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Development of an Operational 
Digital Twin of a Locomotive 
Parking Brake for Fault Diagnosis
Gabriel Davidyan 1*, Jacob Bortman 1 & Ron S. Kenett 2

In recent years, a growing role in digital technologies has been filled by model-based digital twinning. 
A digital twin produces a one-to-one mapping of a physical structure, operating in the digital domain. 
Combined with sensor technology and analytics, a digital twin can provide enhanced monitoring, 
diagnostic, and optimization capabilities. This research harnesses the significant capabilities of 
digital twining for the unmitigated challenge of fault type classification of a locomotive parking 
brake. We develop a digital twin of the locomotive parking brake and suggest a method for fault type 
classification based on the digital twin. The diagnostic ability of the method is demonstrated on a 
large experimental dataset.

Abbreviations
DT	� Digital twin, a digital representation of the physical parking brake
RT	� Real twin, physical measurement from the parking brake
DNN	� Deep neural network
NMSE	� Normalized mean squared error

Air brake system is an important component of trains, responsible for speed control in routine operation and 
emergency braking. In trains, the performance of the air brake system affects the forces in the train, which ulti-
mately affect the driving safety1,2. Since building a full-scale test rig is expensive, numerical simulation techniques 
are often used to study air brake systems. Empirical models are among the most commonly used approaches, 
which include lookup table models and fitting formula models3. These models are suitable for practical applica-
tions that do not require detailed knowledge of the air brake system, such as signaling design and braking distance 
calculation. They are based on measured data and provide equivalent constant values for the braking forces4–9. 
However, to improve the system and predict its characteristics, dynamic models based on physical principles are 
required. These models, which are widely used in practice, can simulate the air brake system by considering the 
energy exchange of the system and the air leakage of the pipe10–14. Despite their usefulness, current dynamics 
models have not produced robust fault type classification algorithms because there are significant differences 
between simulated and actual operating conditions15.

Digital twin (DT) refers to a virtual representation of physical systems that has various applications, such 
as performance optimization16,17. DTs are developed through mathematical models and simulations and are 
continuously updated with real-time data from sensors of the physical systems18,19. DTs are increasingly being 
used across different industries, including manufacturing, transportation, energy, and healthcare20,21. A key 
advantage of DTs is their ability to make accurate and reliable predictions about a system’s behavior, enabling 
better utilization of the physical system22,23. For instance, a DT of a factory could be used to predict the output 
of each production line under different operating conditions and identify possible inefficiencies24. In a related 
study25, a DT was created by virtually modeling brake pads in real time, which provided information about their 
wear and tear, improving vehicle safety and operational efficiency. Similarly26, addressed the development of a 
digital twin for the automotive braking system, using physics-based modeling techniques to predict brake pad 
wear under various conditions. In this approach, different modeling paradigms, from 0-D to 3-D, were merged 
into an integrated system model, further demonstrating the versatility and robustness of digital twins in modern 
engineering applications.

However, implementing DTs can be difficult, as it is challenging to guarantee that the DT accurately rep-
resents the system27. One possible solution is to use machine-learning algorithms to enhance the accuracy of 
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mathematical models using sensor data28. These algorithms can address the differences between simulation and 
reality29,30 and, hence, provide DT improvements.

In this study, a model-based DT approach for classifying various faults that may occur in a locomotive park-
ing brake is proposed and validated by experiments. The DT is based on a physical model of the parking brake 
and is optimized using a machine learning approach. The DT of the locomotive parking brake is continuously 
updated to generate possible fault conditions that approximate those of the actual system. The study has three 
major contributions:

1.	 Development of a DT of a locomotive parking brake.
2.	 Development of a robust diagnosis of various faults in a locomotive parking brake by estimating the internal 

latent physical variables within a DT and training of a learning model on the residuals signals and model 
based estimated internal variables.

3.	 Show how deep physical understanding and model-based DT can improve the diagnostic capabilities of 
complex systems, especially in scenarios where machine learning algorithms alone may not be sufficient.

The study is divided into six sections. Section “Theoretical background” provides a theoretical background 
and introduces the locomotive parking brake and the physical model DT, Section “Experimental validation of the 
proposed parking brake model” validates the physical model DT using experimental data, Section “The proposed 
algorithm” presents the new algorithm based on DT, and Section “Fault diagnosis” demonstrates the algorithm 
using experimental data. The study is summarized in Section “Summary and conclusions”.

