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An advanced approach 
for the electrical responses 
of discrete fractional‑order 
biophysical neural network models 
and their dynamical responses
Yu‑Ming Chu 1, Taher Alzahrani 2, Saima Rashid 3,4*, Waleed Rashidah 2, Shafiq ur Rehman 2 & 
Mohammad Alkhatib 5

The multiple activities of neurons frequently generate several spiking‑bursting variations observed 
within the neurological mechanism. We show that a discrete fractional‑order activated nerve cell 
framework incorporating a Caputo‑type fractional difference operator can be used to investigate the 
impacts of complex interactions on the surge‑empowering capabilities noticed within our findings. 
The relevance of this expansion is based on the model’s structure as well as the commensurate and 
incommensurate fractional‑orders, which take kernel and inherited characteristics into account. 
We begin by providing data regarding the fluctuations in electronic operations using the fractional 
exponent. We investigate two‑dimensional Morris–Lecar neuronal cell frameworks via spiked and 
saturated attributes, as well as mixed‑mode oscillations and mixed‑mode bursting oscillations of a 
decoupled fractional‑order neuronal cell. The investigation proceeds by using a three‑dimensional 
slow‑fast Morris–Lecar simulation within the fractional context. The proposed method determines a 
method for describing multiple parallels within fractional and integer‑order behaviour. We examine 
distinctive attribute environments where inactive status develops in detached neural networks 
using stability and bifurcation assessment. We demonstrate features that are in accordance with the 
analysis’s findings. The Erdös–Rényi connection of asynchronization transformed neural networks 
(periodic and actionable) is subsequently assembled and paired via membranes that are under 
pressure. It is capable of generating multifaceted launching processes in which dormant neural 
networks begin to come under scrutiny. Additionally, we demonstrated that boosting connections 
can cause classification synchronization, allowing network devices to activate in conjunction in the 
future. We construct a reduced‑order simulation constructed around clustering synchronisation that 
may represent the operations that comprise the whole system. Our findings indicate the influence 
of fractional‑order is dependent on connections between neurons and the system’s stored evidence. 
Moreover, the processes capture the consequences of fractional derivatives on surge regularity 
modification and enhance delays that happen across numerous time frames in neural processing.

In the discipline of dynamic investigation, neural systems have been acknowledged as being among the increas-
ingly essential dynamic representations. The main justifications behind these systems’ importance are their 
framework and simultaneous execution capability. Because of their multiple uses in numerous disciplines, includ-
ing optimization, memory consolidation, confidentiality of data, image recognition, and many more, neuronal 
network theory has received a lot of consideration from scientists over the past few  decades1–3. The fluctuations 
of the neural network’s communications are being extensively studied in mathematical physics and technology. 
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The aforementioned models’ evaluation revealed multiple broader characteristics, including bifurcations, con-
straint cycles, and chaotic  behaviour4,5. Despite the many research investigations that have been conducted to 
examine the evolving behaviours of continuous-time structures, discrete-time methods and mechanisms have 
attracted much fewer resources. Discrete-time frameworks have distinguished evolving characteristics, and they 
can be employed to symbolize a wide range of beneficial complications within the reality of  life6,7. Because of 
such features, research into independent neural network mechanisms is critical and has culminated in major 
discoveries in physical science, mathematical concepts, and numerous other  disciplines8,9.

Discrete fractional calculus encounters have sparked the interest of many scientists over the past 20 years, 
owing to their significance for disciplines as diverse as computer application, photo encoding, and encrypted 
interaction. A plethora of publications on this popular subject have recently been published, with the authors 
offering an assortment of discrete-time fractional operators, durability assessments, and numerous mathematical 
 findings10–12. Alsharidi et al.13 investigated a short-memory discrete fractional difference equation wind turbine 
model using a Caputo-type fractional difference operator. Al-Qurashi et al.14 expounded the complexity analysis 
and discrete fractional difference implementation of the Hindmarsh-Rose neuron system. Chu et al.15 derived 
the new configurations of the fuzzy fractional differential Boussinesq model with application in ocean engineer-
ing. Wu and  Baleanu16 established their inaugural research, which concerned the modelling of the fractional 
chaotic map employing the Caputo difference operator and researching its turbulent features. These have led to 
the proposal of more commensurate fractional discrete chaotic systems, such  as17, and more incommensurate 
fractional discrete chaotic systems, such  as18, along with a variety of control strategies and synchronization 
schemes between different fractional chaotic maps, such  as19.

Numerous researchers have been investigating the oscillatory patterns of fractional continuous-time neural 
network frameworks due to their prospective functions in various disciplines such as pattern identification, com-
putational optimization, connected retention, and data  processing20,21. However, when implementing continuous-
time structures for computerized processing, exploration, or modelling, it is crucial to isolate continuous-time 
structures regardless of whether they ought to be implemented for technological device estimation, exploration, 
or modelling. Discrete-time neural networks have been developed and are used in an extensive spectrum of 
 domains22,23. Mohamad and  Gopalsamy19 discussed the exponential stability of continuous and discrete-time 
cellular neural networks with delays. As a result, an examination of the functioning of discrete-time neural 
network is required. A while ago, a couple of studies were published that investigated the evolving dynamics 
of fractional discrete-time modelling in neural  network23–24.  Weinberg25 addressed how membrane conduc-
tive storage affects spikes in nerve cells characterized by the fractional-order Hodgkin-Huxley neural network 
framework. Lundstrom et al.26 contemplated the fractional operators by neurons in pyramids of the neocortex. 
Huang et al.27 expounded the new fractional discrete-time neural network based on the variable order.  Allehiany28 
presented the chaotic regulatory and fractional-order dynamics of neural network under electromagnetic radia-
tion. A significant amount of the previously stated discrete-time neural network studies focus on frameworks 
with corresponding or incommensurate fractional-orders; however, currently, as far as we comprehend, only a 
handful of improvements have been published that examine the exciting practises of fractional-order discrete-
time neural network  frameworks29–31. As a consequence, studying the unpredictable behaviour of neural network 
frameworks driven by fractional differences with commensurate and incommensurate values, in addition to their 
synchronization and oversight, is an appealing topic.

