ship identities. However, the 
limited availability of data poses challenges in developing accurate ship noise classification models. 
Previous studies have mainly focused on small-sample learning approaches, resulting in complex 
network structures. Nonetheless, underwater robots often have limited computing power, making it 
essential to develop simpler recognition networks. In this paper, we address the issue of data scarcity 
by introducing positive incentive noise. We propose a CNN-based hydroacoustic signal recognition 
method that achieves comparable or superior performance to previous studies, using a simple 
network structure as a back-end decision system. We describe the feature extraction process using a 
dataset with added noise and compare the performance of various features. Additionally, we compare 
our proposed method with previous studies. Experimental results demonstrate that simple neural 
networks can achieve high performance and excellent generalizability without the need for complex 
network structures like adversarial learning models.

Hydroacoustic signals are the primary means of long-range communication in the ocean, and ship noise identi-
fication is essential in analyzing these signals. Ship-radiated noise, which refers to signals generated by ships and 
received by passive sonar systems, is widely used for ship target  identification1. How to carry a ship identifica-
tion system on an autonomous underwater robot has become one of the directions of interest for researchers. 
However, due to the complexity of the marine environment and the difficulty of data collection, identifying ships 
through hydroacoustic remote sensing is challenging.

To address these issues, various signal processing methods have been proposed for extracting features of 
hydroacoustic signals, including LOFAR spectra, Meier scalar spectrograms, Meier cepstral coefficients (MFCC), 
and Hilbert-Huang transform  features2. With the development of deep learning, features based on these methods 
have been used to develop ship signal identification  models3–5. However, the existing hydroacoustic datasets are 
limited, and different recognition methods mainly compete for minor sample problems, which must be more 
generalizable.

Some scholars input raw audio directly into the neural network for recognition. Hu et al.6 input raw audio into 
the CNN mesh layer to improve the network’s generalization ability. Shen et al.7 developed an auditory-inspired 
convolutional neural network incorporating multi-scale expansion to enhance its generalization capabilities.

More scholars have used spectral features as input to the network, and the research direction has shifted to 
feature enhancement and small sample learning problems.

Mishachandar and  Vairamuthu8 proposed a marine noise classification and recognition system using MFCC 
as input, capable of classifying unidentified marine sounds from cetaceans, fish, marine invertebrates, anthro-
pogenic sounds, natural sounds, and passive acoustic marine noise recordings. Liu et al.9 connected the Meier 
spectrum with first- and second-order derivatives to increase the input bits of features and used recurrent neural 
networks for recognition. Ibrahim et al.10 introduced migration learning to grouper sound classification and 
demonstrated that migration learning has good recognition accuracy. Sun et al.11 introduced convolutional neural 
networks to multi-target recognition of hydroacoustic signals. They demonstrated that using amplitude Short 

OPEN

1College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, 
China. 2College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, 
Qingdao 266590, China. *email: linxu@sdust.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-45245-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17905  | https://doi.org/10.1038/s41598-023-45245-6

www.nature.com/scientificreports/

Time Fourier  transform12 (STFT), complex-valued STFT spectra, and log-mel spectra as network inputs could 
effectively recognize multi-target signals.

The computing chips on autonomous underwater robots are often unable to withstand the high arithmetic 
power, so developing simple high-performance networks has also become one of the difficulties.

To improve the effectiveness of recognition networks, data enhancement in image recognition can be 
employed. In this paper, a deep learning solution based on convolutional neural networks is proposed to improve 
data augmentation and network decision layer to improve network recognition accuracy using feature fusion. To 
explore the best hydroacoustic signal features, the original audio signal, MFCC, and different fused features are 
compared as inputs to the CNN network. To verify the generalizability of the network, the completed training 
network is applied to the new dataset DeepShip, achieving better results.

The contributions of this paper can be summarized as follows.
Firstly, unlike previous denoising methods, this paper proposes using positive incentive noise to introduce 

noise into the dataset extension and extract fused features as network inputs. Experimental results demonstrate 
that noise can improve the network recognition rate under certain conditions. This approach provides a novel 
solution to the issue of limited hydroacoustic datasets and improves the generalizability of ship noise classifica-
tion models.

Secondly, the paper borrows the voting mechanism from random forest and combines it with CNN to add 
a decision layer at the back end of the CNN. This approach improves the accuracy of the network by fusing the 
output from multiple CNN models. This method contributes to the development of more robust and accurate 
ship noise classification models.

Lastly, the paper compares the existing algorithms with the proposed method and verifies that a simple 
network can also achieve high recognition accuracy. This finding is significant because it suggests that complex 
network structures, such as those involved in adversarial learning, may not always be necessary for accurate 
ship noise classification.

