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Zero-shot learning of aerosol
optical properties with graph
neural networks

K. D. Lamb®"! & P. Gentine

Black carbon (BC), a strongly absorbing aerosol sourced from combustion, is an important short-
lived climate forcer. BC's complex morphology contributes to uncertainty in its direct climate
radiative effects, as current methods to accurately calculate the optical properties of these aerosols
are too computationally expensive to be used online in models or for observational retrievals. Here
we demonstrate that a Graph Neural Network (GNN) trained to predict the optical properties of
numerically-generated BC fractal aggregates can accurately generalize to arbitrarily shaped particles,
including much larger (10 x) aggregates than in the training dataset. This zero-shot learning approach
could be used to estimate single particle optical properties of realistically-shaped aerosol and

cloud particles for inclusion in radiative transfer codes for atmospheric models and remote sensing
inversions. In addition, GNN's can be used to gain physical intuition on the relationship between small-
scale interactions (here of the spheres’ positions and interactions) and large-scale properties (here of
the radiative properties of aerosols).

Carbonaceous aerosols such as black carbon (BC) are important short-lived climate forcers"* To understand
their impact on climate, accurate predictions of the optical properties of absorbing aerosols such as BC are
needed in atmospheric models and observational retrievals: for estimating the top-of-the atmosphere radiative
effects of black carbon® and the impact of aged soot on cloud formation?, for the calculation of the mass absorp-
tion coefficient of BC deposited on snow?, for estimating the relative shortwave heating rates for different types
of combustion aerosols®, for calculating particle-to-gas heat transfer to interpret laser-induced incandescence
signals’, for accurate inversions of imaging nephelometers®, for constraining the index of refraction of biomass
burning aerosols’, and for interpreting the optical properties of aerosols deposited on filters'®!!. Accurate calcula-
tions of carbonaceous aerosol optical properties are also important for observational retrievals in other planetary
atmospheres, as these aerosols may play a role in the radiative balance of e.g. the middle atmosphere of Jupiter'?.

BC particles in the atmosphere have a variety of sizes, shapes, and chemical compositions, all of which impact
their optical properties (Fig. 1). BC’s optical properties depend on both the morphology of the primary (bare)
BC particle, as well as its internal mixing with other materials (coatings) through the condensation of gas phase
species during atmospheric aging. Both combustion conditions'® and atmospheric aging'* impact the morphol-
ogy of these aerosols, which are fractal-like aggregates, typically embedded within (internally mixed) or attached
to other aerosol components. The complex morphology of bare BC is generally not parameterized in models,
although modeling bare BC as a sphere biases radiative forcing estimates, with too little warming by absorption
and too much cooling by scattering'®. Internal mixing is modeled using a Mie Theory core-shell model, which
approximates the bare BC portion as an absorbing “core”, with a concentric sphere of “coating” material with
an index of refraction characteristic of the internally mixed material. Several recent papers have demonstrated
this Mie Theory core-shell approximation leads to an over-prediction of BC absorption in models by as much as
a factor of 2'>1. In addition, not only are more accurate calculations of BC optical properties needed to better
constrain models to observations, but models need to be capable of representing the heterogeneity of optical
properties in diverse aerosol populations!'>'°.

While models and observational retrievals have generally relied on Mie Theory, more accurate methods
to predict the optical properties for arbitrarily shaped particles such as the Multiple Sphere T-Matrix Method
(MSTM)'718, the discrete dipole approximation (DDA)'*?, and the Generalized Multiple-Particle Mie (GMM)
Theory®*? have been developed. These methods approximate BC fractal aggregates as clusters of spheres (Fig. 1)
and provide analytical solutions to the time-harmonic Maxwell’s equations for the multiple sphere system.
However, these approaches are computationally expensive, often requiring hours or even days to compute the
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Figure 1. BC optical properties. Top, from left to right: equivalent volume sphere for bare BC, thinly coated BC,
and thickly coated BC particles. Bottom, from left to right: geometry of bare BC, thinly coated BC, and thickly
coated BC as used in typical MSTM calculations.

optical properties of single aerosol particles with complex morphologies?. To mitigate this computational bottle-
neck, pre-calculated databases of fractal aggregate optical properties using these exact analytical methods have
recently been created®*-?°, but such approaches are limited to linear interpolation within the data-bases’ optical
and morphological properties. There is still significant uncertainty about the fundamental properties of BC from
different emission sources and under different combustion conditions, and the additional complexity of internal
mixing with non-absorbing and absorbing materials during atmospheric aging® would require these databases
to cover a very large parameter space to accurately represent the range of conditions for BC aerosols observed
in the atmosphere. Moreover, observational inversions of BC have greater uncertainty when performed with
only a subset of possible parameters.