Influenced by the previous debate, we aim to investigate and analyze the fluctuating patterns of the intriguing 
two- and three-dimensional discrete fractional-order Morris-Lecar neural network paradigm using electrically 
powered operations of independent Morris-Lecar firing neural network regarding Groups i and ii activities and 
slow-fast Morris-Lecar neural  network32,33 concerning its presence design employing commensurate and incom-
mensurate fractional-orders in the present article. The key elements of this discrete fractional-order system will 
be investigated by implementing hypothetical and computational assessments. Take into account a conductance-
dependent simulation that investigates the inherent behaviour underpinning fractional-order differences when 
investigating these terminating features and transformations. Prior studies examined different periods of spiked 
remarks based on varying setting regimes; despite this, discrete fractional-order can also evaluate broad-sack 
 reactions34. The Morris–Lecar frameworks are used because of their respective positions in various reactions, 
which range from spikes to ruptures. In the parametric forum of the Morris-Lecar approach, it includes two 
regimes: dominant spiked and swift spiked behaviours. Furthermore, the representation has been transformed 
into a three-dimensional equivalent in which the generated electricity, ℑ , remains steady but fluctuates with 
energy. We take the discrete fractional-order technique to be the most significant method in the framework, 
considering that it modifies gradually, spike adjustments happen, and mixed mode oscillations and mutated 
monarch butterfly optimizations are observed. It constitutes one of the particularly fascinating neurological 
variations that arise from electrical  activity35. Mixed mode oscillations indicate the reversed pathways of tiny 
and massive intensity  resonances36. This makes the structure captivating, and its outcome supplies exciting and 
potentially advantageous uses in an adaptive structure. The resulting appearance of mutated monarch butterfly 
optimizations results in the creation of an elevated incorporation process. Previously, it was discovered that mixed 
mode oscillations examined the evolving and neurological behaviour of manoeuvring or  breathing37. Calcium 
signalling and electrocardiac applications were both  affected38. Krupa et al.39 investigated the process of mixed 
mode oscillation fluctuations in the mammal cerebral cortex using a two-dimensional representation of dopa-
mine signalling. We additionally glance at how electronic connections affect an assortment of cells that are, in 
two ways, inactive or periodic. In this case, the synapses of neural networks are considered to be associated via 
the pathways of the Erdös-Rényi structure. To identify all components in the structure, the interaction causes 
intricate terminating operations that involve repeated overflowing or surge regularity adaptation mechanisms. 
Depending on the discovered asymptotic occurrences, a diminished-order emulate is established that can gener-
ate the whole system’s actions.
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Employing the fractional exponent, we discovered commensurate and incommensurate differences in the 
features of neurologically effective behaviour. Fractional-order power interactions may drastically impact the 
spikes in the characteristics of various unattached neuron  models40,41. Practical characteristics are capable of ren-
dering the mathematical framework more responsive to neuronal activity interactions, especially in the network’s 
prospective collaborative behaviour, in which previous dynamic behaviour could impact current conditions.

The remaining content of this article is structured as follows: The qualitative description of the discrete 
fractional-order neural network system in terms of the electrical nature of independent Morris–Lecar spike 
neurons via category i and ii activities is presented in a detailed manner. Furthermore, the slow-fast Morris–Lecar 
cells employing the Caputo difference expression are presented in Section 2. In Section 3, we investigate the 
framework’s fundamentally evolving characteristics using computation and analytical techniques of the two-
dimensional discrete fractional-order Morris–Lecar neural network model. Section 4 demonstrates the detailed 
analysis of discrete fractional-order Morris–Lecar neural networks with commensurate and incommensurate 
fractional-orders. Moreover, the various oscillatory responses are presented with detailed simulation techniques. 
To stabilize and synchronize the unstable pathways of the suggested fractional discrete-time neural network 
approach, we put forward responsive processors. Ultimately, Section 6 presents the overall paper’s ending.

Mathematical model
In this part, we indicate the fractional-order conductance-based simulation and discuss the presence of multiple 
neural  characteristics42. We determine a specific setting structure that enables terminating characteristics via 
fractional exponent modifications. We investigate the two- and three-dimensional Morris–Lecar frameworks via 
specific settings and transmit interactions for producing broad surges employing fractional-order behaviour. We 
chose one of these frameworks to distinguish the influence of fractional formulations on the system’s dynamic 
practises. Morris and  Lecar32 suggested a simple mathematical design that described fluctuations in the barnacle’s 
enormous muscle fibre, which included the cellular electricity formula alongside immediately apparent calcium 
up-to-date stimulation and a supplementary restoration formula explaining slow potassium energy initialization. 
In the fractional-order sense, the two-dimensional Morris–Lecar system is explained as follows:

A voltage-gated Ca2+ energy, an induced converter K+ energy, and a leaky energy are all part of the biophysi-
cally stimulated activated approach. The membrane power interactions are measured by u1 , and the stimulation 
attribute of K+ charge activity is u2 . The highest conductivity operates to Ca+, K+ and release flows are indicated 
by the factors WCa, WK and WL , respectively. The transformations of prospective to various ionised energy 
performs are FCa, FK and FL . The protective layer capaciousness is measured by C symbolizes the ambient 
temperature developing rate for revealing the K+ pathway. The settings for F1, F2, F3 and F4 have constant 
positive values. The letter ℑ denotes the substance that was used stimulus. We want to take consideration of the 
influence of different inserted energy stimuli on the fractional-order framework based on ϑ ∈ (0, 1].

Diverse dynamical aspects
Initially, suppose the neuron is just starting to fire and is generating spikes as the regulation variable advances 
cautiously. Slow-fast  interactions42 can be computationally represented as

where ẏ(ξ) = �(y, z) indicates fast spiking and ż(ξ) = ζh(y, z) represents the slow modulation. The rapidly 
changing parameters are represented by y ∈ Rr and the slow factors are represented by z ∈ Rs , with 0 < ζ ≪ 1 
assessing the duration of the split parameter estimation.

The slow-fast three-dimensional Morris–Lecar model is represented by a corresponding structure of ordinary 
differential equations, where (u1, u2) indicate the fast component and u3 the slow variable. The fractional-order 
improved three-dimensional Morris–Lecar  model32,42 is shown as follows:

The framework has a few additional features. Externally administered energy, which implies index-law inter-
actions in the fractional framework and illustrates the memory impact of the cellular within the  voltage32,42, is the 
mechanism factor u3 . The hyperbolic mappings’ settings F1, F2, F3 and F4 are effectively chosen to demonstrate 
how they are capable of reaching their fixed points instantly. The specified worth value θ is smaller than one, i.e., 
θ ∈ (0, 1) , and it determines the length of time scale ratio between resonances and modification. To identify this 
kind of feedback, Lundstrom et al26 discovered that neuronal pyramids are able to function as fractional differ-
entiation of the challenge intensity envelope. To determine the initial differentiation of a mapping, differentiate 

(1)





C
dϑu1
dξϑ

= −1/2WCa(u1 − FCa)((1+ tanh(σ − F1))/F2)− u2WK(u1 − FK)

−WL(u1 − FL)+ ℑ = �1(u1, u2),
dϑu2
dξϑ

= ϕ cosh(u1 − F3)/2F4(1/2(1+ tanh((u1 − F3)/F4))− u2) = �2(u1, u2).

(2)
ẏ(ξ) = �(y, z),

ż(ξ) = ζh(y, z),

(3)





C
dϑu1
dξϑ

= −1/2WCa1
(u1 − 1)((1+ tanh(u1 − F1))/F2)− u2WK(u1 − FK)−WL(u1 − FL)

+ℑ(u3) = �1(u1, u2, u3),
dϑu2
dξϑ

= ϕ cosh ((u1 − F2)/2F4)(1/2(1+ tanh (u1 − F3)/F4)− u2) = �2(u1, u2, u3),

dϑu3
dξϑ

= θ(F0 + u1) = �3(u1, u2, u3).
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twice by implementing the fractional-order derivative of ϑ = 1/2 which leads to the first  derivative43,44. It adjust-
ments the reaction using a decomposing time delay that is proportional to ϑ .

To identify all simulated outcomes, the attribute distinguishes are (for (1),  see33,42):
Group  i: C = 20.0, WCa = 4.0, WK = 8.0, WL = 2.0, FCa = 120.0, FK = −84.0, FL = −60.0, F1 =

−1.20, F2 = 18.0, F3 = 12.0, F4 = 17.40, ϕ = 0.0670 (for the excited cell simulation of category i ) with various 
ℑ. Group ii: ℑ = 40. Group ii: ℑ = 45 and for the group ii membrane framework, the specifications are actually 
identical mentioned previously, aside for Group iii: WCa = 4.4, F3 = 2.0, F4 = 30, ϕ = 0.04 and ℑ = 100. To 
investigate the functioning of systems, we initially examine neutral states and then bifurcation. afterwards that, 
we employ the subsequent variable distinguishes for interacting with structures (1) and its improved forms, 
alongside ℑ(u3) = 0.08− 0.03u3 and C = 1 for attribute initiates i, ii and iii, respectively.