Section "Dataset setting" discusses the dataset setup and compares the enhanced dataset. Section "Methods" 
describes the design and parameters of the network. Section "Experiments" performs an experimental compari-
son to show the method’s superiority.

Dataset setting
In this paper, A dataset is produced based on the ShipsEar  dataset13. This dataset collects the sounds of different 
vessels along the Spanish Atlantic coast during 2012 and 2013.

Labels
To facilitate the study, 11 types of ship noise and one type of environmental noise are classified into five categories 
based on the classification of the ShipsEar dataset, as shown in Table 1. The network is still classified according 
to 12 categories.

Dataset expansion
When counting the data in the five categories, the audio dataset contained 375 audios in Category A, 310 audios 
in Category B, 852 audios in Category C, 321 audios in Category D, and 229 audios in Category E. To avoid 
discarding any audio, the slices with blank audio less than 80 ms were kept. To increase the data volume, we aim 
to expand the dataset efficiently and improve the network. We adopt Li’s latest proposal of positive incentive 
 noise14, which is defined as follows.

Define the information of task T with noise f :

(1)MI
(

T , f
)

= H(T)−H(T|f )

Table 1.  Labels. Since the length of the noisy audio varies for each type of vessel in the dataset, the audio was 
uniformly sliced at every 200 ms to form the original dataset.

Class ID Name Frames

A

Fishboat 142

Tugboat 54

Trawler 54

Mussel boat 128

Dredger 82

B

Motorboat 215

Sailboat 42

Pilot ship 121

C Passengers 873

D
Ocean liner 187

RORO 275

E Natural ambient noise 319
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where MI is the mutual information and H is the information entropy.
Define the noise f  that satisfies the following conditions as the positive incentive noise:

The above inequality is also equivalent to

On the contrary, the noise that satisfies MI
(

T , f
)

= 0 is called pure noise or negative noise.
In contrast to the idea that noise always affects network accuracy, he argued that noise is not always harmful 

and that the effect of positive incentive noise on simple neural networks is more substantial than adversarial 
learning in some areas. Li concludes from Stochastic Resonance  analysis15 that random noise is positively incen-
tive in some data and pure noise in other cases, which means that there cannot be only pure noise on the data 
and not only pure positive incentive noise. This inspiration has led us to a unique perspective. While denoising is 
conventionally employed to handle datasets plagued by substantial ambient noise, introducing white noise could 
enhance the network’s recognition rate. It’s crucial to highlight that this approach diverges from the traditional 
practice of adding noise to data primarily for dataset enrichment. Instead, our process involves actively incorpo-
rating white noise to boost network performance, constituting a somewhat distinct conceptual twist on the idea.

The process of ship noise classification in machine learning typically involves the conversion of raw audio 
signals into spectrograms to extract relevant features for recognition. However, this conversion process may result 
in the loss of information from the original signal. Additionally, the filter used for creating the spectrogram may 
selectively retain certain signal features based on their frequency. To address these issues, a novel approach is 
proposed in this paper, which involves introducing random noise to the original audio signal prior to spectro-
gram conversion. The hypothesis is that the added noise will enhance the retained features after filtering, without 
affecting the feature extraction process, as the filter will effectively remove any extraneous noise. This hypothesis 
will be verified through a simple experiment.

To expand the dataset efficiently and improve feature extraction, random noise is added to all 2087 original 
slices, and a new dataset is formed with all audio without added noise, resulting in a dataset twice the size of 
the original data.

It is important to note that the number of class C data is significantly larger than the other four classes, and 
the amount of ambient noise data belong to class E is limited. To address this issue, a new dataset called Deep-
Ship is introduced. DeepShip is open source on GitHub (https:// github. com/ irfan kamboh/ DeepS hip) and only 
comprises four categories of ships(Cargo, Passenger, Tanker, Tugboat). The DeepShip part of the audio is sliced 
for the same plus noise processing according to the classification of ShipsEar to obtain a more balanced dataset. 
Finally, the ambient noise data is expanded through simulation to obtain the final dataset.

Comparison experiment
The positive incentive noise experiment proposed by Li focuses on image recognition, so we add random noise 
to the original audio for experimental comparison.

The experimental parameters were set as follows in this study. The raw audio was uniformly converted into a 
STFT-spectrum extracted feature input to a CNN network for recognition, which consisted of two convolutional 
layers, two maximum pooling layers, an additional average pooling layer, and a fully connected layer in front of 
the output layer. The activation function was set to the common Relu  function16, the optimizer to  Adam17, and 
the network was trained for 100 epochs.

The most straightforward CNN network was used in this experiment to verify the noise improvement on the 
training results. The experimental results are shown in Fig. 1.

The experiment shows that the recognition accuracy of the original unnoticed dataset is only 78%, while the 
recognition accuracy of the dataset with random noise added reaches 80.2%. This proves that positive incentive 
noise is also effective for audio recognition.