Machine learning offers a promising approach for reducing computational bottle-necks by speeding up
numerically-intensive aspects of atmospheric models?”*%. As such it could offer an efficient alternative approach
to compiling pre-computed databases for BC’s optical properties. However machine learning methods are tra-
ditionally strongly dependent on the data they are trained with, and struggle to generalize beyond the training
distribution. One previous study investigated a machine learning approach to predicting BC’s optical properties
from its morphological parameters and index of refraction using a support vector machine (SVM) trained on
accurate MSTM calculations but could not accurately predict the optical properties of aggregates with mor-
phological parameters beyond those used in the initial training data set*. Other brute force approaches such as
neural networks (NN) or random forests (RF) will similarly struggle to generate realistic BC properties outside
of the training datasets.

Here we show the optical properties of bare BC with complex morphology can be accurately predicted with
a graph neural network (GNN) by representing BC fractal aggregates as networks of interacting spheres. GNN’s
are recently developed machine learning algorithms that learn on graph-structured data sets, allowing models
to directly include arbitrary relational information®>*!. These models have shown great promise in predicting
the large-scale properties of structured physical science data-sets such as molecules***, protein-protein interac-
tion networks®, and glasses®*. GNN’s have demonstrated skill in predicting complex global features of physical
systems through learning simpler local physics®; here we demonstrate that through including local informa-
tion about BC’s structure, BC’s global properties can be inferred. Importantly, because GNN’s learn models for
specific substructures (i.e. the nodes and their relationships with their neighbors in the graph), they are able to
immediately generalize to graphs with arbitrary numbers of nodes; we exploit this feature of GNN’s to predict
the optical properties of BC aggregates that are significantly larger than those used in the training data set. This
zero-shot learning (where models can immediately generalize to samples not represented in their original train-
ing data) paves the way towards new, flexible parameterizations of aerosol microphysical properties and serves
as a template for the use of GNN’s in the Earth sciences.

BC fractal aggregates as networks
Physical properties of bare BC Primary (bare) BC particles are fractal-like aggregates with geometries that can
be described according to a statistical scaling rule as
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where a is the primary particle mean radius, ky is the fractal pre-factor, Dy is the fractal (Hausdorff) dimension,
N; is the number of primary spheres, or monomers, in the aggregate, and Ry is the radius of gyration, defined as
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where r; and rp denote the ith monomer center and the center of mass of the cluster, respectively (assuming all
monomers have the same mass®). In addition to the aggregate geometry, the basic physical properties of these
particles follow this scaling law®. As a consequence of their fractal nature, aggregates are self-similar on different
length scales. The fractal dimension Dy can be thought of intuitively as the shape-filling capacity of the aggregate;
aggregates with smaller fractal dimensions are “fluffier”, while aggregates with larger fractal dimensions are
denser. The fractal prefactor ky of the aggregate is related to the packing of spheres into space and the anisotropy
of the aggregate, with more “stringy” aggregates having smaller values of k¢, and more isotropic and collapsed
aggregates having larger values of k¢

The fractal-like nature of these aerosols is a result of their formation from gas-phase precursors through the
aggregation and growth of hydrocarbon clusters during incomplete combustion, although this process is not yet
completely understood*!. The initial morphology depends on both the combustion conditions and the emission
source, with different observational methods also impacting the retrieved parameters'®. After their initial forma-
tion during combustion, atmospheric aging (due to cloud processing or the condensation of gas phase species)
leads to these aerosols becoming more compact, causing Dy to increase over time. This aging is expected to lead
to a decrease in their top of the atmosphere radiative effects'’. Previous work has shown that k¢ determines the
compactness of aggregate branches, although little is understood about kf’s evolution over time'?.

Numerically-generated fractal aggregates

To investigate how fractal aggregate particles can be modeled as networks of interacting spheres, we numerically
generated fractal aggregates with N; spheres using a cluster-cluster algorithm** based on the one described in*,
which uses a Monte Carlo approach to randomly generate aggregates with a specified fractal dimension Dy and
fractal pre-factor k. We generate Cartesian coordinates for the monomers in the aggregate in dimensionless
coordinates by scaling by a factor of k = 2%, where /. is the wavelength of the incident light.