Group  i: WCa = 0.9, WK = 2, WL = 1/2, FCa = 1, FK = −0.7, FL = −1/2, F1 = −0.01, F2 = 0.15,

F3(u3) = (0.08− u3), F4 = 0.04, ϕ = 0.033, F0 = 0.22, θ = 0.003.

Group ii: WCa = 1.36, WK = 2, WL = 1/2, FCa = 1, FK = −0.7, FL = −1/2, F1 = −0.01, F2 = 0.15,

F3(u3) = (0.08− u3), F4 = 0.16, ϕ = 0.033, F0 = 0.1, θ = 0.003.

Group iii: WCa = 0.9, WK = 2, WL = 1/2, FCa = 1, FK = −0.7, FL = −1/2, F1 = −0.01, F2 = 0.15,

F3(u3) = (0.08− u3), F4 = 0.05, ϕ = 0.033, F0 = 0., θ = 0.005. To investigate the fractional-order Mor-
ris–Lecar framework, we employ the well-known description of the fractional difference, namely the Caputo-type 
fractional difference operator. The commensurate fractional-order framework with the fractional exponent 
ϑ ∈ (0, 1) is defined as follows:

where q1, q2 and q3 are the fractional-order such that qι ∈ (0, 1). cDq1 is the Caputo fractional derivative which 
can be evaluated by the following formula:

It is emphasized that when q1 = q2 = q3, a commensurate fractional-order model is developed; otherwise, an 
incommensurate fractional-order model is formed.

Preliminaries on discrete fractional calculus
Prior to defining our fractional discrete framework, we will go over certain crucial terms and mathematical 
principles of discrete fractional calculus.

Definition 3.1 (10) Assume that there is a time scale Na = {a, a + 1, a + 2, . . .}, a ∈ R. The fractional sum of 
order ϑ for a mapping F  can be defined as

Definition 3.2 (11) The ϑ-Caputo fractional difference operator is described as follows

where ξ ∈ Na+q−ϑ , ϑ /∈ N and q = ⌈ϑ⌉ + 1. �qF(ϒ) and (ξ − 1−ϒ)(q−ϑ−1) represents the mth integer dif-
ference operator and falling factorial mapping, respectively, indicated as

and

Currently, we require the resulting  hypothesis45 to figure out the stability manipulations to stay on the critical 
highlights of a fractional discrete mechanism with commensurate fractional-order characteristics:

(4)





C cDq1u1(ξ) = −1/2WCa1
(u1 − 1)((1+ tanh(u1 − F1))/F2)− u2WK(u1 − FK)−WL(u1 − FL)+ ℑ(u3),

cDq2u2(ξ) = ϕ cosh ((u1 − F2)/2F4)(1/2(1+ tanh (u1 − F3)/F4)− u2),
cDq3u3(ξ) = θ(F0 + u1),

cDq1F(ξ) =
1

Ŵ(1− qι)

ξ∫

a1

(ξ − χ)−qιF(χ)dχ .

(5)�−ϑ
a F(ξ) =

1

Ŵ(ϑ)

ξ−a∑

ϒ=0

(ξ − 1−ϒ)(ϑ−1)
F(ϒ), ∀a > 0, ξ ∈ Na+ϑ .

(6)

c�ϑ
aF(ξ) =�−(q−ϑ)�q

a F(ξ)

=
1

Ŵ(q − ϑ)

ξ−(q−ϑ)∑

ϒ=0

(ξ − 1−ϒ)(q−ϑ−1)�q
F(ϒ),

(7)(ξ − 1− ϒ)(q−ϑ−1) =
Ŵ(ξ −ϒ)

Ŵ(ξ −ϒ − q + ϑ + 1)

(8)

�q
F(ξ) =�

(
�q−1

F(ξ)
)

=
q∑

χ=0

(
q
χ

)
(−1)q−χ

F(ξ + χ), ξ ∈ Na .
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Theorem 3.1 (44) Assume that there is a fractional-order �(ξ) =
(
�1(ξ), . . . , �q(ξ)

)T
, ϑ ∈ (0, 1) and W ∈ Rq×q , 

the zero steady states of the commensurate discrete fractional-order framework

for all ξ ∈ Na+1−ϑ is asymptotically stable if ℘� ∈
{
w1 ∈ C̃ :

∣∣w1

∣∣ ≤ 2

(
2 cos

∣∣ argw1

∣∣−π

2−ϑ

)ϑ

and
∣∣ argw1

∣∣ ≥ ϑπ
2

}
, 

where ℘� indicates the eigenvalues of the matrix W .

However, the reliability and robustness concept of the dynamic fractional-order incommensurate framework 
is formulated as follows:

Theorem 3.2 (45) Assume the system

w h e r e  � = (�1, . . . , �n) : Rn �→ Rn  a n d  x1(ξ) = (x1(ξ), . . . , xn(ξ))
T ∈ Rn.  S u p p o s e  t h a t 

ϑι ∈ (0, 1), ι = 1̃,n and H is the least common multiple of the denominators uι of ϑ ′
ι s having 

ϑι = w1ι/σι, (σι,w1ι) = 1, w1ι, σι ∈ Z+, ι = 1, 2, . . . ,n. If every root of the equation

If x0 = x(0) occurs inside the collection C̃/Kξ , then the straightforward solution of the structure (9) is locally asymp-
totically stable (LAS), where ξ = 1/H, J is the Jacobian matrix of (9) and

Remark 3.1 The classical Hartman–Grobman linearization essentially contributes a vital part to the analysis of 
the locally stable characteristics of a constantly changing system’s equilibrium, which contends that the specific 
behaviour of an unstable system in the neighbourhood of a hyperbolic neutral state is subjectively similar to 
the behaviour of its linearization within the equilibrium. It is worth noting that a fractional-order equivalent 
for this linearization theory was discovered  in46. If X1

∗ is a state of equilibrium of (9), i.e. �(X1) , the linearized 
framework at X1

∗ is as follows:

where J�(X
∗
1 ) is the Jacobian matrix of the mapping � determined at X∗

1 . As a result, the dynamic technique’s 
equilibrium X∗

1 is asymptotically stable iff the insignificant algorithm for the dynamical framework (9) is asymp-
totically  stable47. Also, in view of the well-noted Matignon’s  principal47, the dynamical fractional-order model 
(13) is asymptotically stable iff 

∣∣ arg(�)
∣∣ > ϑπ

2 , for some eigenvalue � of the Jacobian matrix J�(X
∗
1 ).

Definition 3.3 (48) Suppose an eigenvalues of J�(X
∗
1 ) fulfills 

∣∣ arg(�)
∣∣ > ϑπ

2  and some other eigenvalues holds ∣∣ arg(�)
∣∣ < ϑπ

2 , then the steady state X1
∗ is said to be a saddle node.

Remark 3.2 According to Morris–Lecar system (3), a steady state X1
∗ is known to be a saddle of rank one 

if an eigenvalue of J�(X1
∗) is unsteady (that is 

∣∣ arg(�1)
∣∣ < ϑπ

2  ) and remaining two eigenvalues are stable ∣∣ arg(�2,3)
∣∣ > ϑπ

2  . However, the two eigenvalues connected to the equilibrium X1
∗ are unstable, when merely 

one eigenvalue stays constant, the saddle point X1
∗ is referred to as the saddle of rank  two48.