Methods
The traditional way of underwater target identification is through the human ear, and the method requires an 
operator with extensive experience and skilled hydrophone operation skills. When the operator captures the 
suspicious sound, adjusts the volume and filter, removes the background noise, and then analyzes the timbre, 
rhythm, and other acoustic characteristics to identify the target based on experience. Although the manual 
identification method has high accuracy, the required time and economic cost are more expensive.

The machine learning neural network represented by CNN enables the dimensionality of features to learn 
different acoustic target features by deepening the number of layers.

For the original audio, spectral filtering can extract most acoustic features. For example, the Meier spectrum 
is similar to the human ear for low-frequency sensitivity and can retain most acoustic features. However, differ-
ent spectrums extracting features must lose some features simultaneously, so we propose using different feature 
extraction methods for feature fusion and then input to the network for recognition.

The framework is as follows, firstly, different features are extracted from the original audio, and then the 
features are fused and fed into a deep convolutional network. The back-end decision can effectively improve 
the recognition accuracy, so we use a convolutional network for further feature extraction of the fused features. 
Then, feeding multiple neural networks for parallel training and adding a voting decision mechanism at the back 
end, the detailed process is shown in Fig. 2.

(2)MI
(

T , f
)

> 0

(3)H(T) > H(T|f )

https://github.com/irfankamboh/DeepShip
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Feature extraction
The Mel cepstral coefficient MFCC is a feature widely used in speech signal recognition and was introduced by 
Davis and  Mermelstein18 in the 1980s. The Mel scale describes the nonlinear properties of human ear frequen-
cies, which are related to linear frequencies as in Eq. (4):

where f  is frequency.
The specific steps of MFCC feature extraction on this basis are shown below:
Step (a): Pre-emphasis, boosting the high-frequency part to stabilize the features. Since the high-frequency 

part of the signal attenuates much more than the low frequency during underwater propagation, the high-
frequency part of the signal will be ignored if feature extraction is performed directly. Therefore, pre-emphasis 
can effectively extract the stable signal features.

where H is the pre-emphasized signal, z is the original signal, and μ is the pre-emphasis coefficient, generally 
considered 0.9 ~ 1.

Step (b): Take the number of data points N = 2048 for each frame, and sub-frame the sampled noise sequence. 
In order to avoid too much variation between two adjacent frames, there is generally an overlap between two 
adjacent frames containing M sampling points, and M is taken as 512 in this paper.

Step (c): Adding windows, multiplying the Hamming windows in each frame to increase the continuity 
between the left and right sides of the frame. After multiplying the Hamming window W(n) , the speech signal 
S′(n) can be expressed as

(4)Mel
(

f
)

= 2595lg(1+ f /700)

(5)H(z) = 1− µz−1

(6)S′(n) = S(n)×W(n)

(7)W(n) =

{

0.54− 0.45× cos

[

2πn
N−1

]

, 0 ≤ n ≤ N − 1

0, other

Figure 1.  Recognition rate of original and noise-added data sets.

Figure 2.  Overall framework.
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Step (d): Fourier  transform19, the Fourier transform of the signal after framing, and then the signal’s spectrum 
is modulo and squared to obtain the signal’s power spectrum. The fast Fourier transform of the signal is

x(k) is the amplitude spectrum, x(n) is the input signal, and N denotes the number of Fourier transform points.
Step (e): Mel filter bank filtering, transferring the frequency domain f to the Mel domain for signal processing.

where 
∑M−1

m=0 Hm(k) = 1 , Hm(k) denotes the filter parameters, f (m) denotes the center frequency of the 
triangular filter, and L is the number of Meier filters.

The bandpass filter output D(m) is

where N is the total number of signal points in each frame.
Step (f): The MFCC parameter C(n) is obtained after taking the logarithm of D(m) and then performing the 

discrete cosine transform

where p is the MFCC order.
Another commonly used feature extraction method is the STFT  spectrum20. The basic idea of STFT is to add 

a window to the signal and then perform the Fourier transform. The window function is translated throughout 
the time axis according to the change of time. That is, the spectrum near the moment t is localized using the 
window function, thus constituting a two-dimensional time–frequency spectrum of the signal to be analyzed.

where the time duration of the window function is t, and the center frequency of the window function is ω.
From the principles of various types of feature extraction methods, it can be seen that each method occurs 

with partial loss of signal features. We want to enhance the extracted features while preserving their features 
as much as possible. Figure 3 shows the spectra of various feature extraction methods for five types of noise.

In this paper, The librosa software  package21 is used for data processing and feature extraction. Referring to 
the idea of the Mel spectrum connected with first and second-order derivatives used by Liu et al.9, Extracting 
the STFT spectrum and logging the Mel spectrum connected to form a four-dimensional feature input to the 
CNN network for convolution.

