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Examining indicators of complex 
network vulnerability 
across diverse attack scenarios
Ahmad F. Al Musawi 1,2*, Satyaki Roy 3 & Preetam Ghosh 2

Complex networks capture the structure, dynamics, and relationships among entities in real-world 
networked systems, encompassing domains like communications, society, chemistry, biology, 
ecology, politics, etc. Analysis of complex networks lends insight into the critical nodes, key 
pathways, and potential points of failure that may impact the connectivity and operational integrity 
of the underlying system. In this work, we investigate the topological properties or indicators, such 
as shortest path length, modularity, efficiency, graph density, diameter, assortativity, and clustering 
coefficient, that determine the vulnerability to (or robustness against) diverse attack scenarios. 
Specifically, we examine how node- and link-based network growth or depletion based on specific 
attack criteria affect their robustness gauged in terms of the largest connected component (LCC) 
size and diameter. We employ partial least squares discriminant analysis to quantify the individual 
contribution of the indicators on LCC preservation while accounting for the collinearity stemming from 
the possible correlation between indicators. Our analysis of 14 complex network datasets and 5 attack 
models invariably reveals high modularity and disassortativity to be prime indicators of vulnerability, 
corroborating prior works that report disassortative modular networks to be particularly susceptible 
to targeted attacks. We conclude with a discussion as well as an illustrative example of the application 
of this work in fending off strategic attacks on critical infrastructures through models that adaptively 
and distributively achieve network robustness.

Complex network theory is a field of study that investigates connectivity patterns in large networks and explores 
the interactions among  entities1. These networks, such as social networks, technological connections, and bio-
logical networks, offer valuable insights into the structure and dynamics of diverse systems. Understanding the 
structures of complex networks holds significance for multiple reasons. It enables researchers and scientists to 
analyze and model the behavior of real-world systems. By examining connectivity patterns and indicators, we 
can gain insights into the underlying mechanisms that govern these systems. Complex network analysis aids in 
the identification of pivotal nodes, termed hubs or influencers, that assume critical roles in network dynamics 
and information flow within the network. By understanding their importance, decision-makers can devise better 
strategies for optimizing connectivity, services, and  functionalities2.

Studying complex networks helps detect vulnerabilities and potential points of failure in diverse and large-
scale networked  systems3. It is essential to identify weak links or nodes that, if disrupted, can impair network 
functionality, enabling the design of robust systems. This knowledge finds application in domains like power 
grids, transportation systems, and communication networks. Complex network analysis also reveals insights 
into information dissemination, disease spread, and behavioral patterns within networks. Understanding how 
information or influences propagate aids in developing strategies to improve diffusion processes and control 
 epidemics4. Furthermore, complex network structures guide the design of efficient and scalable networks. By 
examining complex network connectivity and growth criteria, researchers can optimize performance, resource 
allocation, and routing strategies of large-scale networked systems through algorithm and protocol  development5.

There are innumerable examples of network vulnerability in the real world. These include the distribution of 
viruses in communication networks, the rapid spread of epidemics in societies, unexpected failures of servers 
or routers, disruptions in power links, road cuts in transportation networks, and disruptions in fuel distribution 
networks. The networking community has explored the design of robust networks that employ redundancy, fault 
tolerance, and adaptive mechanisms to overcome their vulnerability to different attack  scenarios6. For instance, 
the analysis of network performance after deactivating a set of nodes and/or edges falls under the regime of 
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percolation theory on networks. Several researchers studied network percolation in terms of fragility (vulner-
ability) and robustness of the network against random or predefined  attacks7–11. Salathe et al.12 analyzed the 
scale-free13 connectivity property of networks through a model that uses selective node removal based on the 
inverted sum of the first and second order of connectivity (i.e., number of neighbors of 1 and 2 hubs distances) 
followed by random addition of nodes to the network. Holme et al.14 has studied the performance of different 
networks under attack (in terms of the size of the largest connected subgraphs) using two node removal criteria: 
descending order of node’s degree and node’s betweenness. Their study showed that the attacks on the updated 
degree and betweenness centralities of nodes are more harmful than those of the initial networks.  Iyer15 extended 
targeted nodes to more non-local measures of importance such as degree distribution, clustering coefficient, and 
assortativity. Smith et al.16 address the problem of finding the optimal order of repairing elements in power grids 
and similar infrastructure after catastrophic events. The paper concludes that high structural redundancy and 
decentralized supply in infrastructure systems can lead to reduced total cost and faster recovery time.

Several generative models are proposed to mimic the structure of given real networks, such as Erdos-Renyi 
 model17, the small world  model18, preferential  attachment13, the Barabasi and Albert  model13 and so on. Safaei 
et al.19 proposed a rewiring mechanism based on the Shannon entropy concept to improve the resiliency of com-
plex networks. Network robustness was evaluated based on the spectrum of the degree distribution, heterogene-
ity, and the average size of the largest connected cluster during removing nodes with a sequence of systematic 
attacks based on the degree, betweenness, and Dangalchev’s closeness centralities. With approximately 30% of 
link rewiring, overall network robustness can be reached. Other works have mixed two or more mechanisms 
to depict real-world features, such as the mixing of clustering and preferential  attachment20, popularity and 
 randomness21, popularity and  similarity22 or topological and geographical  measures23 and so on. More research 
extended the study of network robustness to consider larger structures such as  motifs24 and  subgraphs25. For these 
studies to be effective, it is imperative to quantify the contribution of network properties to the overall robustness.