Qualitative evaluation of discrete fractional‑order Morris–Lecar system and mathematical 
implications
Two-dimensional model
The framework (1) is an example of a two-dimensional fractional-order conductance-dependent activated struc-
ture. The discrete version of the fractional-order Morris–Lecar system can be constructed by substituting the 
Caputo fractional-order formulation cDqι

a1 in framework (1) with the fractional-order difference scheme defined 
in (6) c��ι

a1
 , which is demonstrated below:

for ξ ∈ Na+1−�. �ι, ι = 1, .., 3 are the fractional-order values such that �ι ∈ (0, 1], ι = 1, 2, 3. Also, u1 and u2 
are the neuron’s cell power and restricting parameter, ℑ is an implemented electricity, ℑ̄(u1, u2) is the ionized 

(9)c�ϑ
a �(ξ) = W�(ξ − 1+ ϑ)

(10)





c�ϑ1
a x1(ξ) = �1(x(ξ − 1+ ϑ1)),

c�ϑ2
a x2(ξ) = �2(x(ξ − 1+ ϑ2)), ξ = 0, 1, . . . ,

...
c�ϑn

a xn(ξ) = �n(x(ξ − 1+ ϑn)),

(11)det
(
diag(℘Hϑ1 , . . . .,℘Hϑn )− (1− ℘H)J

)
= 0,

(12)K
ξ =

{
w1 ∈ C̃ : |w1| ≤

(
2 cos

| argw1|
ξ

)ξ

and | argw1| ≤
ξπ

2

}
.

(13)∇ϑ�(X1) = J�(X1
∗)X1,

(14)
{
C c��1

a1
u1(ξ) = ℑ− ℑ̄(u1, u2),

c��2
a1

u2(ξ) = ϕℓ(u1)(u2∞(u1)− u2)



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18180  | https://doi.org/10.1038/s41598-023-45227-8

www.nature.com/scientificreports/

energy, ℓ(u2) is the frequency steady for releasing ionized pathways, and u2∞ is the amount of accessible channel 
openings at the state of equilibrium.

The numerical procedure for the fractional discrete system can be constructed using the subsequent 
hypothesis:

Theorem 3.3 (49) Suppose there is a fractional difference equation

the unique solution of this initial value problem (15) is presented as

where

Therefore, the mathematical representation of the discrete fractional-order Morris–Lecar neural networks 
framework (14) is developed using the aforesaid approach:

where u1(0) and u2(0) indicate initial conditions. This is an entirely novel kind of Morris–Lecar system that has 
“memory impacts.” As shown in (18), the configurations of u1(n) and u2(n) are interdependent concerning every 
previous factor u1(0), u1(1), . . . , u1(n − 1) and u2(0), u2(1), . . . , u2(n − 1).

Three-dimensional model
The framework (3) is an example of a three-dimensional fractional-order conductance-dependent activated 
structure. The discrete version of the fractional-order Morris–Lecar system can be constructed by substituting 
the Caputo fractional-order formulation cDqι

a1 in framework (3) with the fractional-order difference scheme 
defined in (6) c��ι

a1
 , which is demonstrated below:

for ξ ∈ Na+1−�. �ι, ι = 1, .., 3 are the fractional-order values such that �ι ∈ (0, 1], ι = 1, 2, 3.

Dynamic analysis of Morris–Lecar model
In this section, we will investigate whether the formerly suggested discrete fractional-order Morris–Lecar neural 
network model (19) is steady or in chaos in both instances: commensurate and non-commensurate fractional-
orders, respectively. The present research will make use of an assortment of computational techniques, among 
them bifurcation illustrations and the visual representation of phase profiles in multifaceted estimations. In 
addition, we use the reduced order evaluation to determine whether or not chaos is present.

Commensurate fractional‑order for two‑dimensional Morris–Lecar model
In what follows, the robustness of the stable state points within the discrete fractional-order Morris–Lecar neural 
networks model (18) with commensurate fractional-order is investigated. For the purpose of determining the 
system’s steady state, we consider the model (18):

and r∞(u1) = 1
2

(
1+ tanh

(
u1−F1
F2

))
, u2∞(u1) = 1

2

(
1+ tanh

(
u1−F3
F4

))
, ℓ(u1) = cosh

(
u1−F3
2F4

)
.

The mathematical method’s solutions are the fixed points of model (18):

equivalently,

The mapping ℑ(u1) has a handful of fundamental characteristics:

(15)
{

c��1
a �(ξ) = ̥(ξ +�ι − 1,�(ξ +�ι − 1)),

�η�(ξ) = �η , q = ⌈�ι⌉ + 1,

(16)�(ξ) = �0(ξ)+
1

Ŵ(�ι)

ξ−�ι∑

ϒ=a+q−�ι

(ξ −ϒ + 1)(�ι−1)
̥(ξ +�ι − 1,�(ξ +�ι − 1)), ξ ∈ Na+q ,

(17)̥0(ξ) =
q−1∑

η=0

(ξ − a)η

Ŵ(η + 1)
�η

̥(a).

(18)





Cu1(n) = u1(0)+ 1
Ŵ(�1)

n−1�
�=0

Ŵ(n−�−1+�1)
Ŵ(n+1−�−1)

�
ℑ(�)− ℑ̄(u1(�), u2(�))

�
,

u2(n) = u2(0)+ 1
Ŵ(�2)

n−1�
�=0

Ŵ(n−�−1+�2)
Ŵ(n+1−�−1) (ϕℓ(u1(�))(u2∞(u1(�))− u2(�))),

(19)





C c��1
a1

u1(ξ) = ℑ(u3)− ℑ̄(u1, u2),
c��2

a1
u2(ξ) = ϕℓ(u1, u3)(ū2(u1, u3)− u2),

c��3
a1

u3(ξ) = θ(u1 + F0)

(20)ℑ̄(u1, u2) = WCar∞(u1)(u1 − 1)+WKu2(u1 − Fk1)+WL(u1 − FL),

ℑ = ℑ̄(u1, u2), u2 = u2∞(u1),

ℑ = ℑ̄(u1, u2∞) := ℑ∞(u1), u2 = u2∞(u1).
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• A1 : ℑ∞ ∈ C1(R);
• A2 : lim

u1 �→−∞
ℑ∞(u1) = −∞ and lim

u1 �→∞
ℑ∞(u1) = ∞;

• A3 : ℑ∞ has only two real roots u1max < u1min.

It is critical to emphasize that these features are fulfilled in the specific scenario of the Morris–Lecar neural 
networks that includes the mapping ℑ(u1, u2) supplied by (18).

We indicate ℑmax = ℑ∞ as u1max , and ℑmin = ℑ∞ as u1min . Then ℑ increases on the ranges (−∞, u1max] and 
[u1min,∞) and decreases on the time frame (u1max, u1min).

As a result, subject to the exterior input ℑ , there exist three separate sets of equilibrium points, signified by 
(u1ι(ℑ), u2∞(u1ι(ℑ))), ι ∈ {1, 2, 3}, which included:

Remark 4.1 As an outcome, any of the scenarios listed below are possible:

• When ℑ < ℑmin or ℑ > ℑmax, then model (18) has only one steady state.
• When ℑ = ℑmin or ℑ = ℑmax, then model (18) has two one steady states.
• When ℑ ∈ (ℑmin,ℑmax), then model (18) has three steady states.