CNN parameters
In this study, drawing inspiration from the widely acclaimed CNN architecture  ResNet22, we aimed to construct 
a streamlined CNN network that could attain exceptional recognition accuracy. To accomplish this, we crafted a 
straightforward CNN network, drawing influence from an alternative network structure known as  DenseNet23. 
CNN networks can automatically extract features from raw data and learn high-level abstract features of the data 
for tasks such as classification and recognition through operations such as convolution and pooling.

Diverging from the complexity of other networks, such as Convolutional Recurrent Neural Network(CRNN), 
a CNN network with only two convolutions and a one-dimensional stratification pool before the output layer 
was used in this study. The detailed structure is shown in Tables 2 and 3. Figure 2 illustrates three CNN struc-
tures, where the parameters of network 3 differ from those of network 1 and network 2. Network 1 is identical 
to network 2, and network 3 was applied for comparison in experiment III.

The original data were divided into different subsets, and each subset was used to train a CNN model. K-Fold 
cross-validation24 was used to divide the data into K copies, using K-1 copies each time as training data and 
the remaining copy as test data. This approach effectively reduces overfitting and provides better generalization 
ability. In this study, two CNN networks with the same parameters (shown in Fig. 3) were combined, and K was 
set to 2.

The fused features extracted in the previous section were used as the CNN network input, and the hyperbolic 
tangent function tanh was chosen as the activation function. After two layers of convolution and pooling, the 
classification probabilities of the 12 categories were output through the fully connected and softmax  layers25.

In contrast to the VGG16  network26, often used for image classification tasks and includes 13 convolutional 
layers and three fully connected layers, the VGG network was initially proposed to solve large data sets. A simple 

(8)x(k) =

N−1
∑

n=0

x(n)e
−2jπk
N

(9)Hm(k)



















k−f (m−1)

f (m)−f (m−1)
, f (m− 1) ≤ k < f (m)

1, k = f (m)
f (m+1)−k

f (m+1)−f (m)
, f (m) < k ≤ f (m+ 1)

0, other

, 0 ≤ m ≤ L

(10)D(m) =

N−1
∑

k=0

|X(k)|2Hm(k)

(11)C(n) =

L
∑

k=1

lg(D(m))cos

[

π(k − 0.5)n

L

]

, n = 1, 2, 3, · · · , p

(12)STFT = (ω, τ) =

∫ +∞

−∞

g(t − τ)s(t)e−iωtdt
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network structure may be more practical in a small sample problem like ship noise with a few parameters and 
fast model convergence.

In Experiment I, different features were extracted for fusion and input into CNN1 for experiments. The aim 
was to verify whether the features retained by feature fusion could effectively improve the recognition accuracy 
of the network. No changes were made to the network structure.

Figure 3.  Examples of features. Row 1: original audio wav; row 2: magnitude STFT spectrogram; row 3: log-mel 
spectrogram.

Table 2.  CNN1.

Layer Size Number of channels Activation function

Conv2d 3 × 3 64 Tanh

Max_Pooling2d 2 × 2

Conv2d 3 × 3 128 Tanh

Max_Pooling2d 2 × 2

Dropout (0.1)

Flatten

Dense 1024 Tanh

Dense 12 Softmax

Table 3.  CNN3.

Layer Size Number of channels Activation function

Conv2d 3 × 3 32 Relu

Max_Pooling2d 2 × 2

Conv2d 3 × 3 64 Relu

Max_Pooling2d 2 × 2

Dropout (0.25)

Flatten

Dense 128 Relu

Dropout (0.5)

Dense 12 Softmax
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In Experiment II, the recognition accuracy of the complex network was compared with that of the simple 
network proposed in this paper. The aim was to verify the conjecture that the simple network could achieve 
comparable or even better performance than the complex network.

Voting mechanisms
In addition to using CNNs, we also considered the feasibility of a random forest decision-making approach for 
hydroacoustic remote sensing. Random  forest27 is an integrated learning algorithm that improves prediction 
accuracy by integrating multiple decision trees (Decision Tree). Unlike CNNs, random forests are suitable for 
processing structured data and require manual feature selection and extraction.

There are familiar combination strategies for integrated learning, such as averaging and voting. Random forest 
is a typical integrated learning algorithm that uses a combination strategy of the voting method. It relies on the 
voting choice of each decision tree in the random forest to determine the final classification result. At the outset 
of our research, our primary focus was on studying the Random Forest algorithm. However, we consistently 
observed unsatisfactory recognition accuracy when applying Random Forest to hydroacoustic signal recogni-
tion, as demonstrated in Experiment II (refer to the experimental results). As we delved deeper into the Random 
Forest algorithm, we uncovered that its final decision layer typically employs a voting  mechanism28. Moreover, 
we noted the substantial impact of the weighted soft-voting mechanism on enhancing the performance of deep 
learning models. Consequently, we integrated the weighted soft voting mechanism with our designed network 
to enhance the algorithm’s performance.