In this paper, we study the topological properties or indicators of complex networks that determine their 
vulnerability to (or robustness against) different attack scenarios. We borrow the concept of robustness from 
literature as the ability of a network to preserve connectivity despite the removal of components, i.e., nodes and 
links; and the absence of this ability as vulnerability26. We first study how the robustness of complex networks 
is affected by the choice of attack strategy such as connectivity, betweenness, closeness, clustering, etc., of the 
attacked components. We then study whether the presence or absence of some topological indicators (namely, 
shortest path length, modularity, efficiency, graph density, diameter, assortativity, and clustering coefficient) may 
explain why networks exhibit resilience against the chosen attack strategy. Fig. 1 depicts a schematic of the above 
approach, where we analyze the indicators rendering networks robust or vulnerable to attacks.

We examine network vulnerability in three ways. First, we consider a depletion model, where the links in 
each network are sequentially depleted based on attack strategies of interest while recording the change in the 
largest connected component (LCC) size with respect to the original networks. We deem a network vulnerable 
to a specific attack scenario if it fragments quickly into smaller components. Similarly, we also carry out the 
reverse experiment of recording how quickly a network attains its maximum size of LCC when it is grown from 
an empty graph by sequentially restoring all links based on their scores for a given attack criteria. For the growth 
model experiments, a robust growing network is likely to attain its maximum LCC size faster than a vulnerable 
one. Second, we employ the vulnerability of a network from a node-removal standpoint in terms of the change in 
network diameter as well as node- and link-based robustness when nodes are knocked off the network. Third, we 
employ partial least squares discriminant analysis (PLS-DA) to quantify the contribution of topological indicators 
as exogenous variables on the preservation of LCC during link depletion attacks on networks. Since PLS-DA 
combines discriminant analysis with principal component analysis, it accounts for the collinearity problem caused 
by the possible correlation between independent variables and helps pinpoint the individual role of an indicator 
on overall network robustness (gauged through LCC).

We apply 7 topological indicators, namely, average shortest path, assortativity, density, diameter, clustering 
coefficient, efficiency, and modularity (refer to section Topological indicators in complex networks) and 5 attack 
models, which are random, degree, betweenness, closeness, and clustering (refer to section Network attack 
models) on 14 complex network datasets (see section Results). Network modularity and assortativity emerge 
as key indicators in all three vulnerability analyses, followed by clustering and density. Note that PLS-DA has 
been conducted on quantile-transformed values of each topological indicator, making the contributions of the 
indicators on network robustness relative. In other words, a high coefficient of assortativity for a given attack 
scenario does not necessarily indicate that assortative networks are more robust for that attack. Instead, it can 

Figure 1.  A schematic representation of the approach adopted in this study, where the goal is to pinpoint the 
topological properties or indicators that explain the robustness or vulnerability of complex networks to diverse 
network attack models.
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mean that the lack of disassortativity is a useful indicator of robustness, i.e., a network that is neither assortative 
nor disassortative exhibits greater robustness than a disassortative network. Lastly, we discuss how this line of 
study motivates the design of approaches to preserve robustness under specific attack scenarios. We focus on its 
application towards guarding against attacks on critical infrastructures, such as smart grids, telecommunication 
networks, etc., and PLS-DA as a viable tool to pinpoint threats to network integrity (see sections Application of 
the study and Discussion).

Methods
Topological indicators in complex networks
The assessment of a network’s ability to withstand various types of attacks can differ depending on its topological 
characteristics. Specifically, a network is deemed robust if it retains a strong level of connectivity, despite failures. 
Numerous network features are available to characterize the type of network under consideration. The following 
set of features are well-known topological-based network features/properties that are used to distinguish the 
differences among  networks27: 

1. Averaged shortest path (ASP) is the average number of hops along the shortest paths for all possible pairs of 
network nodes. It is calculated as: 

 Here V is the set of nodes, d(s, t) is the shortest path from s to t and n is the number of nodes.
2. Assortativity28,29 measures the tendency of nodes to have a connection with other nodes that are similar in 

degree (among many other features). In other words, assortativity ranges between 0 ≤ r ≤ 1 when high-
degree nodes are most likely to connect to high-degree nodes while it is the same for low-degree nodes. Also, 
we get ( −1 ≤ r ≤ 0 ), if high-degree nodes make connections to low-degree nodes. It is calculated as: 

 Here, A is the adjacency matrix of the network, ki is the degree of node i, and δij is the Kronecker delta.
3. Density measures the number of edges in comparison to network size. A network has a zero density if it has 

no edge, and it has a density of 1 if there is an edge between all pairs of nodes, forming a complete graph. It 
is calculated as: 

 where, m, n is the number of edges and nodes, respectively.
4. Diameter represents the maximum shortest path distance among all pairs of nodes. Since the diameter of a 

graph with many components is not defined, in this study we measure the diameter of the largest connected 
component.