Stability of steady states
For an undetermined equilibrium state (u1∗, u2∗) = (u1

∗, u2∞(u1
∗)), the Jacobian matrix corresponding to the 

dynamics (18) is:

In the present situation, the essentials that are required for a steady state’s asymptotic stability (u1∗, u2∗) 
minimize to the subsequent  variants50:

where

We commence by pointing out that the following branch of equilibria is entirely unsteady. In fact, any state 
of equilibrium (u12(ℑ), u2∞(u12(ℑ))) alongside ℑ ∈ (ℑmin,ℑmax) adheres to ℑ′(u12(ℑ)) < 0, thereby achieving 
ζ(u12(ℑ)) < 0. Furthermore, irrespective of what fractional-order is taken into account in structure (18), the 
minus sign of the aforesaid system ensures that every steady state of the subsequent process is the saddle node.

On the contrary, the determinant of the Jacobian is straightforward to determine to be non-negative for both 
the initial and third segments of steady states. As a result, the trace χ has a strong influence on the sturdiness of 
the steady states. If χ(u1∗) < 0 , the steady state (u1∗, u2∗) is evidently asynchronously stable, regardless of the 
fractional-order ϑ examined in framework (18). Whenever, χ(u1∗) ≥ 0 , a steady state (u1∗, u2∗) of the initial or 
third branch is asynchronously stable, iff

Furthermore, we will make the assumption that Fk1 < u1max < u1min < 1. We effortlessly assess:

and so that, if (u1∗, u2∗) = (u1
∗, u2∞(u1

∗)) is a steady state of the third branch such that u1∗ > 1, as a result of 
this ℑ̄u1(u1

∗, u2∞(u1
∗)) > 0 and therefore χ(u1∗) < 0.

Additionally, we are able to communicate as

and thus, if (u1∗, u2∗) is a steady state of the initial branch, which indicates u1∗ < FK. It is concluded that 
ℑ̄u1(u1

∗, u2∞(u1
∗)) > 0 and repeating the same argument, we attain χ(u1∗) < 0.

In accordance with the aforementioned computation, we further note that:

ℑ1 = ℑ∞|(−∞,u1max], u11 : (−∞,ℑmax] �→ (−∞, u1max], u11(ℑ) = ℑ−1
1 (ℑ),

ℑ2 = ℑ∞|(u1min,u1max), u12 : (ℑmin,ℑmax) �→ (u1min, u1max), u12(ℑ) = ℑ−1
2 (ℑ),

ℑ3 = ℑ∞|[u1min,∞), u13 : [ℑmin,∞) �→ (u1min,∞), u13(ℑ) = ℑ−1
3 (ℑ).

J =
(
−ℑ̄u1(u1

∗, u2∞(u1
∗))/C − ℑ̄u2(u1

∗, u2∞(u1
∗))/C

ϕℓ(u1
∗)u2′∞(u1

∗) − ϕℓ(u1
∗)

)
.

ζ(u1
∗) > 0 and χ(u1

∗) < 2
√

ζ(u1∗) cos

(
ϑπ

2

)
,

χ(u1
∗) = trac(J) = −

1

C
ℑ̄u1(u1

∗, u2∞(u1
∗))− ϕℓ(u1

∗),

ζ(u1
∗) = det(J) =

ϕ

C
ℓ(u1

∗)
[
ℑ̄u1

(
u1

∗, u2∞(u1
∗)
)
+ u2

′
∞(u1

∗)ℑ̄u2

(
u1

∗, u2∞(u1
∗)
)]

=
ϕ

C
ℓ(u1

∗)ℑ′
∞(u1

∗).

(21)ϑ < ϑ∗(u1
∗) =

2

π
cos−1

(
χ(u1

∗)

2
√
ζ(u1∗)

)
.

ℑ̄u1(u1, u2∞(u1)) = WCa

[
r′∞(u1)(u1 − 1)+ r∞(u1)

]
+Wk1u2∞(u1)+WL,

ℑ̄u1(u1, u2∞(u1)) = ℑ′
∞(u1)− u2

′
∞(u1)ℑ̄u2(u1, u2∞(u1)) = ℑ′

∞(u1)− u2
′
∞(u2)WK(u1 − FK),
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such as u1r = u1max or u1r = u1min, and considering that is sufficiently small, the variant χ(u1r) > 0 is capable 
of being noticed. As a result, the mapping χ(u1) may have two roots, u1′ ∈ (FK, u1max) and u1′′ ∈ (u1min, 1), 
respectively. In view of the numerical information, we might additionally suppose that when such roots occur, 
they constitute something particular within the preceding time frames.

Finally, the stability of equilibria conditions is only affected by fractional-order in the subsequent three 
scenarios:

(c1) the steady state is associated with the initial region and u1∗ ∈ (u1
′, u1max);

(c2) the steady state is associated with the third region and u1∗ ∈ (u1min, u1
′′);

(c3) the steady state is associated with the second region is unstable regardless of fractional-order.
Now, the threshold ϑ∗ provided by (21) is equivalent to a bifurcation in the present instance (that is., the 

Jacobian matrix possesses two sets of imaginary type eigenvalues that result in 
∣∣ arg(�)

∣∣ = ϑπ
2  ). In a nutshell, 

contingent on the fractional-order evaluated in framework (18), the states of the Hopf bifurcation are indicated 
in the (ℑ, u1)-plane, located on the primary and/or third branches, accordingly. Evidently, such will have an 
extremely significant influence on the form of spiked and brimming behaviour in the two-dimensional frame-
work (18) and the three-dimensional slow-fast framework, as will be revealed in the subsection that follows.

As an illustration, take into account ℑ as a bifurcation variable while looking at the bifurcation setting of 
the conventional two-dimensional Morris–Lecar neural networks framework that includes Hopf-bifurcating 
highlights (Fig. 1a). Consequently, we examined the influence of fractional-order on the behaviour of the frame-
work (18) and demonstrated the way that it stabilizes the entire structure as the quantity decreases (Fig. 1b). 
The period depictions of the two-dimensional Morris–Lecar structure using its settings for Group ii are then 
shown in Fig. 2a–j for various fractional-order outcomes. In the present scenario, the framework has exclu-
sively one unsteady equilibrium point, (u1∗, u2∗) = (6.23101, 1/24, 232) (at the point of convergence of the 
nullclines), which is positioned at the subsequent location. According to the procedure (21), the significant 
worth of the fractional-order that describes the Hopf-bifurcation at the steady state is ϑ∗ = 0.89342. A large-
amplitude constraint process attractor, similar to spiked behaviour, can be observed in the classical situation, 
ϑ = 1 . The large-amplitude appealing quasiperiodic restrict process addresses the unsteady state of equilib-
rium as the fractional-order reduces, and as it tackles the important threshold for Hopf splitting, an additional 
quasiperiodic pass over arises, featuring smaller-amplitude fluctuations near the point of stability in addition 
to large-amplitude rises. When ϑ < ϑ∗, the balance of power turns into asynchronously steady. Furthermore, 
we demonstrate associated data sets to additionally validate the mathematical findings, mentioning that the 
fractional-order determined thresholds are ϑ∗ = 0.83241 for group i and ϑ∗ = 0.96720 for group ii presented 
in Fig. 3a–d for ℑ = 43, Fig. 3e–h for ℑ = 50 and Fig. 3i–l for ℑ = 90 with the settings of Group iii for various 
fractional-order outcomes, respectively.