The standard voting methods are hard voting and soft voting. Hard voting is a simple mechanism in which 
multiple models’ predictions are voted on, and the category with the most votes is ultimately selected as the 
prediction result. Soft  voting29 is a probability-based voting mechanism known as weighted average probability 
voting. The prediction results of multiple models are considered probability distributions, and the final predic-
tion result is a weighted average of the prediction probabilities of each model. Figure 4 shows the flow of the soft 
voting mechanism, and the figure visualizes the difference between soft voting and hard voting.

Due to the small sample problem of ship noise classification and using a simple network with the same 
parameters, weighted soft voting was chosen as the back-end decision mechanism in this study.

Experiment II compares the random forest with other neural network training results. In Experiment III, 
comparing the past studies with the present method. In Experiment IV, verifying the generalization ability of 
the method in this paper.

Experiments
Evaluation metrics
Ship noise classification is a multi-class classification problem. Since the number of data varies greatly between 
the various types of data in the dataset, using macro-averaged F1 scores to evaluate the classifier’s performance.

The F1  score30 is calculated as follows.

(13)F1 = 2
(Precision ∗ Recall)

(Precision+ Recall)

Figure 4.  Soft voting. The picture shows the difference between soft and hard voting, not the prediction of the 
highest number of votes is the final result.
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Precision represents the proportion of true positive samples among the samples predicted as positive, and 
Recall represents the proportion of true positive samples correctly predicted as positive. The calculation formulas 
are as follows:

The macro-averaged F1  scores31 were averaged after calculating the F1 scores for each category without con-
sidering the difference in the number of samples in each category, i.e., the weights of each category were the same.

Also, the average precision (AP)32 has been selected, the area between the Precision-Recall curve and the 
coordinates, to evaluate the algorithm’s performance.

Experiment I
In Experiment I, we will use 75% of the data set for training and 25% for testing. It’s worth noting that each class 
of ship data will be partitioned into a 75% training set and a 25% testing set. This approach aids in mitigating the 
imbalance in training outcomes resulting from variations in data volume among different classes, in contrast to 
a random data split. The different features are fed into the same network CNN1 for comparison. Figure 5 shows 
some identified features’ accuracy, recall, and macro-average F1 scores.

In the original audio signal experiments, only 71.24% recognition accuracy was achieved in the test set. The 
accuracy only reaches up to 90% when using only a single spectrum as feature input. When trying to fuse multiple 
feature extraction methods, we find that the fusion of the Mel spectrum with first and second-order derivatives 
achieves 95% recognition accuracy, while using STFT with log-mel fusion slightly outperforms 3D-Mel9 with 
95.34% recognition accuracy. Table 4 shows the results of all experiments.

Experiment II
In Experiment II, the idea of using a random forest to classify and recognize ship noise was validated. The same 
features(STFT + log-mel) were fed into the random forest for training and comparison with the CNN network.

Two models were used for the random forest parameter setting. The first was a random  forest33 with no param-
eter changes, which contained 100 decision trees. The second was a random forest with Bayesian  optimization34, 
which automatically found the optimal hyperparameters for the model. In both approaches, multiple models 
were trained in parallel for hard voting decisions. The experimental results are shown in Table 5.

(14)Precision =
TP

TP + FP

(15)Recall =
TP

TP + FN

(16)F1macro =
1

C

∑C

i=1
F1i

(17)AP =

∫ 1

0
precision(recall)d(recall)

Figure 5.  Partial results for different input features.
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From the experimental results, it is found that the random forest model performs poorly on the ship noise 
classification problem, but adding a voting mechanism can also improve the recognition accuracy of the model to 
a certain extent, which provides us with a new idea of adding a voting decision mechanism to the CNN network.

Finding the optimal hyperparameters of the random forest requires higher arithmetic power. In experiments, 
we found that the random forest model takes much longer to train than the simple network model in this paper.

Experiment III
In Experiment III, the proposed method in this paper was compared with previous studies that used various 
types of features and adversarial learning networks. By replicating a previous study, we achieved 92.91% accuracy 
when using MFCC as the input to the CNN network and 95.64% accuracy when using 3D-mel as the feature. 
However, the network performance decreased when the STFT spectrum was used as the feature input. In this 
pa-per, migration learning was also performed using ResNet. The recognition accuracy curves for each method 
are shown in Fig. 6.

Table 6 shows the network structures and experimental results for each type of method.
The convolutional neural network (CNN) outperformed the convolutional recurrent neural network (CRNN) 

when using Mel-frequency cepstral coefficients (MFCC) as input, with a recognition accuracy of 92.91% under 
various CNN network parameters. In addition, CNNs with rectified linear unit (ReLU) activation function 

Table 4.  Recognition results of different features.