5. Transitivity also known as the global clustering coefficient or transitive closure, is a measure that quantifies 
the tendency of nodes in a network to form triangles or closed loops. It provides an indication of how likely 
it is for two neighbors of a node to be connected to each other, given that the node itself is already connected 
to them. 

 Here, the triad represents two edges with a shared node.
6. Efficiency30: The efficiency of a pair of nodes in a graph refers to the reciprocal of the shortest path distance 

between those nodes. It quantifies how easily information can flow between the nodes. The average global 
efficiency of a graph is determined by calculating the average efficiency across all possible pairs of nodes in 
the graph. It measures the overall effectiveness of information transfer in the graph, taking into account the 
efficiency of all connections between nodes, as: 

 where, n is the number of nodes, d(i, j) denotes the shortest path distance between node i and node j, ∑
i,j∈V

1
d(i,j) signifies the summation of the reciprocal of the shortest path distances for all pairs of nodes i 

and j in the graph.
7. Modularity31: It is a measure that quantifies the degree of community structure or clustering in a graph. It 

assesses the extent to which nodes in a network are more connected to nodes within their own community 
compared to nodes in other communities. Higher modularity values indicate a stronger community struc-
ture, with nodes being tightly connected within their communities and sparsely connected across different 
communities. It is calculated as follows: 

(1)ASP =
∑

s,t∈V

d(s, t)

n(n− 1)

(2)r =

∑
ij(Aij − kikj/2m)kikj∑
ij(kiδij − kikj/2m)kikj

(3)d =
2m

n(n− 1)

(4)T = 3×
#triangles

#triads

(5)e =
1

n(n− 1)
×

∑

i,j∈V

1

d(i, j)
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 where, Aij denotes the adjacency matrix element, representing the connection between nodes i and j. ki and 
kj represent the degrees of nodes i and j, respectively. m represents the total number of edges in the network. 
δ(ci , cj) is the Kronecker delta function, equal to 1 if nodes i and j belong to the same community ( ci = cj ), 
and 0 otherwise.

8. Node robustness ( Rn ) and edge robustness ( Re ) measure the connectivity of the network when subjected to 
the removal of nodes and links,  respectively32,33. 

 Here, |V| is the number of nodes, S(q) is the fraction of nodes in the largest connected subgraph after the 
removal of q|V| nodes (or p|E| edges), and q is the fraction of nodes to be targeted from the remaining nodes 
in |V| (or edges |E|).

Network attack models
Networks can be vulnerable to different types of attacks where network components like nodes or edges are 
removed based on predefined schemes. These attacks can happen randomly or deliberately, like virus attacks, 
and may depend on specific factors. To model network attacks, various scenarios are proposed, falling into three 
basic categories: deleting nodes, deleting edges, and deleting groups of nodes and edges known as motifs. In the 
following explanation, we focus on node deletion attacks, but the same principles apply to edge removals as well. 

1. Random attack (RND): removes a specific percentage of nodes randomly.
2. Degree-based node attack (DNA) creates a list of nodes for removal based on the descending order of the 

nodes’ degree.
3. Betweenness-based node attack (BNA): creates a list of target nodes for removal based on the descending 

order of the nodes’ betweenness  centrality34. The betweenness of node (v) is given by Eq. (9). 

 Here, (s, t) are pair of nodes, σst is the shortest path between s, t and σst(v) is the fraction of shortest paths 
that pass through node v.

4. Closeness-based node attack (CNA) creates a list of targets based on the descending order of the nodes’ 
closeness centrality. (Closeness  Centrality35, as shown in Eq. (10), measures the average proximity of a node 
with respect to all other nodes. High closeness centrality-scored nodes have the shortest distance to all other 
nodes.) 

 Here, dvi represents the distance from node v to node i.
5. Clustering-based node attack (CcNA) creates a list of node targets based on the descending order of the 

nodes’ clustering coefficient values. The clustering  coefficient36 measures the local clustering of nodes, i.e., 
the connection tendency between two unconnected nodes sharing a connection to a common node. The 
clustering coefficient of node (v) is: 

 Here, Cv is the ratio between the number of triplets connected to node v and the number of triplets centered 
on v.

These methods of attack have varying impacts on network connectivity. Degree-based node attack (DNA) works 
on removing the most influential nodes that have the highest connections within the network. DNA attack 
reduces the number of edges very fast. Betweenness-based node attack (BNA) affects the communication or 
connectivity of the networks. It works on dividing the network into unconnected subgraphs as its target nodes 
exist on the shortest paths between all pairs of nodes. Closeness-based node attack (CNA) works on removing 
nodes that have the highest access to most nodes of the network.