Commensurate fractional‑order for three‑dimensional Morris–Lecar model
In accordance with the already mentioned features, the three-dimensional slow-fast fractional-order designs 
(19) are capable of being composed in (20) with the parameter settings ℑ̄(u1, u2) as follows:

χ(u1r) = −
1

C

[
ℑ′
∞(u1∞)− u2

′
∞(u1r)WK(u1r − FK)

]
− ϕℓ(u1r) =

1

C

[
u2

′
∞(u1r)WK(u1r − FK)

]
− ϕℓ(u1r),

(22)ū2(u1, u3) =
1

2

(
1+ tanh

(
u1 − F3(u3)

F4

))
, ℓ̄(u1, u3) = cosh

(
u1 − F3(u3)

2F4

)
.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

-1

-0.5

0

0.5

1

(b)

Figure 1.  According to group i and ii, bifurcation cases of the two-dimensional Morris–Lecar neural networks. 
(a) ℑ as a bifurcation factor: ( ℑ = 90, ϑ = 0.97 ) and ( ℑ = 40, ϑ = 0.1 ) indicate the presence of Hopf and 
saddle component type plots in the framework (18), respectively. The blue and red lines represent the structure’s 
balance and imbalance branches, respectively. (b) reflects the appearance of an unsteady limit process.
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We are taking on the fact that ℑ(u3) and F3(u3) are lowering functions and that F0 + FK < 0 (based 
on the variable distinction assumed). (u1∗, u2∗, u3∗) is the particular steady states of framework (19), where 
u1

∗ = −F0, u2
∗ = ū2(u1

∗, u3∗) and u3∗ is the distinctive root of the completely non-increasing mapping 
u3  → ℑ(u3)− ℑ̄(−F0, ū2(−F0, u3)).

At (u1∗, u2∗, u3∗), the Jacobian matrix for system (19) is defined as
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Figure 2.  Phase depictions (which incorporates nullclines) in the (u1, u2)-plane for the two-dimensional 
Morris–Lecar neural networks system having discrete fractional-order commensurate technique: (a) ϑ = 1

, (b) ϑ = 0.97, (c) ϑ = 0.92, (d) ϑ = 0.89, (e) ϑ = 0.85, (f) ϑ = 0.82, (g) ϑ = 0.79, (h) ϑ = 0.75, (i) ϑ = 0.72

, (j) ϑ = 0.70..
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and the characteristic polynomial of the aforesaid system (23) is:

(23)J =




−ℑ̄u1(u1
∗, u2∗)/C − ℑ̄u2(u1

∗, u2∗)/C ℑ′(u3∗/C
ϕℓ̄(u1

∗, u3∗)ū2u1(u1
∗, u3∗) − ϕℓ̄(u1

∗, u3∗) ϕℓ̄(u1
∗, u3∗)ū2u3(u1

∗, u3∗)
u1 0 0




(24)�
3 +̟1�

2 +̟2�+̟3 = 0,
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Figure 3.  Time analysis of group i and ii of discrete fractional-order Morris–Lecar neural networks (18) for 
various fractional-orders (a-d) ϑ = 1, 0.97, 0.95, 0.93, 0.90 having ℑ = 43; (e–h) ϑ = 1, 0.97, 0.95, 0.93, 0.90 
having ℑ = 50 including the specification of group i and ii; (i–l) ϑ = 1, 0.97, 0.95, 0.93, 0.90 having ℑ = 90 
including the specification of group iii.
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where

The non-negativity of the factor ̟ 3 as a result of

Because ̟ 3 > 0, the product of the aforesaid system’s eigenvalues is non-positive, the first of the eigenvalues 
is a non-positive actual quantity, while the remaining two can be intricate conjugate or actual and possess the 
same symbolically. We are additionally assuming that no fewer than a single of the factors ̟ 1 or ̟ 2 is non-positive 
(depending on the setting established according to supposition), indicating that the Routh–Hurwitz principle 
for the specific polynomial is not fulfilled. As a result, we differentiate two scenarios using the D discriminant 
property of the (24):

• When D > 0, the Jacobian matrix J has only a non-positive and two non-negative eigenvalues and the steady 
state (u1∗, u2∗, u3∗) is a saddle node of measure two regardless of fractional-order (for example, in the situ-
ation of group i and ii attributes).

• When D < 0 , the Jacobian matrix J possesses a single adverse eigenvalue and two multifaceted conjugate 
eigenvalues that have favourable actual elements (for example, in the instance of group iii attributes). As a 
result, there exists an essential fractional-order ϑ∗ appreciation, which means the steady state (u1∗, u2∗, u3∗) is 
asynchronously steady ϑ < ϑ∗ regardless of and unpredictable for ϑ∗ > ϑ . A Hopf-type bifurcation happens 
in the vicinity of the steady state at ϑ = ϑ∗, leading to the emergence of relentless fluctuations. The critical 
threshold ϑ∗ is determined employing the approach described in ( ϑ∗ = 0.7391 for group iii).

Dynamics of various oscillating reactions
We begin with fractional-order group i and ii single Morris–Lecar neural networks and subsequently proceed 
on to slow-quick behaviour. The sudden increases have been generated using an individual framework, and the 
cell membrane power interactions are dependent upon the power-controlled conductances. The feedback signal 
is referred to as i. To identify group i and ii capabilities, we adjusted the fractional-order value, utilizing various 
setting regimes: a stimulating spiked region and a rapid spiked region. We then demonstrate the variations of 
the power operations over an extensive magnitude as well as the sudden increase in regularity and responsive 
consequences. We investigated two distinct and appropriate energy stimuli: ℑ = 42 and ℑ = 50 for group i neu-
rons and ℑ = 90 for group ii neurons. We settled on these sorts of stimulus objects because they exhibit active 
spikes as well as quick increases for integer-order impacts; nevertheless, whenever we modify the situation in 
the fractional domain, the evolving system generates distinctions within the emitted capabilities that we have 
not previously examined. The bifurcating assessment is carried out, the computational outcomes are reinforced 
by the robustness research, and the thoughtful and computational outcomes are well acknowledged.

Low-frequency surges are unable to be produced by categorized ii-activated neural networks. The neurons 
are a combination of dormant or ablaze with a stream of surges along with a greater rate in response to resilient 
feedback electricity. Given ϑ = 1 for ℑ = 90, only one Morris–Lecar neural network via attribute category ii 
exhibits swift spikes (see Fig. 4a). It produces mutated monarch butterfly optimizations and mixed mode oscil-
lations when values of ϑ = 0.95 and 0.90 are decreased (see Fig. 4b and c, respectively. In addition to another 
reduction of ϑ = 0.85, the explosions turn to conventional mixed mode oscillations, but they depict mixed 
mode oscillations that have a reduced terminating speed, that is, the period between surge time frame boosts 
(see Fig. 4d). The framework subsequently enters an inactive state with a value of ϑ = 0.80 and merges to its 
determined location (see Fig. 4e).