Feature Accuracy (%) Macro average F1 score Recall rate (%)

Wav 71.24 0.7116 71.16

STFT 83.91 0.8383 83.90

MFCC 92.91 0.9188 92.91

Mel + Lofar 90.16 0.8978 90.06

MFCC + log-mel 90.84 0.9027 90.65

3D-Mel 95.34 0.9312 93.26

STFT + log-mel 96.44 0.9619 96.21

Table 5.  Comparison of random forest and CNN network training results.

Model Accuracy (%)

Random forest 80.56

Bayesian optimized random forest 82.64

Integrated random forest 81.42

Integrated Bayesian optimized random forest 83.71

Soft voting CNN 97.34

Figure 6.  Accuracy curve of each method.
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performed slightly worse than CNNs with a hyperbolic tangent (Tanh) activation function. However, when 
3D-Mel was used as the network input, the recognition accuracy was significantly improved by 2.43%. A simple 
network consisting of fine-tuned ResNet50 weights trained on the ImageNet dataset did not produce satisfac-
tory recognition results. In contrast, the adversarial learning network GAN achieved an impressive recognition 
accuracy of 96.84%. Interestingly, the composite CNN network with voting decisions did not differ much from 
the GAN in terms of recall and F1 score, but it achieved a higher recognition accuracy of 98.44%.

Compared with previous studies, the method in this paper is more straightforward and has high performance. 
Figure 7 shows the Precision–recall (PR) curves of the method in this paper, and Fig. 8 shows the confusion 
 matrix35 better to demonstrate the recognition results of 12 types of noise.

The PR curves for different types of noise show that the proposed method in this paper tends to achieve an 
average precision (AP) value close to 1.00, indicating high precision and recall values. However, due to the imbal-
anced data volume for certain types of noise, a few noise categories have relatively lower AP values. Overall, the 
PR curves demonstrate the effectiveness of the proposed method in accurately classifying ship noise, particularly 
in the presence of various types of noise.

Figure 8 shows that the noise with more data tends to have better training results, which lead to false recogni-
tion of the noise with fewer data.

Experiment IV
It is noteworthy that in Experiment I and Experiment II, the training and validation sets were separated due to 
the limited data volume. To evaluate the generalizability of our approach, we performed additional experiments 
with all DeepShip datasets as validation sets. The results were compared with those obtained using the Resnet50 
network with migration learning, and Fig. 9 shows the experimental findings. Notably, the DeepShip dataset 
includes ships of the Tanker class, which is not present in the ShipsEar dataset. Therefore, we categorized Tanker 
as class D noise for our analysis.

The proposed method in this paper still has 94.47% recognition accuracy on the DeepShip dataset, and the 
comparison with the migration learning in Experiment III proves that the method has good generalization.

Table 6.  Training results for each method.

Model Feature Activation function Macro f1 score Recall (%) Accuracy (%)

CRNN MFCC Relu 0.8842 88.46 90.27

LSTM 3D-Mel Relu 0.8420 85.37 85.14

ResNet50 3D-Mel Relu 0.8180 81.48 89.95

CNN1 MFCC Tanh 0.9188 92.91 92.91

CNN1 STFT Relu 0.8383 83.90 83.91

CNN1 3D-Mel Relu 0.9312 93.16 95.34

CNN3 MFCC Relu 0.9015 90.46 91.97

GAN 3D-Mel Relu 0.9646 96.85 96.84

CNN + Voting STFT + log-mel Relu and Tanh 0.9719 96.19 98.44

Figure 7.  Precision–recall curves of each class.
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Since the DeepShip dataset contains only four types of ship noise, only two types of ship noise, A and C, as 
described in this paper, are included so that it impacts the test results.

Discussion
The experimental results demonstrate that the choice of features used as network inputs in ship noise classifica-
tion plays a decisive role in recognition accuracy, and that complex network structures may not always lead to 
im-proved accuracy. As various feature extraction methods can cause information loss, fused features tend to 
exhibit exemplary performance. The confusion matrix in Fig. 8 shows that data size still has an impact on the 
recognition results of the network.

In this study, weighted soft voting was used as the back-end decision-making method. Generally, the voting 
method should be used for different models to maximize the performance of each model. However, in cases 
where complex net-works are not always applicable, using the same network for decision-making may be more 
appropriate.