Characteristic length scale
The characteristic length scale of a network with N nodes is C = Log(N)*. Here we want to develop a method
for rendering fractal aggregates as graphs, with the assumption that the monomers in the aggregate should be

represented by nodes in the graph. To represent fractal aggregates as graphs, monomers with center positions
closer together than the characteristic length scale C of a network with N nodes,

C = X, Log(Ns) (3)

are connected, where X, = ka is the monomer size parameter (Fig. 2). We multiply the length scale by X, to
give a consistent number of edges independent of the size parameter of the aggregate, such that aggregates with
the same fractal parameters but different size parameters would be encoded within the same graph structure.
An example of the resulting undirected graph structure and adjacency matrix for two different aggregates with
different fractal dimensions but the same number of monomers is shown in Fig. 3a-d. This scaling encodes
the density of edges in local neighborhoods relative to the fractal dimension of the aggregate, irregardless of
the actual size of the aggregate. The total number of edges in the graph is then proportional to both Ny and Dy
(Fig. 3e), with the average degree of nodes increasing relative to Dy (SI Fig. S4a). The degree distribution of nodes
also depends on the fractal pre-prefactor ks (SI Fig. $4b).

Targets:
MSTM gscg cht, Qab:, g
ij
GNN
i S
Characteristic Graph Input Graph Layers Graph Graph
length scale Pooling Readout

Figure 2. A schematic of the GNN modeling approach for predicting aerosol optical properties. Accurate
calculations of aerosol optical properties from the sphere positions are calculated using MSTM. For the GNN
model, graphs are generated from aggregates by connecting spheres closer together than the characteristic
length scale, C, of the aggregate (Eq. 3). Embeddings are learned for each node in the graph based on the central
node features, the neighboring node features, and the edge features. These node-level embeddings are then
aggregated together and a graph level prediction of the optical properties of the aggregate is made.
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Figure 3. Examples of fractal aggregates represented as graphs. Visualization of the graphs (a,c) and adjacency
matrices (b,d) for fractal aggregates with the same number of spheres (N,;=288) but different fractal dimensions.
Dy=1.8 for (a,b) and Dy=2.3 for (c,d). (¢) The number of edges scales with the total number of spheres in the
aggregates (N;) and the fractal dimension of the aggregates (D).

GNN model for BC optical properties

Accurate solutions for the electromagnetic scattering and absorption properties for multiple sphere clusters (as
BC aggregates are typically modeled) is computationally expensive because a full-wave optics treatment is needed.
In the general case, spheres interact with one another, and the total scattering field component is a superposition
of the components radiated from each sphere in the system**. While the solution for the continuity equation at
the surface of each sphere in the system can be solved analytically by expanding the incident and scattered fields
from each sphere in terms of vector spherical wave functions, this approach generates a very large system of
coupled linear equations that must be solved iteratively*. Additional details about the formal solution are given
in Supplementary Information S1.

While this approach provides a fully analytical solution for light scattering from the multiple sphere cluster,
the computational time for these brute-force approaches scale significantly with N, and X, as they do not take
into account specific details of BC’s topological structure, which could lend itself to model order reduction.
Filippov et al.*® previously explored the relationship between the morphology of BC and their aggregate physi-
cal properties using the Rayleigh-Debye-Gans (RDG) approximation and found that aggregates with similar
fractal parameters also have similar physical properties. Recent work in?? found empirical relationships between
the optical properties of aggregates and their morphological parameters using extensive MSTM calculations.
Machine learning offers an alternative approach for learning relevant predictors without the need for human-
defined features; GNN’s in particular can learn features that correspond to the relationship between the nodes
(the individual spheres) and the large-scale physical properties of the aggregates.

GNN's are particularly attractive as emulators of MSTM because they provide strong relational inductive
bias, which typically means that algorithms require less training data than fully connected neural networks
or convolutional neural networks to make skillful predictions. Since MSTM is relatively slow (and methods
such as DDA are approximately 10 x slower than MSTM), it is non-trivial to develop large training data sets for
machine learning algorithms. Second, the non-trivial topological structure of these aerosols is directly related
to the complexity of their optical properties’ calculation, as the radiation incident on each individual monomer
is a function of the position and orientation of all of the other monomers in the aggregate, with the neighboring
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monomers likely to have the most significant influence. The GNN approach of framing this problem from the
perspective of message-passing between neighboring nodes is directly analogous to the electromagnetic scat-
tering and absorption problem for the multiple sphere cluster. Finally, as discussed in the introduction, GNN
emulation of physical simulators has been shown to generalize to new, previously unseen realizations of physical
systems (so-called zero-shot performance)?!. To bridge the gap between the very accurate physical information
gained in process level studies of individual aerosol properties, and the understanding of how populations of
these aerosols evolve in atmospheric models, we need either much better approximation methods or much faster
methods to accurately calculate aerosol properties. GNN emulators that quickly and accurately generalize to new
configurations could provide an online approach to estimate the optical properties of populations of aerosols
in atmospheric models.