Therefore, we examine the activated Morris–Lecar neural network cells of group i via variable groups i and ii. 
Whenever excited, the integer-order neuronal cells exhibits tonic spiking; while the supplied challenge energy is 
on ( ℑ = 42 ), the nerve cell persists, displaying a sequence of surges known as dominant spikes. Following this, as 
the fractional-order reduces to ϑ = 0.75 , it exhibits dominant spikes (see Fig. 4f), but the inter-spike time frame 
goes up for u1, u2 and u3 (see Fig. 4f), implying that the activation rate declines. Additionally, drops of ϑ = 0.75 
and 0.72 produce conventional overflowing (see Fig. 4g), followed by consistently overflowing that has a reduced 
terminating rate. After that, it enters a state of inertia alongside a lower fractional-order ϑ = 0.70 , which agrees 
well with the experimental findings (see Fig. 4h). The classical solitary neuronal cells then exhibit rapidly spikes 
via setting group ii whereas the supplied stimulation is on ℑ = 42. considering a reduction of ϑ = 0.78 , the 
explosions transform into conventional bursting; nevertheless, with ϑ = 0.80 and 0.76, the number of explosions 
declines while a greater surge is produced. Ultimately, at ϑ = 0.71 , it enters a dormant phase.

We presently expand our investigation via the activated slow-fast independent three-dimensional Mor-
ris–Lecar neural network cell simulation (19) in the fractional context to examine various setting structures 
that provide distinctive overflowing characteristics, that is, the quantity of surges throughout every explosion 
fluctuates via distinct-sized intensity levels. Given setting i, an individual Morris–Lecar simulation creates over-
flowing that has many surges for every explosion at ϑ = 1, but in diminishes of ϑ = 0.95 and 0.85, the explosion 
regularity declines in an extended time frame, i.e., the inter-spike time frame improves during each explosion and 

̟1 =
1

C
ℑ̄u1(u1

∗, u2
∗)+ ϕℓ̄(u1

∗, u3
∗),

̟2 =
ϕ

C
ℓ̄(u1

∗, u3
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[
ℑ̄u1(u1

∗, u2
∗)+ ℑ̄u2(u1
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∗)ū2u1(u1

∗, u3
∗)
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−
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C
,ℑ′(u3
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u1ϕ
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∗, u3
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intensity for every rise lowers in tandem bursts (see the bifurcation plots of Fig. 4a,b,d). The distinctive point of 
reference for the aforementioned parameter setting is a saddle corresponding to measure two. Spike’s condition 
rate modification has been noticed alongside decreasing fractional-order values. Subsequently, following a greater 
reduction of ϑ = 0.72 , it induces an additional surge in the rate of adjustment (see the bifurcation plots on the 
left single panel in Fig. 4g). Furthermore, the standard independent neuronal cell simulation exhibits overflow 
via setting ii. Through reducing ϑ = 0.90 and 0.80, it exhibits different periods of overflowing and spikes in 
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(g) ϑ = 0.72
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(h) ϑ = 0.70

Figure 4.  Bifurcation plot as a single panel and time dependent plots of slow-swift active three-dimensional 
discrete fractional-order Morris–Lecar neural network model (19) for various fractional-orders, 
ϑ = 1, 0.95, 0.90, 0.85, 0.80, 0.75, 0.72, 0.70 with model specifications group i, ii and iii.
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behaviour via rise regularity modification and initially surge delays at ϑ = 0.70 (see the bifurcation plots on the 
left single panel in Fig. 4c,e,h). Ultimately, within group iii, an individual neuronal cell switches from overflowing 
to swiftly spiked while changing via one to ϑ = 0.95 and 0.85. With ϑ = 0.72 , it enters an uninterrupted state of 
equilibrium, that is, it settles at the technique’s locally asynchronous centre of gravity (see Fig. 4g).

Incommensurate discrete fractional‑order two‑dimensional Morris–Lecar neural networks 
model
Here, we examine the evolution of a discrete fractional-order Morris–Lecar neural network simulation using 
an unpredictable network configuration, whereby every neural network communicates unintentionally and is 
assigned an interaction likelihood p̃ . To identify computational modelling, we build an Erdös-Rényi  network51 of 
N = 100 Morris–Lecar oscillating components with an average node-index of �η� ≈ 7 . A comprehensive review 
of the structure design will be provided in the sections that follow:

where We > 0 denotes the system’s electrically powered interaction. The system’s connection matrix is expressed 
by M = (c̃ι )N×N. Additionally, we separate a group of size N into two particular groups based on fractional-

order expressed as ϑι =


ϑ , . . . ,ϑ� �� �

r

,�, . . . ,�� �� �
s


, where r components possess similar fractional-order, indicating 

fluctuating behaviour, while the rest of the s points have fractional-order, indicating activated behaviour. Con-
sequently, the general population capacity N is given by N = r + s. We begin by investigating the behaviour of 
independently associated group i activated Morris–Lecar neural networks with two fractional-order factors, 
ϑ = 1 and � = 0.80 . The entire amount of components in the system is N = 100, using r = 65 and s = 35 indi-
cating that we are considering a system of neuronal populations with 65% oscillated neural networks and 35% 
activated nerve cells. In a condition without any association ( Wǫ = 0.001 ), every fluctuating nerve cell in the 
structure exhibits dominant exploding, while the additional nerve cells stay dormant. In addition to a negligible 
improvement in electrical power attachment Wǫ = 0.0005 , the fluctuating subgroup continues to have dominant 
spikes in setting, while an alternate subdivision goes into quiescence. Red and blue lines denote the cumulative 
information of two independently interconnected components representing two particular groups (see Fig. 5a 
and b). The red line connection is picked at random based on the inactive components, and the blue line con-
nection is compared to the increasing nodes in the network. The space-time plot shows that the spikes in com-
ponents (1–65) are asymptotic (see Fig. 5e,f). When the relationship is increased 100 times ( Wǫ = 0.05 ), the 
framework’s behaviour alters. The previously dormant subgroup is presently exhibiting overflowing behaviour. 
In particular, the time time-frame between each wave of activity is not constant. An additional subgroup exhibits 
asymptotic unsteady active spiked (see Fig. 5i,j). It is obvious that as the degree of association in the transformed 
group increases, the sporadic and additionally dormant structure of the structure disappears, and inconsistent 
overflowing or jumping comes up. The neural network as a whole exhibits overflowing interactions via a limited 
number of surges during every explosion and a modest rise of Wǫ = 0.007 (see Fig. 5g,h). Two layers possess 
distinct intensities; however, identical stages develop in this particular instance. Subsequently, at Wǫ = 1, the 
interconnected structure displays nearly synchronization practises by switching to active jumping (see Fig. 5k,l).

When we improve the momentary stimulation to ℑ = 45, the fluctuating subgroup exhibits swift spikes in 
while another subsection keeps quiescent. At minimal attachment ( Wǫ = 0.0005 ), neither subgroup’s behaviour 
changes. These include specific groups that begin terminating and exhibit overflowing interactions such that the 
dependence Wǫ = 0.005 and 0.06 increases. Ultimately, at Wǫ = 1, the sporadic network operation transforms 
into synchronized regular spikes (Fig. 5c,d). The group ii activated Morris–Lecar neural networks are then stud-
ied in an identical structure configuration, featuring a subgroup dormant ( � = 0.72 ) and an additional showing 
mixed mode oscillations ( ϑ = 0.84 ) in their dearth of interaction. Nerve cells are asynchronized when there 
is an inadequate connection ( Wǫ = 0.0005, 0.05 ). As integrating increases, every link in the structure exhibits 
surge regularity modification ( Wǫ = 0.05 and Wǫ = 1 ). It is obvious that every one of the two separate arrays of 
oscillating elements demonstrates nearly perfect synchronization, via analogous steps and intensities (see Fig. 5).