Although the training set used in this study was not separated from the test set, unlike previous studies, the 
method’s generalizability was explored by applying the completed training models to the DeepShip dataset. 
It’s important to highlight that the dataset utilized in this study was constructed as an extension of the original 
dataset. A noteworthy addition was the introduction of white noise as positive incentive noise to enhance the 
network’s performance. Furthermore, it’s crucial to acknowledge that the dataset lacked ambient noise data, 

Figure 8.  Confusion matrix. 1: Mussel boat; 2: sailboat; 3: passengers; 4: tugboat; 5: DredgER; 6: natural 
ambient noise; 7: motorboat; 8: RORO; 9: fishboat; 10: ocean liner; 11: trawler; 12: pilot ship.

Figure 9.  Identification results for the DeepShip dataset.
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and the ambient noise levels can significantly vary across different sea areas with distinct sea conditions. Conse-
quently, the outcomes of ambient noise identification may not hold strong practical significance. Future research 
endeavors should focus on expanding the dataset to encompass diverse data sources. Additionally, we plan to 
incorporate more real data obtained from our own measurements in upcoming studies.

Conclusions
This paper presents a novel approach to ship noise remote sensing classification using a simple CNN network 
structure. The paper introduces the concept of positive incentive noise, where the addition of noise can improve 
the recognition accuracy of the network. Additionally, the use of fused features as the network input leads to 
better performance than single features alone. The proposed method also utilizes a voting method in integrated 
learning to improve network performance without increasing complexity. Experimental results show that the 
network achieves a recognition accuracy of 98.44% and demonstrates better generalization ability compared to 
previous studies. Furthermore, the proposed method is validated on a new dataset, highlighting the effectiveness 
of using simple networks. Future research can focus on developing a method to accurately identify specific vessels.

Data availability
The original dataset used in this paper can be found at http:// atlan ttic. uvigo. es/ under water noise/ and https:// 
github. com/ irfan kamboh/ DeepS hip.

Received: 2 June 2023; Accepted: 17 October 2023

References
 1. Gassmann, M., Wiggins, S. M. & Hildebrand, J. A. Deep-water measurements of container ship radiated noise signatures and 

directionality[J]. J. Acoust. Soc. Am. 142(3), 1563–1574 (2017).
 2. Lin, X., Dong, R. & Lv, Z. Deep learning-based classification of raw hydroacoustic signal: A review[J]. J. Mar. Sci. Eng. 11(1), 3 

(2022).
 3. Chin-Hsing, C., Jiann-Der, L. & Ming-Chi, L. Classification of underwater signals using wavelet transforms and neural networks[J]. 

Math. Comput. Model. 27(2), 47–60 (1998).
 4. Jin, G. et al. Deep learning-based framework for expansion, recognition and classification of underwater acoustic signal[J]. J. Exp. 

Theor. Artif. Intell. 32(2), 205–218 (2020).
 5. Chen, J. et al. Underwater target recognition based on multi-decision lofar spectrum enhancement: A deep-learning approach[J]. 

Future Internet 13(10), 265 (2021).
 6. Hu, G. et al. Deep learning methods for underwater target feature extraction and recognition[J]. Comput. Intell. Neurosci. 1, 1 

(2018).
 7. Shen, S., Yang, H., & Li, J. Improved auditory inspired convolutional neural networks for ship type classification[C]//OCEANS 

2019-Marseille. IEEE, 1–4 (2019).
 8. Mishachandar, B. & Vairamuthu, S. Diverse ocean noise classification using deep learning[J]. Appl. Acoust. 181, 108141 (2021).
 9. Liu, F. et al. Underwater target recognition using convolutional recurrent neural networks with 3-D Mel-spectrogram and data 

augmentation[J]. Appl. Acoust. 178, 107989 (2021).
 10. Ibrahim, A. K., Zhuang, H., & Chérubin, L. M., et al. Transfer learning for efficient classification of grouper sound[J]. J. Acoust. 

Soc. Am. 148(3), EL260–EL266 (2020).
 11. Sun, Q. & Wang, K. Underwater single-channel acoustic signal multitarget recognition using convolutional neural networks[J]. J. 

Acoust. Soc. Am. 151(3), 2245–2254 (2022).
 12. Parchami, M. et al. Recent developments in speech enhancement in the short-time Fourier transform domain[J]. IEEE Circ. Syst. 

Mag. 16(3), 45–77 (2016).
 13. Santos-Domínguez, D. et al. ShipsEar: An underwater vessel noise database[J]. Appl. Acoust. 113, 64–69 (2016).
 14. Li, X. Positive-incentive noise[J]. IEEE Trans. Neural Netw. Learn. Syst. (2022).
 15. Benzi, R., Sutera, A. & Vulpiani, A. The mechanism of stochastic resonance[J]. J. Phys. A: Math. Gen. 14(11), L453 (1981).
 16. Agarap, A. F. Deep learning using rectified linear units (relu) [J]. arXiv preprint arXiv: 1803. 08375 (2018).
 17. Zhang, Z. Improved adam optimizer for deep neural networks[C]//2018 IEEE/ACM 26th international symposium on quality of 