To investigate the connection between BC’s fractal structure and its optical properties, we trained a GNN to
predict the optical properties of BC aggregates, using the values from an analytical solution for the electromag-
netic scattering and absorption properties (from MSTM) as ground-truth (Fig. 2). GNN’s propagate information
between nodes, capturing both the topological information about the graph structure and aggregating the node
features. We tested several different approaches for the propagation rule, including a simple graph convolution
network®?, a graph convolutional network®, and an Interaction Network (IN)*!. We found the IN gave the best
performance for predicting both the integral and angle-resolved optical properties. The IN (Fig. 2) is based on
message passing, where nodes send and receive messages along edges from their neighbors. The messages are
aggregated for each node and the nodes are updated based on the central node features and the messages received
from neighboring nodes. Graph level predictions are made by aggregating the updated node embeddings from
all the nodes in the graph using a graph pooling operation (the pooling in Fig. 2). We test summation, averag-
ing, and maximum pooling as graph pooling operations, and find that summation works best. After the graph
pooling operation, a final linear transformation is performed to transform aggregated node embeddings to the
target predictions (the graph readout in Fig. 2). Here we predict the total extinction, scattering, and absorption
efficiencies (Qext )> (Qscat )» {Quabs)> the asymmetry parameter, g, and the angle-resolved elements of the scattering
phase matrix S;;(6) for the orientation-averaged case. (See Methods for discussion of aerosol optical properties
and data sets). Further details of the GNN approaches tested in this work are proved in the SI.

For each training example, we input X,, the real part of the index of refraction Re() (since we consider only
cases where the imaginary part is Im(nx) = 1 — Re(nx)), and the dimensionless coordinates of each sphere as
node features. As edge features, we use the distance between neighboring spheres. We trained the model using
15,314 aggregates from the training data set, as the training loss did not significantly decrease with additional
samples (SI Fig. S13); training data sets as small as 3000 aggregates showed reasonable generalization perfor-
mance. The training data set consisted of aggregates with a small number of monomers (N; < 100). We tested
the model on an independent test set of 7656 aggregates with the same distribution of parameters as the train-
ing data set (N; < 100). We further investigated the generalizability of the model on an independent zero-shot
test set of 440 aggregates that were significantly larger (100 < N; < 1000) than the ones the model was trained
on. An additional 440 large aggregates were used as a zero-shot validation data set to determine which model
architecture provided the best zero-shot performance (SI Figs. S9-S12). While the model weights were not
directly trained on this zero-shot validation data set, the hyperparameters for the best model architecture were
determined from performance on this data set; thus, we use an independent zero-shot test data set to evaluate
generalization performance. Ny = 100 was chosen as the maximum size for aggregates in the training data set
as smaller maximum sizes increased the bias in the zero-shot performance (SI Fig. S14). The zero-shot test data
set was evenly distributed among the aggregate parameters (Fig. S2) to provide an estimate of generalization
performance across the full parameter space.

Figure 4 shows the IN predictions compared to the actual values for (Qext ), (Qscar )» {Qaps)> and g with the train-
ing data shown in blue, the test data set of smaller aggregates in yellow (top row, Fig. 4a—d) and the zero-shot
test data sets shown in orange (bottom row, Fig. 4e-h). Figure 5 shows the predictions for the Sy; (6) element of
the scattering phase matrix for several different aggregates in the test data sets of smaller aggregates (Fig. 5a)
and larger aggregates (Fig. 5¢). For the test data with the same distribution of parameters as the training data set
(Ns < 100), the model predictions were very close to the true values. For the zero-shot test data set, predictions
for both integral and angle resolved optical properties were reasonable across the entire range of size parameters
(X,=0.1 to 1.0), indices of refraction ny = 1.4 + 0.4i to nx = 2.0 + 1.04, and fractal parameters. For the predic-
tion of S1;, both the magnitude and functional form were well-approximated across the range of parameters in
the test set, although the model did deviate slightly more from the true values for larger Ny and X, (e.g. the green
line in Fig. 5c). Predictions for the entire angle-resolved scattering phase matrix elements S;;(9), for j > i, were
also reasonable (See SI Fig. S16).