Theoretical background
Parking brake working principle
The JT42 locomotive is equipped with a spring-loaded brake. Four of the eight brake blocks are equipped with 
load springs, as shown schematically in Fig. 1. These four brake blocks contain in the rear part of their housing 
the following main components: a piston, a load spring, and a manual release device. The cylinder part equipped 
with the load spring has an independent compressed air connection; the piston chamber is hermetically isolated 
from the service brake chamber and is additionally separated by an atmospheric sluice. In the released state, the 
loading spring cylinder is filled with compressed air, and the piston and connecting rod are retracted against the 
resistance of two springs until no force is applied against the piston base of the brake shoe (in the front part of 
the cylinder). In this position, the springs of the parking brake are loaded and energy is stored in them. In the 
applied (brake operative) state, the piston of the spring storage cylinder chamber is empty of compressed air. 
The force of the springs press on the piston of the service brake cylinder via the connecting rod, which presses 
the brake pads onto the wheel.

To apply or release the parking brakes, an electrical switch is located in each driving cab. A relay controls 
the one-way solenoid valve and allows compressed air from the main reservoir line to flow into the spring 
chamber through a pressure-reducing valve set at 7.7 bar and through an orifice in the parking brake valve. 
This compresses the loading spring in the spring chamber and the parking brakes remain in the non-operated 
mode. A healthy parking brake should be completely released after 25 s. By switching off the solenoid valve, the 
compressed air is released from the spring chamber so that the brake shoes are driven against the wheel by the 
force of the spring. For more detailed information on the braking system, see31,32.

Parking brake model
Physical systems must first be represented in terms of a mathematical equation for each machine before any 
particular analysis can be performed for those particular systems. Mathematical modeling is required before 
any control over the systems can be explored. In general, the modeling of each system can be created either from 

Figure 1.   Schematic diagram of the parking brake system.
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physical derivatives or experimental data measured on the real system. This paper presents nonlinear mathemati-
cal modeling of a JT42 locomotive parking brake based on readily accessible physical derivatives. The mass flow 
rate, pressure dynamics, and equation of motion were derived from previous research30.

The compressible mass flow rate, ṁ through a valve orifice, can be described as1;

where Pu, Pd are the upstream and downstream pressure respectively, Cf  is the non-dimensional discharge, 
T temperature and k is the specific heat ratio, and ṁ(Pu, Pd) is the mass flow rate.

The constants C1 and C2 are given by;

where R is the gas constant, Pcr is a critical pressure related to the ratio between downstream pressure Pd and 
upstream pressure Pu . The value of Pcr can be expressed as;

The upstream and downstream pressures of the cylinder are different, depending on whether the cylinder 
chamber is charging or discharging, according to the following functions:

where ṁin , ṁout are the mass flow rate into and out of cylinder chamber A respectively, Pchamber is the pressure 
inside the cylinder chamber, Ps is the supply pressure and Pa is the ambient pressure.

Equation (5) represents the charging process, in which the pressure in the reservoir is considered to be 
upstream and the pressure in the cylinder chamber is downstream. For the discharging process, represented 
by Eq. (6), the pressure in the chamber is the upstream pressure and the ambient pressure is the downstream 
pressure. The flow condition can be classified as either choked flow or under-choked flow, depending on the 
downstream pressure Pd and the upstream pressure Pu of the orifice. The flow condition is considered to be 
choked flow when PdPu is less than the critical pressure ratio Pcr . Assuming that the gas is perfect and the process 
is considered adiabatic, the rate of pressure change in a pneumatic chamber can be expressed as follows;

where P(t) is the pressure inside the chamber, ∂
∂t P(t) rate of change in pressure inside chamber, ∂

∂t min(t) inlet 
mass flow rate to chamber, ∂

∂t mout(t) outlet mass flow rate from the chamber,V(t) is the volume of the chamber, 
and ∂

∂t V(t) rate of change in volume of the chamber.
The origin of the piston placement can be chosen either from one side at the end of the stroke or in the mid-

dle of the stroke. By choosing the origin on one side at the end of the stroke, the volume of the chamber can be 
expressed as follows:

where x(t) is the piston displacement and Ap is the area of the piston.
By differentiating Eq. (8), the rate of change of the volume of the chamber is obtained as follows:

Substituting Eqs. (8), (9) into Eq. (7) gives the rate of pressure change in the chamber of the pneumatic 
cylinder:

where x(t) is the piston position, ∂
∂t x(t) is the rate of change of piston position, and V0 is the inactive volume at 

the end of stroke and admission port.
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The equation of motion for the piston rod, including the mass and friction effects of the pneumatic cylinder, 
can be expressed by Newton’s second law as follows:

where Mp is the mass of the piston rod, Ff  is the friction force, Pa is the atmospheric pressure, Ar is the cross-
sectional area of the piston rod and K is a constant factor characteristic of the spring.

The LuGre friction model proposed by Liu et al.33 is considered in this study. The frictional force, Ff  , the 
dynamics of the internal state ( z ), and the Stribeck effect function g(v) are given in Eqs. (12), (13), and (14), 
respectively. From these equations, the relationship between velocity and friction force for the steady-state of 
motion can be derived as Eq. (15):

where σ0 is a stiffness coefficient, σ1 is a damping coefficient, B is the viscous friction, Fc is the Coulomb friction, 
and Fs is the static friction.