(6)M =
1

2m
×

∑
(Aij −

ki × kj

2m
) ∗ δ(ci , cj)

(7)Rn =
1

|V |

1∑

q= 1
|V |

S(q)

(8)Re =
1

|E|

1∑

p= 1
|E|

S(p)

(9)Betweenness(v) =
∑

s �=v �=t∈V

σst(v)

σst

(10)Closeness(v) =
1∑

i �=v dvi
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1
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∑
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Network growth and depletion models
Growth and depletion models are used to analyze network vulnerability. In a growth model, we begin with a 
disconnected set of nodes and restore links based on prespecified criteria, while observing the improvement in 
overall connectivity, measured by the size of the largest connected component. Conversely, for network depletion, 
we follow the reverse process of starting with the network itself and dropping links till all nodes are isolated. The 
criteria for growth or depletion are as follows:

Centrality-based ranking of edges
An edge ex, y is considered for addition to the network based on its high specific-degree weight. A degree weight 
of an edge is equal to the product of the specific degree of its two nodes, (x, y). We used four centralities to grow 
the network: degree centrality, closeness, betweenness, and clustering coefficient centrality of nodes. For each, 
the edge weights are calculated as:

Here, x, y are nodes and m refers to one of the centralities in use (degree, betweenness, closeness, and clustering 
coefficient). All resulting edges are sorted in descending order. The network grows by adding the highest weighted 
edges (of associated nodes) to the network.

Centrality-based preferential attachment model
We extend the three variations to the well-known model of preferential  attachment13, considering betweenness, 
closeness, and clustering coefficient centralities. In the preferential attachment model, a node is most likely to 
form a connection (link) based on the proportional value of its degree to the total degrees of the network:

Here, ki represents the degree of node i, resulting in the “rich become richer” phenomenon where highly con-
nected nodes received more connection than other nodes. As before, we use closeness, betweenness, and cluster-
ing coefficient values as a method of linking instead of using the node’s degree. For example, two (unconnected) 
nodes of high betweenness centrality would have a higher probability to link/connect than nodes with lower 
betweenness values, �(Bi) =

Bi∑
j Bj

 where Bi represents the betweenness of node i. The new centrality-based 
preferential attachment models will be the betweenness-based preferential attachment (BPA) model, closeness-
based preferential attachment (CPA) model, and clustering-based preferential attachment (CcPA) model. We 
also performed another criterion to grow the network given the degree of the nodes. However, we used an 
inverted version of the PA model, i.e., low-weighted edges are added first to the network based on the following 
equation:

The growth (and depletion) models are employed to test how the robustness of the network evolves as links are 
restored (and eliminated). There are two key points in the growth strategy followed in this study. (Note that the 
same steps are emulated during the link removal phase in the depletion model.) 

1. Estimating the changing centrality attributes after the addition of every link is computationally expensive. To 
address this, we split the edges into 100 groups. Instead of recalculating centrality for every added link, we 
use a pre-sorted list of edges, ranked by centrality, and add a batch of edges based on the original network’s 
centrality values.

2. The addition of edges in this study is not influenced by the previous state of the network (i.e. centralities). 
Instead, we solely focus on the weighted edges of the original network to expand the network in a similar 
manner. This approach allows us to examine the network’s robustness as it progressively restores its initial 
structure by prioritizing the addition of influential edges. It is worth noting that there are alternative meth-
ods for network growth that take into account the current centrality of the network during the process of 
redistributing edges. However, we chose not to incorporate these growing methods as they would result in 
the creation of different network versions.

Partial least squares discriminant analysis
The partial least squares (PLS) regression technique employs dimensionality reduction that works by projecting 
the independent variables onto a latent space. PLS regression is particularly useful for finding the effect of inde-
pendent variables on a dependent variable in scenarios where the independent variables are mutually correlated 
(also called multicollinear predictors). PLS discriminant analysis is a special case of PLS regression, where the 
dependent variable is categorical.

We analyze the effect of the topological indicators of a network on its vulnerability to different failure sce-
narios. To this end, we start with each network and remove edges in batches in sequences given by prede-
fined preferential attachment (PA) criteria (refer to section Network growth and depletion models), namely, 
degree (DPA), betweenness (BPA), closeness (CPA), clustering coefficient (CcPA), random (RND) and inverted 

(12)wm
x,y = Centralitym(x)× Centralitym(y)

(13)�(ki) =
ki∑
j kj

(14)iPAi,j =
1

kikj
, i, j ∈ V , i �= j.
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preferential attachment (iPA). The network growth stops when all links are eliminated from the network. For 
every PA criterion, we carry a standalone discriminant analysis with the following features and labels.

Features
The features comprise the topological indicators: transitivity, modularity, density, assortativity, average shortest 
path, and diameter. A column in the feature vector X is dedicated to one of the topological indicators across 
n networks. We discretize each feature value to a quartile, by assigning 1.0, 0.75, 0.5, and 0.25 contingent on 
whether its value is more than the third quartile, median, first quartile, or none of the three, respectively, for that 
given property. Overall, X has dimension n× 6.

Labels
To determine labels for the PA criteria, we find the median of the number of link removals necessary for the 
size of the largest connected component to become half its original value. Since a vulnerable network is likely to 
fragment easily, a network with a lower than the median number of links removed gets a label 0, and 1 otherwise, 
in the ( n× 1 ) vector, y.