Table 1 gives the mean absolute percentage error (MAPE) for the predictions from the IN model for the inte-
gral optical properties and the asymmetry parameter for the training, test, and zero-shot test data sets. We use
MAPE as a metric to assess the performance of the model predictions because this metric is independent of the
size of the data sets. MAPE can be interpreted in terms of relative error, which means that the performance on
the test data set and zero-shot test data set are directly comparable; metrics such as MSE depend on the absolute
magnitude of the integral optical properties, which differ between the test and zero-shot test data sets. We find
that the predictions for Qex and Qs are within 2% of the true value for the training and test data sets, and within
4% of the true values for the zero-shot test data set. Qs.sr and g have more significant deviations between the
true and predicted values for the IN model (Table 1, 2nd column), but this is mainly due to a bias in the predic-
tions for the IN model for the smallest X, values, because the magnitude of Qs is so small. At larger X, the
model performance is within 2-9% of the true value for the training and test data sets, and within 4-8% for the
zero shot test data set. The IN model generally performs best as larger size parameters for the predictions of the
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Figure 4. The true vs. predicted values for the efficiencies and the asymmetry parameter. (a—d) shows the
results for the training (N5 < 100) and test (N; < 100) data sets, while (e-h) shows the results for the training
(N < 100) and zero-shot test (N = 100-1000) data sets.

integral optical properties. The bias for smaller values of X,, may be improved by training on each X, separately
or alternatively, by using methods such as meta-learning®.

In addition to generalizability, the IN model demonstrated physical consistency in its predictions for the
aggregate optical properties. The 3 scattering efficiencies are not independent, as (Qsca) + (Qaps) = (Qext). The
model directly inferred this dependency for both the training and test sets without imposing this as a constraint.
Additionally, integrating S, over the solid angle is equivalent to g*,

1 1 [T
o=t / $1©@)cos(0)d2 = | / $11(0)cos(©)sin(9)d6 )
0
Without explicitly imposing this integral constraint, the model predictions were consistent with this constraint
(Fig. 5b, N5 < 100, and Fig. 5d for N; > 100).

Analysis of the GNN predictions

To understand how the IN model predicts the optical properties of BC fractal aggregates, including those much
larger than the model was trained on, we emphasize that the graph input for the model does not directly include
Dy or ky as features but rather the fractal structure is implicitly encoded as the interactions between the neigh-
boring spheres. The previously used SVM approach to predict BC’s optical properties included N, Dy, and k¢
as features to predict (Qext), {Qscat)> (Qaps)> and g%°. Since the network structure in the IN approach is directly
learned from the sphere positions, and the model is learned at the node level, the IN approach can generalize
beyond its initial training set for these morphological parameters to unseen configurations.

The generalization of the IN model to a range of D is an important feature, as it is challenging to find approxi-
mations that are valid across fractal dimension*. Because the IN model learns about the local neighborhood of
each sphere, it is able to more accurately estimate the impacts of screening on absorption and scattering than
the RDG approximation***’, an approach often used to approximate the optical properties of BC aggregates
in a computationally efficient manner as an improvement on the equivalent sphere model. RDG assumes that
individual monomers only interact with the incident electromagnetic field (neglecting multiple interactions),
which can lead to absorption being under-predicted by 10-20%, and significantly under-predicting g by more
than a factor of 10'. The IN model effectively learns, in an unsupervised manner, a simplified sphere level model
that more fully captures the complexity of the optical properties of the full analytical solution'®. As noted earlier,
the best performance for the IN model used summation for graph pooling, which is physically consistent with
the node level model learning the Mie theory solution for the individual spheres in the aggregate, given their
interaction with neighboring spheres.

The optical properties of aggregates in this regime can be modeled with the assumption of a fairly shallow
graph model (for the IN model a single layer performed best; for the GCN little improvement was seen beyond
3 or 4 layers, Fig. S5), suggesting that the majority of the structure influencing the optical properties of aero-
sols in this regime can be approximated from local interactions. We also investigated using a length scale of
C = X,Log(Ns)/Log(Log(Ns)) (characteristic of scale-free networks) to form graphs from aggregates®, rather
than Eq. 3. This length scale has the advantage that the degree of each node scales less quickly with N, but the
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Figure 5. GNN model predictions of the angle resolved optical properties. (a) Comparison of S11(®)
predictions for 4 randomly chosen aggregates in the test set with the same distribution of parameters as

the training data set: Blue (N = 76, X, = 0.7,ny = 1.4 + i0.4), Red (N; = 14, X, = 0.5,n; = 1.6 4 i0.6),
Green (N; = 17, X, = 0.5;n = 1.4 4 i0.4), Yellow (N; = 36, X, = 09,1 = 2.0 + i1.0). (b) The predicted
S11integrated over the solid angle (Eq. 4) vs. the predicted value for asymmetry parameter (g) for all of the
aggregates in the training and test sets (N; < 100). (c) As in (a), for 4 randomly chosen aggregates in the zero
shot test set: Blue (N = 128,X,, = 0.9,n, = 1.6 + i0.6), Red (N; = 640,X, = 0.3,n = 2.0 + i1.0), Green