Incommensurate discrete fractional‑order three‑dimensional Morris–Lecar neural networks 
model
Here, a modified three-dimensional discrete fractional-order Morris–Lecar neural networks system is pre-
sented to demonstrate that the reduction in fractional-order analyses the identical characteristics exhibited 
by the executed arbitrary network techniques. We discovered an additional accumulation of synchronization 
status in the framework during the intermediary interaction. Inspired by this information, we are able to com-
pose u11 = u12 = u13 = . . . = u160 = u1ϑ and u161 = u162 = . . . = u1100 = u1�. Given our knowledge of the 
Erdös–Rényi plot, one can estimate the level of every component or neural network by the standard extent of 
the system under  consideration52. As a result, we are able to conclude that the pitch of the  cluster is η = �η�. 
The total quantity of spiked oscillating elements in the vicinity for every oscillating device is anticipated to be 
(1− ℘ǫ)η = ℘0η, while the result associated with inactive oscillating elements will be ℘ǫη . As a result, we can 
create a reduced-order simulation involving two oscillating elements, as shown below:

(26)





C c�ϑι
a u1(ξ) = −1/2WCa(u1ι − FCa)((1+ tanh(u1ι − F1))/F2)− u2ιWK(u1ι − FK)

−WL(u1ι − FL)+ ℑ+ Wǫ
N�

=1
c̃ι

N�
=1

c̃ι (u1 − u1ι),

c�ϑι
a u2(ξ) = ϕ cosh(u1ι − F3)/2F4(1/2(1+ tanh((u1ι − F3)/F4))− u2ι), ι = 1, 2, . . . ,N,
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where ℘ǫ = s
N , ℘0 = r

n and ℘1 = x
N are the likelihoods of activated and fluctuating neurons in general. For 

group i and group ii Morris–Lecar scenarios, we operated computational experiments utilizing lower-order two-
connected frameworks whereby every group is represented through an alike fractional-order exponent demon-
strating concurrent behaviour. The computational findings indicate that whenever the two specific populations 
adhere to collection synchronization, the fluctuations of the reduced-order simulation obey the same structure 
as the entirety chart (see Fig. 6a–d). For example, overflowing involving two surges might occur for temporary 
connections in a group i activated framework detached by two layers in the entire system (see Fig. 6e–h). The 
minimized control system has an analogous bursting structure (see Fig. 6i–l). In the field of neuroscience, Hopf 
bifurcation occurs when neuron behaviours fluctuate from halting to spiking (the stable, steady options match 
the state of rest, and the spiking state demonstrates the presence of oscillating solutions).

A further typical form of dynamic activity for a neuron cell happens when, as the controlling value is 
increased, a saddle point and a limit cycle come together, resulting in a saddle-homoclinic bifurcation. The 
period of the periodic orbit that seems to be at the point of bifurcation approaches infinity, and as the controlling 
value is increased more, the periodic orbit disintegrates. It is shown that the formation and demise of saddle-
homoclinic bifurcation in model (26) depend on implemented energy ℑ ∈ [23, 70] (see Fig. 6), similar to the 
original model (3), but for fractional-order models of orders ϑ = 1.0, 0.95 and 0.90,  the neuron requires greater 
applied current ℑ to bifurcate. When saddle homoclinic bifurcation occurs, neurological research predicts the 
occurrence or elimination of spiking practices (see Figs. 2 and 4).

Conclusion
We started with the behaviour of just one neuron, which can evolve its reactions to different feedback data 
analyses contingent on the discrete fractional-order commensurate and incommensurate cases. We addressed 
the activities of groups i and ii by electrically conducting two-dimensional Morris–Lecar in pragmatic neural 
networks of commensurate and incommensurate order and reduced orders that are capable of being captured by 
experimentation. We demonstrated that variations in the discrete fractional-order and system settings influence 
the stipulates of the suggested approach, and we acquired an assortment of interactions involving steady path-
ways, regular actions and chaotic behaviours. We investigated the classical-order model’s associated bifurcation 
assessment. The discrete fractional-order may generate dismissing distinctions that are not visible in integer-
order fluctuations. With the aid of a reduction in the discrete fractional-order scheme, the potential of the two-
dimensional Morris–Lecar simulation for varied surge reactions involving mixed mode oscillations and mutated 
monarch butterfly optimizations via fractional difference is investigated. The findings show that the slow-fast 
three-dimensional Morris–Lecar in the fractional context produces a variety of packed sequences. Furthermore, 
it transforms its behaviour from overflowing into a sequence of rises in addition to swift spikes into inconsistent 
abundance depending on an appropriate collection of factors, which the classical-order simulation is unable to 
measure for a specific set of factors. The discrete fractional-order commensurate depicts a new illustration of 
the spiking and exploding reactions with fractional exponent transforms in the unpredictable representations. 
The method summarized the numerous responses of an individual-activated simulation to an assigned trigger 
variability using memory-contingent procedures. We examined the significance of electromagnetic connec-
tions in an indeterminate system with a subset of nodes in a dormant condition. The whole population would 
demonstrate rising regularity in adjusting if the fluctuating components were in mutated monarch butterfly 
optimizations. When the disconnected oscillated components persist in the rapidly active jumping region, all of 
the population splits into a pair of layers, demonstrating continuous overflowing in temporary association and 
active shooting in more substantial interaction. We were additionally capable of simplifying the network’s com-
plexity into separate, complemented behaviours that effectively represented the changing patterns of the whole 
system throughout accumulation synchronization, thanks to the clustered synchronization phenomenon. Using 
the discrete fractional-order incommensurate, we discovered unique impacts on various membrane electrical 
attributes. Moreover, variations in neurological attributes depend on the memory consequences. The discrete 
fractional-order difference has potential interactions and can be used to investigate pragmatic occurrences. These 
findings show that the mathematical framework and networks present a comprehensible strategy for studying 
neurological behaviour.

(26)





C c�ϑu1(ξ) = −1/2WCa1
(u1ϑ − 1)((1+ tanh(u1ϑ − F1))/F2)− u2ϑWK(u1ϑ − FK)−WL(u1ϑ − FL)

+ℑ+Wǫ℘ǫ(u1� − u1ϑ )
c�ϑu2(ξ) = ϕ cosh ((u1ϑ − F2)/2F4)(1/2(1+ tanh (u1ϑ − F3)/F4)− u2ϑ ),
c�ϑu3(ξ) = θ(F0 + u1ϑ),
C c��u1(ξ) = −1/2WCa1

(u1� − 1)((1+ tanh(u1� − F1))/F2)− u2�WK(u1� − FK)−WL(u1� − FL)

+ℑ+Wǫ℘0(u1ϑ − u1�)
c��u2(ξ) = ϕ cosh ((u1� − F2)/2F4)(1/2(1+ tanh (u1� − F3)/F4)− u2�),
c��u3(ξ) = θ(F0 + u1�),
C c�γ u1(ξ) = −1/2WCa1

(u1γ − 1)
�
(1+ tanh(u1γ − F1))/F2

�
− u2γWK(u1γ − FK)−WL(u1γ − FL)

+ℑ+Wǫ℘1(u1γ − u1ϑ)
c�γ u2(ξ) = ϕ cosh

�
(u1γ − F2)/2F4

��
1/2(1+ tanh

�
u1γ − F3

�
/F4)− u2γ

�
,

c�γ u3(ξ) = θ(F0 + u1γ ),
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