Finally, for each PA criterion, we calculate the coefficients from the discriminant analysis (see Fig. 2). The coef-
ficients reflect the role of each topological property on network vulnerability for PA-based link removal criteria.

Results
We discuss the network datasets used in the study, followed by the experimental findings from their vulnerability 
analysis. Table. 1 summarizes the topological indicators of the networks; Table 2 provides a ranked list of the 
indicators either in an increasing or decreasing order to aid the explanation of their roles on overall network 
vulnerability to attack models.

Complex network datasets. Several different types of complex networks have been used for this study. The 
network types used herein are social networks, biological networks (such as genetic regulatory networks, eco-
logical networks, and brain networks), synthetic networks (e.g., Barabasi-Albert networks), and collaboration 
networks (such as co-authorship networks). The differences between the different network types reflect variant 
connectivity patterns exhibited within each network. 

 1. Dolphins37: This is a network that shows the frequent interaction among 62 bottlenose dolphins.
 2. Escherichia coli GRN38: This is a biological network that represents the interactions among genes and tran-

scription factors of E. coli to regulate the organism’s functionality. Nodes represent genes and transcription 
factors, while edges represent their interactions.

 3. bn-macaque-rhesus_brain_239,40: This network depicts the neural connections, or connectome, present in 
the brain of rhesus macaque monkeys.

 4. bn-cat-mixed-species_brain_139–41: represents the connectome (neural connection network) of cortical 
areas from the brain of cats.

 5. Circuits (s208_st, s420_st, and s838_st)42: This represents electrical circuits networks, obtained from (http:// 
www. weizm ann. ac. il/ mcb/ UriAl on/ downl oad/ colle ction- compl ex- netwo rks).

 6. Arenas email: The network represents the email communication system of the University Rovira i Virgili, 
located in Tarragona, southern Catalonia, Spain. In this network, each user is represented as a node, and 
an edge between two nodes indicates that at least one email was sent between them; data can be obtained 
from (http:// deim. urv. cat/ ~aaren as/ data/ welco me. htm).

Figure 2.  Partial least squares discriminant analysis (DA) coefficients calculated from the features consisting of 
all network indicators and labels gauging the number of link removals to make the largest connected component 
half its original size.

http://www.weizmann.ac.il/mcb/UriAlon/download/collection-complex-networks
http://www.weizmann.ac.il/mcb/UriAlon/download/collection-complex-networks
http://deim.urv.cat/%7eaarenas/data/welcome.htm
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Table 1.  Properties of the networks. N: number of nodes, E: number of edges, T: transitivity, r: assortativity 
coefficient, M: modularity, D: density, ASP: average shortest path, d: diameter. B.N: Biological Network, Br.N: 
Brain Network, G.N: Grid Network, S.N: Social Networks, Sy.N: Synthetic Network, L.N: Linguistic Network, 
T.N: Trade Network.

Network Type |N| |E| ASP r D d M T

Dolphins37 B.N. 62 159 3.357 -0.044 0.084 8 0.495 0.309

E. coli38 B.N. 1477 3658 3.579 -0.351 0.003 9 0.584 0

bn-macaque-rhesus_brain_239,40 Br.N. 91 582 1.868 -0.77 0.142 3 0.079 0

bn-cat-mixed-species_brain_139–41 Br.N. 65 730 1.7 -0.025 0.351 3 0.295 0

Circuits  s838_st42 G.N. 512 1324 1.994 -0.24 0.01 3 0.802 0.573

Circuits  s420_st42 G.N. 252 644 1.987 -0.243 0.02 3 0.746 0.565

Circuits  s208_st42 G.N. 122 189 4.928 -0.002 0.026 11 0.679 0.058

Arenas email S.N. 1133 5451 3.606 0.078 0.009 8 0.582 0

fb-pages-food39 S.N. 620 2102 5.089 -0.028 0.011 17 0 0

Facebook043 S.N. 324 2514 3.753 0.233 0.048 11 0.445 0.426

Facebook10743 S.N. 1034 26749 2.952 0.431 0.05 9 0.458 0.504

Facebook34843 S.N. 224 3192 2.523 0.223 0.128 9 0.248 0.49

Facebook68643 S.N. 168 1656 2.425 0.084 0.118 6 0.29 0.454

Facebook41443 S.N. 148 1692 2.692 0.304 0.156 7 0.544 0.646

Facebook168443 S.N. 786 14024 3.042 0.33 0.045 10 0.521 0.746

Soc-firm-hi-tech39 S.N. 33 123 1.769 -0.256 0.233 2 0.313 0.372

Karate44 S.N. 34 78 2.408 -0.476 0.139 5 0.381 0.256

Soc-tribes39 S.N. 17 76 1.449 -0.079 0.559 2 0.169 0.527

Barabasi_albert_graph2 Sy.N. 500 1491 3.267 -0.096 0.012 5 0.39 0.028

Word  adjacencies45 L.N. 112 425 2.536 -0.129 0.068 5 0.293 0.157

Polbooks T.N. 105 441 3.079 -0.128 0.081 7 0.569 0

Table 2.  Ranking the most influential topological indicators of the networks: assortativity coefficient r (in 
decreasing order); and modularity M and transitivity T (in increasing order).