(N5 = 960,X, = 0.7,n; = 1.8 +i0.8), Yellow (N, = 416,X,, = 0.9,n;, = 2.0 + i1.0). (d) As in (b), for all of the
aggregates in the training and zero shot test sets.

IN model performed worse in this case. This indicates that including a larger local neighborhood at each layer
(Eq. 3) is more informative for the model.

Discussion and outlook

The network approach presented here provides a new framework for understanding the microphysical relation-
ship between the morphological properties of BC and its larger scale physical properties. Here we have chosen
to focus on the prediction of optical properties for numerically generated fractal aggregates, as the generation
of these aggregates from combustion processes and their transformation during atmospheric aging is not yet
completely understood. However, applying network theory to atmospheric aerosols suggests new directions for
thinking about the generation of these fractal aggregates through combustion processes due to the connection
between complex networks and percolation theory*®. Here we have used a cluster-cluster algorithm, although
previous work has noted that the morphology of numerically generated fractal aggregates depends not only on
the parameters (N, a, Dy, and ky) defining the shape of the aggregate, but also on which algorithm is used to
generate the sphere positions (e.g. diffusion-limited aggregation or diffusion-limited cluster aggregation)**.
The network approach provides a new framework from which to understand how realistically numerical algo-
rithms reproduce the properties of aerosols formed during incomplete combustion through comparison of their
network characteristics®. This approach may also be useful for inferring 3 dimensional structure of aggregates
from 2 dimensional transmission electron microscope (TEM) images of these aerosols'®'!, since it relates the
relative positions of spheres to their overall morphological features; 2D methods have previously been shown
to systematically underestimate the fractal dimension of BC*. Recent methods such as graph cumulants could
provide sophisticated approaches to describe substructures of graphs (such as motifs or cliques used to describe
clustering)®. Since any particular network observation is a single realization of an underlying generative pro-
cess (in this case, the generation of primary aerosol particles from combustion sources), this framework could
allow for an unbiased estimator of the variance of the propensity for specific graph substructures as a result of
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Xy
Qext All 0.1 0.3 0.5 0.7 0.9 1.0
Training 0.0174 |0.0419 |0.0171 |0.0135 |0.0111 |0.0106 | 0.0099

Test (N5 < 100) 0.0180 |0.0408 |0.0178 | 0.0145 |0.0122 |0.0114 | 0.0106
Test (N5 > 100) 0.0392 | 0.0715 | 0.0351 |0.0317 |0.0263 | 0.0322 |0.0199

Xy
Qabs All 0.1 0.3 0.5 0.7 0.9 1.0
Training 0.0259 | 0.0960 |0.0167 |0.0132 |0.0101 | 0.0091 |0.0093

Test (N5 < 100) 0.0259 |0.0930 |0.0172 |0.0137 |0.0109 |0.0094 | 0.0096
Test (N5 > 100) 0.0367 | 0.0446 | 0.0462 | 0.0409 |0.0288 |0.0275 |0.0174

Xy
Qscat All 0.1 0.3 0.5 0.7 0.9 1.0
Training 07913 |4.5150 |0.0828 |0.0408 |0.0231 |0.0185 |0.0177

Test (N5 < 100) 0.7045 |3.9670 | 0.0829 |0.0417 |0.0249 |0.0194 | 0.0193
Test (N5 > 100) 0.2157 | 0.7990 | 0.0718 | 0.0497 |0.0420 |0.0531 |0.0317

Xy
g All 0.1 0.3 0.5 0.7 0.9 1.0
Training 0.1462 | 0.6470 | 0.0811 | 0.0448 |0.0356 |0.0319 | 0.0307

Test (N5 < 100) 0.1472 | 0.6470 | 0.0778 |0.0462 |0.0367 | 0.0326 |0.0310
Test (N5 > 100) 0.0973 | 0.2520 | 0.0427 | 0.0498 |0.0600 |0.0623 |0.0591

Table 1. MAPE values for GNN model prediction of integral optical properties and asymmetry parameter.
Values are given for all aggregates in the training and test data sets, as well as binned by X

this generative process. These estimators could be used to compare specific aggregate-generating algorithms to
observations of real fractal aerosol particles to assess the realism of the algorithms.