service (IWQoS). Ieee, 1–2 (2018).
 18. Davis, S. & Mermelstein, P. Comparison of parametric representations for monosyllabic word recognition in continuously spoken 

sentences[J]. IEEE Trans. Acoust. Speech Signal Process. 28(4), 357–366 (1980).
 19. Cochran, W. T. et al. What is the fast Fourier transform?[J]. Proc. IEEE 55(10), 1664–1674 (1967).
 20. Kameoka, H. Multi-resolution signal decomposition with time-domain spectrogram factorization[C]. In 2015 IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 86–90 (2015).
 21. McFee, B., Raffel, C., & Liang, D., et al. librosa: Audio and music signal analysis in python[C]. In Proceedings of the 14th python in 

science conference. 8, pp 18–25 (2015).
 22. He, K., Zhang, X., & Ren, S., et al. Deep residual learning for image recognition[C]. In Proceedings of the IEEE conference on 

computer vision and pattern recognition pp 770–778 (2016).
 23. Huang, G., Liu, Z., Van Der Maaten, L., et al. Densely connected convolutional networks[C]. In Proceedings of the IEEE conference 

on computer vision and pattern recognition. pp 4700–4708 (2017).
 24. Fushiki, T. Estimation of prediction error by using K-fold cross-validation[J]. Stat. Comput. 21, 137–146 (2011).
 25. Gao, B., & Pavel, L. On the properties of the softmax function with application in game theory and reinforcement learning[J]. 

arXiv preprint arXiv: 1704. 00805 (2017).
 26. Qassim, H., Verma, A., & Feinzimer, D. Compressed residual-VGG16 CNN model for big data places image recognition[C]. In 

2018 IEEE 8th annual computing and communication workshop and conference (CCWC). IEEE, pp 169–175 (2018).
 27. Biau, G. & Scornet, E. A random forest guided tour[J]. Test 25, 197–227 (2016).
 28. Agnihotri, D. et al. Soft voting technique to improve the performance of global filter based feature selection in text corpus[J]. Appl. 

Intell. 49, 1597–1619 (2019).
 29. Cao, J. et al. Class-specific soft voting based multiple extreme learning machines ensemble[J]. Neurocomputing 149, 275–284 

(2015).
 30. Lipton, Z. C., Elkan, C., & Narayanaswamy, B. Thresholding classifiers to maximize F1 score [J]. arXiv preprint arXiv: 1402. 1892 

(2014).

http://atlanttic.uvigo.es/underwaternoise/
https://github.com/irfankamboh/DeepShip
https://github.com/irfankamboh/DeepShip
http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1704.00805
http://arxiv.org/abs/1402.1892


13

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17905  | https://doi.org/10.1038/s41598-023-45245-6

www.nature.com/scientificreports/

 31. Zhang, D., Wang, J., & Zhao, X., et al. A Bayesian hierarchical model for comparing average F1 scores[C]. In 2015 IEEE International 
Conference on Data Mining. IEEE, pp 589–598 (2015).

 32. Robertson, S. A new interpretation of average precision[C]. In Proceedings of the 31st annual international ACM SIGIR conference 
on Research and development in information retrieval. 689–690 (2008).

 33. Belgiu, M. & Drăguţ, L. Random forest in remote sensing: A review of applications and future directions[J]. ISPRS J. Photogram. 
Remote Sens. 114, 24–31 (2016).

 34. Snoek, J., Larochelle, H. & Adams, R. P. Practical Bayesian optimization of machine learning algorithms[J]. Adv. Neural Inf. Process. 
Syst. 25, 1 (2012).

 35. Liang, J. Confusion matrix: Machine learning [J]. POGIL Act. Clearinghouse 3(4), 1 (2022).

Acknowledgements
Thanks to Dr. zhichao Lv for his guidance and help with this article.

Author contributions
X.L. conceived of the study, designed the study and wrote the manuscript. R.W. compiled the experimental data. 
R.D. and Y.Z. assisted in the editing of manuscripts. All authors have read and agreed to the published version 
of the manuscript.

Funding
This research was funded by Shandong Province “Double-Hundred” Talent Plan (WST2020002), Key R&D 
programs (2022YFC2808003), and the Open project of the State Key Laboratory of Sound Field Acoustic Infor-
mation (No. SKLA202203).

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to X.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Efficient ship noise classification with positive incentive noise and fused features using a simple convolutional network
	Dataset setting
	Labels
	Dataset expansion
	Comparison experiment

	Methods
	Feature extraction
	CNN parameters
	Voting mechanisms

	Experiments
	Evaluation metrics
	Experiment I
	Experiment II
	Experiment III
	Experiment IV

	Discussion
	Conclusions
	References
	Acknowledgements