Network r (High to low) M (Low to high) T (Low to high)

Facebook107 1 12 16

Facebook1684 2 14 21

Facebook414 3 15 20

Facebook0 4 11 13

Facebook348 5 4 15

Facebook686 6 5 14

Arenas email 7 17 5

Circuits s208_st 8 19 8

bn-cat-mixed-species_brain_1 9 7 3

fb-pages-food 10 1 1

Dolphins 11 13 11

Soc-tribes 12 3 17

Barabasi_albert_graph 13 10 7

Polbooks 14 16 4

Word adjacencies 15 6 9

Circuits s838_st 16 21 19

Circuits s420_st 17 20 18

Soc-firm-hi-tech 18 8 12

E. coli 19 18 6

Karate 20 9 10

bn-macaque-rhesus_brain_2 21 2 2
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 7. fb-pages-food39: This network represents the interactions among Facebook pages of multiple food compa-
nies that were collected in the year 2017.

 8. Facebook (0,107, 348, 414, 686, and 1684)43: These networks are extracted from Facebook and represent 
the social interactions among its users, where nodes represent friends and edges represent various forms 
of social interactions such as liking, sharing, or messaging.

 9. Soc-firm-hi-tech39: This network depicts the relationships of friendship among the employees of a small 
high-tech computer firm.

 10. Karate44: This is a network of 34 members belonging to a Karate club, with each member being classified 
into a group based on their affiliation status. The grouping emerged from a dispute between the club’s 
instructors and administrators. Wayne W. Zachary collected and analyzed this dataset during the period 
from 1970 to 1972.

 11. Soc-tribes39: This network illustrates the cultural and linguistic groups present in the central Highlands of 
New Guinea, showcasing their varying degrees of similarity and difference.

 12. Barabasi-Albert2: The preferential attachment algorithm is utilized to generate random scale-free networks. 
The algorithm is based on the concept that the likelihood of a new node establishing a connection with an 
existing node is proportional to the number of connections that the existing node has.

 13. Word Adjacency45: This network depicts the adjacency of noun-noun, adjective-noun, or adjective-adjective 
words in the novel “David Copperfield”. The nodes in the network correspond to nouns and adjectives, 
while the edges represent their adjacency.

 14. Polbook: This network (obtained from the website http:// www. orgnet. com/) comprises US politics books, 
where nodes indicate the books, and edges indicate the frequent co-purchasing of books on amazon.com 
by the same buyer.

Performance of the networks on edge additions
We examine how the choice of topological indicators affects their network robustness. For a network, the links are 
ranked by their degree (DNA), betweenness (BNA), closeness (CNA), clustering coefficient (CcNA), and inverse 
preferential attachment (iPA) scores (refer to section Network growth and depletion models on attack models). 
Starting with an empty network, we add links in batches in decreasing order of scores for that attack model till 
all the links are restored. The robustness of a network is measured by how quickly it reaches the highest size of 
its largest connected component, i.e., a vulnerable network is likely to remain fragmented for the longest batches 
of link restoration. We delve into the topological indicators of networks with the highest and least robustness.

For random link restoration (RND), DNA, and BNA, we find Soc-tribe, followed by bn-cat-mixed-species_
brain_1, bn-macaque-rhesus_brain2 and Facebook686, is the most robust. We report in Table 2 that these net-
works are characterized by low modularity (M) rank ( ≤ 7 ). On the other hand, Circuits s838_st and Circuits 
s420_st, both characterized by a combination of high M and low assortativity r rank, are the most vulnerable 
(see Figs. 3a,b,c).

Coming to the other attack models, namely, CNA, CcNA, and iPA, low M is associated with high robustness: 
Soc-tribe with modularity rank 3 again is the most robust; Facebook348, bn-macaque-rhesus_brain2, and Karate 
club are the next best (modularity ≤ 9 ). Conversely, E. coli, Circuits s420_st, Circuits s208_st, Facebook107, Arenas-
email, and Poolbook, which have high M as a common network property, are the most vulnerable (Fig. 3d,e,f). 
Overall, this suggests that network modularity is a key indicator of robustness during network growth. This is 
because modular networks are intrinsically clustered and specific links need to be added to restore connectivity. 
To strengthen this observation, we report low relative modularity and clustering to be negatively correlated with 
node and edge robustness metrics (refer to Eqs. (7, 8) of main text) in Supplementary 1. We extend this experi-
ment, by considering the effect of the same indicators during the inverse process where links are removed from 
networks. Figure 1 in Supplementary 2 illustrates that the results are similar yet not identical: assortativity plays 
an even more pivotal role than modularity in the robustness during depletion.

Choice of attack model
We study the effect of centrality-based attack models on the robustness of the networks, each network was 
attacked using each one of the given attack models (DNA, BNA, CNA, and CcNA). In each attack model (m), 
we removed five different percentages (10%, 20%, 30%, 40%, and 50%) of the nodes that resulted in an attacked 
network of ( Gm ) and measured the performance of the node and edge robustness metrics of the attacked networks 
(refer to Eqs. (7 and 8)). Figure 4. depicts node and edge robustness of the different attack models on two selected 
networks (Facebook 0 and arenas-email networks), where betweenness- and degree-based attacks impact network 
robustness the most, while clustering-based node attacks have the most negligible effect.