As a proof of concept we have trained a GNN to predict the optical properties of bare BC fractal aggregates
with a range of different fractal parameters. This study demonstrates that modeling aerosol fractal aggregates as
networks of interacting spheres provides morphological information that allows the machine learning model to
extrapolate far beyond their initial training data set. This approach may also be useful for other fractal systems
found in nature, such as turbulence, vegetation, or river networks.

BC in the atmosphere is typically internally mixed. The GNN approach provides an obvious extension to
internally mixed aerosols (Fig. 1), as the thickness of coatings and their indices of refraction or organic fraction
could be included as additional node-level features (in the thinly coated case) or graph-level features (for the
thickly coated case). Other factors influencing the optical properties of aggregates such as “necking” between
overlapping monomers could be included as edge features. Because atmospheric aerosol retrievals rely on ori-
entation averaged parameters, models for predicting the scattering phase function should be equivariant under
rotations. Recently developed equivariant machine learning methods®'->* may provide improved prediction of
the orientation averaged optical properties.

Uncertainty in BC direct radiative climate effects is attributable to multiple factors, including BC’s emis-
sions, lifetime, atmospheric processing, and optical properties"**%; the GNN approach could help resolve this
uncertainty by improving both the interpretation of BC observations and by allowing BC’s morphology to be
accurately represented in atmospheric models in a computationally efficient manner. As a greater understanding
of BC’s physical properties from different source contributions and atmospheric aging pathways becomes avail-
able through laboratory and observational studies'>!*!6, the major remaining hurdle to accurately representing
BC in models will be computational.

While previous exact analytical methods have computational wall-times scaling from hours to days for larger
aggregates, inference is on the order of < 0.3 s per aggregate for the trained GNN model (On a CPU- see SI
Fig. S15). The computational time for these exact analytical methods has precluded exact calculations of aerosol
optical properties being used in models or observational retrievals. CELES, a CUDA-accelerated version of
MSTM capable of running on a GPU, demonstrated a factor of 1.5-6 times speed up over MSTM, but was still
too slow to be implemented online in models®. The significantly faster time-scale for the GNN model, as well as
its generalizability to arbitrarily shaped aggregates compared to more standard ML methods, has the potential
to transform existing model parameterizations for BC. For MSTM computational wall times scale with N, X,,
and Dy; while the total inference and memory scales with N; and Dy in the GNN approach, it is no longer a
function of X,

We have focused here on the forward problem of predicting the optical properties of BC given an assumed
single particle morphology; however such an approach may also be useful for the inverse problem, i.e. inferring
the morphology given the scattering phase function and integral optical properties. This approach could also
provide insight into other physical properties which require detailed information about particle morphology?®,
such as energy and heat transfer between aggregates and the surrounding gas needed to develop physical models
of laser-induced incandescence’”’. Radiative transfer calculations for mineral dust and ice crystals also rely on
detailed information about particle morphology, suggesting that the GNN approach would be useful for modeling
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their optical properties as well. This approach could mitigate several long-standing issues with model param-
eterizations and observational retrievals for these species, by providing flexible parameterization of arbitrarily
shaped aerosol and cloud particles that are fast enough to be deployed online in atmospheric models.

Finally, these methods have potential for new applications of machine-learning assisted materials
discovery®®. Proposed geo-engineering approaches to mitigate global or regional impacts of climate change,
such as stratospheric aerosol injection, marine cloud brightening, or precipitation enhancement, rely on the
development of novel aerosol materials. Generative graph models could be used to determine optimal aerosol
morphologies resulting in physical properties specific to these applications at a fraction of the cost of traditional
numerical methods®.

Methods

Numerical aggregate properties

Cartesian coordinates for the positions of spheres in aggregates were determined using a cluster-cluster
algorithm?®*2. This cluster-cluster algorithm starts with primary clusters of size N;, and then randomly agglom-
erates these clusters pairwise into larger clusters. The algorithm repeats this process for multiple levels until it has
combined all clusters into one larger cluster, which satisfies the scaling laws given by Eq. (1). Primary clusters of
size N. = 3,4,5,7,9,11,13,15, 17, 19 were used to generate aggregates between N; = 8-960 spheres with fractal
dimensions between Dy = 1.8-2.3. Following®, we assume a fractal pre-factor of k;=1.2 (for the aggregates
used in the MSTM calculations). We also investigated the network parameters of aggregates with kr = 1.0-1.5,
for a given Dy = 1.8 (Fig. S4b). Aerosols are assumed to consist of isotropic, homogeneous spheres, with size
parameters X, =0.1, 0.3, 0.5, 0.7, 0.9, and 1.0, corresponding to monomer radii between 7-72 nm for incident
light at 450 nm and 10-104 nm at 650 nm. For each primary cluster size and fractal dimension, 10 aggregate
realizations were randomly generated.