Quantifying the effect of indicators on network vulnerability
We employ partial least squares discriminant analysis (PLS-DA) to measure the effect of the network indicator 
features, namely, clustering coefficient (or transitivity), modularity, density, assortativity, efficiency, diameter, 
and average shortest path (ASP) on its vulnerability to myriad preferential attachment (PA)-based link failure 
models. Recall from our discussion in section Partial least squares discriminant analysis, the labels used in the 
PLS-DA analysis are the minimum number of links that need to be removed for the size of the largest connected 
component of a network to become half its original value. Since a robust network will need commensurately 
more removals to disintegrate, the PLS-DA coefficients ultimately measure the contribution of the topological 
indicators on robustness. Specifically, a high (positive) coefficient alludes to a higher contribution of an indicator 
toward robustness. Our analysis shows that low relative assortativity and high relative modularity are hallmarks 
of vulnerable networks, across all failure models. This is because, highly modular, disassortative networks form 

http://www.orgnet.com/
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dense clusters, each containing local hub nodes connected to low-degree nodes. The removal of links connecting 
such clusters creates fragments of disconnected  clusters46.

As pointed out in section Introduction, the contributions of the indicators toward network robustness are 
relative. For example, a high coefficient of assortativity suggests that a network that is neither assortative nor 
disassortative (i.e., r ≈ 0 ) is more robust than a disassortative network ( r ≈ −1 ) for that given attack scenario. 
Table 3 shows that for both degree and betweenness PA-based link removals, relatively low modularity, high 
assortativity, low-density, and low transitive networks exhibit the least vulnerability. For closeness PA-based 
link removal, low modularity, coupled with low modularity and efficiency, lends the highest robustness. On the 
other hand, the removal of links with a high clustering coefficient can be guarded against by the presence of 
high density and assortativity with low modularity. Finally, for random and inverse PA-based link removal, less 
modular and relatively assortative networks exhibit the least vulnerability. Analysis in Supplementary 4 shows 
networks with the least modularity retain the low diameter and remain unfragmented for the highest proportion 
of random node removals.

Figure 3.  Measuring the percolation of the network using different growing models. Edges are weighted and 
added based on RND, PA, BPA, CPA, CcPA, and iPA models.
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Application of the study
We discuss the following three key takeaways from this vulnerability analysis, before presenting an illustrative 
example of how the results from the proposed study can be harnessed to achieve robust networking solutions. 

1. Analysis of network vulnerability and attack models. Our research has highlighted that network vulnerability 
is related to the nature of the attack model. This insight underscores the importance of tailoring network 

Figure 4.  Node and edge robustness ( Rn,Re ) of two sample networks (facebook 0 and arenas-email). Each 
network is attacked by removing (10%, 20%, 30%, 40%, and 50%) of the nodes, using high (1- degree, 2- 
betweenness, 3- closeness, and 4- clustering coefficient) values.

Table 3.  Partial least squares discriminant analysis for the effect of the topological indicators of a network 
on its vulnerability to the following attack or failure scenarios: degree (DPA), betweenness (BPA), closeness 
(CPA), clustering coefficient (CcPA), random (RND) and inverted preferential attachment (iPA).

Topological indicators Failure models

DPA BPA CPA CcPA RND iPA

Transitivity −0.231 −0.014 −0.176 −0.025 0.041 −0.014

Modularity −0.172 −0.201 −0.222 −0.095 −0.105 −0.201

Density −0.121 −0.070 −0.071 0.118 0.030 −0.070

Assortativity 0.100 0.315 0.059 0.254 0.182 0.315

Efficiency −0.093 −0.070 −0.163 −0.144 −0.013 −0.070

Diameter −0.088 −0.049 −0.038 −0.020 −0.018 −0.049

ASP 0.031 −0.006 −0.007 −0.034 −0.024 −0.006
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defense strategies to specific threats. While high assortativity and low modularity have shown effectiveness 
in enhancing robustness, the size of the largest connected component can also be influenced by topologi-
cal factors, including degree, betweenness, closeness, and cluster-based link removals, acknowledging that 
attackers possess a range of strategies to disrupt network functionality.

2. Applications in critical infrastructure and beyond. The multifaceted perspective on attack strategies highlights 
the need for network defenders to anticipate and prepare for a wide array of potential threats. Specifically, 
the implications of our findings extend to a variety of critical domains, where network connectivity is para-
mount and any disruption can have severe consequences. For example, (a) in the context of a power grid, 
this could involve rapid repairs or rerouting of electricity flows to minimize downtime during an attack; (b) 
in telecommunication networks, it may entail redundant communication channels or protocols to ensure 
uninterrupted service. In disaster response and environmental monitoring, maintaining network connectivity 
is vital for timely data collection and emergency coordination; and (c) for military and defense networks, 
ensuring connectivity is crucial for effective communication, surveillance, and command and control.

3. Partial least squares discriminant analysis (PLS-DA) as an effective tool to build network resilience strategies. 
This work introduces the application of Partial Least Squares Discriminant Analysis (PLS-DA) as a tool for 
identifying links that need to be restored to preserve connectivity. This analytical approach can be invaluable 
for network operators and security experts in critical sectors. By using PLS-DA, they can pinpoint potential 
links that are critical to network integrity.

In light of the aforementioned applications, let us discuss an illustrative example of how the topological 
indicators can be leveraged in network reconstruction. We take a complete toy network of 30 nodes and apply 
closeness, betweenness-, degree- and clustering-based attacks, i.e., CPA, BPA, DPA, and CcPA, respectively, to 
remove 10 links and restore 5 links based on two scenarios: assortativity and combination of assortativity and 
modularity, as follows. 

1. Assortativity. Recall that the assortativity of most networks studied in this work ranges from low assortativ-
ity r ≈ 0 to disassortative r < 0 (refer to Table 1 for details). Given a depleted network G(V, E), we separately 
add the link e that (a) maximizes the score 1

|rG(V ,E∪e)|
 to encourage the resultant network to have r ≈ 0 and (b) 

minimizes rG(V ,E∪e) to cause the resultant network to be disassortative.
2. Combination of assortativity and modularity. Again, as per Table 1, the modularity M ranges between ≈ 0 to 

positive. As a preprocessing step, all unconnected node pairs (i.e., potential links) are scored by the assorta-
tivity and modularity upon their addition to their depleted networks. Both of these scores are scaled using 
min-max normalization before separately adding the link e that maximizes (a) rG(V ,E∪e)

MG(V ,E∪e)
 to encourage the 

resultant network to have high assortativity and low modularity and (b) MG(V ,E∪e)

rG(V ,E∪e)
 to make the network low 

in assortativity yet high in modularity.

For both networks in scenarios 1 and 2, we record the number of links remaining when (a) the network begins 
to fragment, i.e., the number of the largest connected component (LCC) becomes greater than 1 and (b) the size 
of LCC becomes half of that of the original complete network. Notably, a robust network should take more link 
removals to disintegrate, suggesting that fewer links should remain in the depleted networks. Figure 5a,b show 
that the networks regenerated based on high assortativity rank criteria have fewer remaining links under most 
attacks, corroborating the PLS-DA findings that low assortativity rank is related to network vulnerability. For 
the same reason, the networks regenerated based on combined high assortativity and modularity criteria have 
fewer remaining links (both when LCC exceeds 1 and LCC becomes half the original size) under most attacks 
(Fig. 5c,d). Thus, the network operator can use high assortativity ranks or combine high assortativity and low 
modularity ranks to determine the links to be restored in order to enhance network connectivity in the face of 
specific attacks.

Discussion
We explored the effect of topological indicators on the vulnerability of complex networks to diverse node and link 
attack models, such as degree-based attack (DNA), betweenness-based node attack (BNA), closeness-based node 
attack (CNA), clustering coefficient-based node attack (CcNA), and random node attack (RNA). We carried out 
extensive experiments with growth- and depletion-based attack models and partial least squares-discriminant 
analysis (PLS-DA) to pinpoint indicators that influence network vulnerability more than others. Almost all the 
analyses reveal high network modularity and low assortativity as indicators of network vulnerability (or low 
robustness). These observations are consistent with existing literature, where assortative networks have been 
shown to exhibit greater robustness against targeted  attacks46,47. The vulnerability analysis, in conjunction with 
node and link robustness metrics, suggests that networks with high assortativity rank or low network modularity 
(see Table. 2), or both, such as bn-cat-mixed-species_brain_1 or Facebook (107, 686) are less likely to be frag-
mented than those with low assortativity and/or high modularity, like Escherichia coli GRN and Circuits s838_st.

These findings open up new directions to achieve network robustness based on the nature of the attack models 
being applied. Through the use of regression and discriminant analysis methods (PLS-DA), we elucidate that it 
is possible to quantify the individual effect of topological indicators on robustness in an attack-specific fashion. 
This facilitates the design of adaptive optimization and machine learning (ML) models to grow networks that 
are robust or avoid network fragmentation in the face of targeted attacks. The growth- and depletion-based 
analysis discussed in section Performance of the networks on edge additions and Supplementary 2 underpin 
the fact that growth and depletion are not identical with respect to the influential indicators. For instance, high 
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modularity drives network vulnerability during growth, while assortativity is more critical during depletion. 
Finally, it is worth noting that this line of research will be particularly effective when the nature of the attack is 
not well-defined. An attacker may calculate a combined score of multiple centrality-based scores to determine 
the critical components or resort to a mixed strategy to weaken network recovery efforts. Such attacks could be 
offset by the use of computational models that distributively and periodically learn the regression coefficients 
for topological indicators contributing to robustness in large complex networks.

Data availability
The datasets used, generated, and/or analyzed during the current study are available in the GitHub repository 
https:// github. com/ almus awiaf/ vulne rabil ity.
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