Aerosol optical properties

For radiative transfer applications, the orientation-averaged total scattering (Qsc,), extinction (Q.y ), and absorp-
tion efficiencies (Qgps), as well as the asymmetry parameter ¢ = (Cseqcos(0”)) are typical parameters that are
needed (Cy is the scattering cross-section which is related to the efficiency as Qscq = Coca/ (pi * aﬁ ), where
Aagq is the effective radius of the aggregate). The asymmetry parameter relates the amount of forward to back-
scattered light. Other parameters relevant for radiative transfer, such as the single scattering albedo (SSA), can
be derived from these parameters (SSA = Qscq/Qext). The mass absorption coefficient (MAC) or mass extinction
coefficient (MEC) are typically used to relate emissions of these aerosols to their direct radiative effects, and they
are sometimes estimated theoretically from (Cgps) or (Cex) with assumptions about particle density.

The scattering phase function relates the incident and scattered Stokes parameters, e.g., it indicates how light
scattering from the particle is transformed relative to incident light in terms of its intensity and polarization
state*. Here we assume initially unpolarized incident light, in which case the S1; element specifies the angular
distribution of the intensity of scattered relative to incident light. The scattered light is partially polarized, with

degree of polarization given by \/(S%l + 82, + 82))/8%,.

MSTM calculations of bare BC optical properties

To determine the ground-truth optical properties for the BC fractal aggregates generated by the cluster-clus-
ter algorithm we use the Fortran-90 implementation of the multiple-sphere T-matrix code as described in*,
which can run on a high-performance, parallel based computational platform. This code numerically solves for
electromagnetic wave scattering from multiple (non-overlapping) sphere systems for either a fixed or random
(orientation-averaged) orientation with respect to an incident plane wave. Here we have focused on calculation of
random orientation optical properties, which utilizes the T-matrix procedure developed in'®. We assume indices
of refraction consistent with a range of values from the literature for BC at 550 nm: (1.4+0.44, 1.6+0.6i, 1.8+0.84,
2.0+1.0i). MSTM calculations were performed for these range of indices of refraction for 57,556 numerically
generated aggregates for Ny < 100; we used randomly chosen aggregates from this data set for the training,
validation, and test sets for the model. To test the zero-shot performance, MSTM calculations were performed
for 880 aggregates with these parameters in the size range 100 < N; < 1000; we randomly split this data into a
zero-shot validation data set to evaluate the model’s performance and an independent zero-shot test data set. A
summary of the range of parameters for each data set is given in Table S1. The distribution of parameters among
the small (N; < 100) and large (Ns > 100) aggregates are shown in Figs. S1 and S2, and the integral optical
properties calculated with MSTM are shown in Fig. S3.

Graph neural networks

We used Pytorch Geometric® to implement the GNN models. Several GNN approaches were tested, including
a simple graph convolutional network (SGC)%, a graph convolutional network (GCN)?*, and an interaction
network (IN)?! (See Supplementary Information S1 for additional details of the graph models and a comparison
of performance metrics among different model parameters and targets). The best performance for the integral
optical properties used an IN model with a hidden layer size of 300 for both the node and edge models, and
a message size of 100. Both the node and edge models are MLPs with ReLU as non-linear activation function
between layers. Aggregation for the edge model is addition, with global mean pooling followed by dropout (p =
0.5) and a linear layer of size 100 as the global aggregation function. For the prediction of ;1 we found that add-
ing a fully connected node to each graph slightly improved the zero-shot performance. The model architecture
was the same as that used to predict the integral optical properties. A batch size of 20 was used (training with a
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batch size of 2 led to slower training but did not lead to significantly worse performance). For the graph regres-
sion task, MSE loss was assumed. We trained the GNN models on a Nvidia RTX 8000 GPU.

Data availability
BC graph data sets are available in an open source repository (10.5281/zenodo.5108834).

Code availability
Code is available at https://github.com/kdlamb/BC-GNN.git.
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