Experimental validation of the proposed parking brake model
The parking brake DT is configured to simulate three typical fault types, including cylinder leakage, blocked 
upstream pressure, and low upstream pressure. A total of five working states of the parking brake system are 
simulated using a DT, including one health state, two types of single fault states, and two types of composite fault 
states as shown in Table1. The model parameters were calculated assuming the following; the total heat energy of 
the gas does not change during compression. The specific heat coefficient for air is k = 1.4 . The value of the gas 
constant R , temperature T and ambient pressure Po at a relative humidity of 65% are 288 J/kgK, 293.15 K and 
100 kPa , respectively (Standard ISO 6358). This gives constants C1 and C2 of 0.040418 and 0.156174 , respectively, 
which were calculated using Eq. (3). Equation (4) is used to set the critical pressure ratio pcr to 0.528 . The pressure 
after the pressure-reducing valve was set at 7.7 bar . The cylinder bore diameter is 0.1 m.

To verify the proposed mathematical model, a series of experiments was conducted in which the pressure 
in the cylinder chamber and after the pressure-reducing valve was were measured using piezoelectric absolute 
pressure transducers, as can be seen in Fig. 2.

The experiments were conducted as follows: First, the parking brake was applied (i.e. the pressure in the 
cylinder chamber is 0 bar), and then the parking brake was released using the electric switch in the driver’s cab. 
Figure 3 shows both the model and experimental results for the pressure in the cylinder chamber. There is close 
agreement between the theoretical and experimental curves, with very good amplitude agreement. Figure 3 also 
shows a time delay between the valve command (0 s) and the corresponding pressure output. This phenomenon 
could be due to the connecting pipes and the dynamics of the actuator valve. In the first stage the pressure in 
the cylinder chamber rises rapidly to 4.07 bar. Then, as the piston begins to move, the rate of change of pressure 
decreases as the volume of the cylinder chamber increases. Finally, when the piston reaches its end position 
(25 s), the pressure rate of change is zero and the pressure in the cylinder chamber is equal to the pressure of 
the pressure-reducing valve, i.e. 7.7 bar. The results show that the DT simulates the parking brake with great 
accuracy, which reflects the quality of the mathematical procedures used.

Based on the verified DT model, different failure states of the parking brake system can be simulated by 
adjusting some parameters of the model. Figure 4a shows the results obtained when an experiment was per-
formed with an upstream pressure of 7.7 bar illustrates a healthy parking brake system (red curve). The figure 
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Table 1.   Working conditions of parking brake.

Working states of the parking brake Total number of samples

Normal state 500,000

Air leakage 500,000

Blocking due to an incorrectly set orifice 500,000

Cylinder leakage & blocking 500,000

Low upstream pressure 500,000
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also shows the simulated curves of the pressure in the cylinder chamber obtained using the DT for a scenario 
where the outlet (upstream) pressure of the pressure reducer is lower than 7.7 bar. In all scenarios excluding the 
case where the upstream pressure is lower than the set pressure (i.e. 4.027 bar, yellow), there is close agreement 
between shape of the curves. The results in Fig. 4a shows that in the case where the upstream pressure is lower 
than the set cylinder pressure, there is a rapid increase in the pressure inside the cylinder up to the set pressure. 
From this point it remains constant (4.027 bar). This means that the chamber volume does not change because 
the force acting on the piston is too small (the piston remains in place, i.e. the parking brakes do not release). 
Figure 4b shows the results of an experiment in which the upstream pressure for both DT and the real parking 
brake system (red curve, illustrates a healthy parking brake system) was set to 7.7 bar. In this scenario, blocking 
of the upstream pressure due to an incorrectly set orifice was simulated using the DT. Figure 4b shows that the 
pressure in the cylinder chamber quickly rises (3 s) to the upstream value (7.7 bar) when no orifice was inserted 
into the parking brake valve outlet (yellow). In this case, the piston moves violently towards its end position. 
This situation can cause severe damage to various parts of the parking brake or even to the entire mechanism. In 
contrast, too small and orifice can cause a significant delay in releasing the parking brake. The results in Fig. 4b 

Figure 2.   Schematic diagram of the parking brake system and experimental setup.

Figure 3.   Model (blue curve) and experimental (red curve) results for the pressure in the cylinder chamber of 
healthy parking brake.
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show that the rate of change of pressure in the cylinder chamber using an orifice of 0.4 mm (dotted curve), for 
example, is small compared to the healthy condition (red curve, illustrates a healthy parking brake system). In 
this case, the pressure in the cylinder chamber reached the set pressure value (4.027 bar) only after 50 s, causing 
a significant delay in the parking brake release application. Figure 4c shows the results of an experiment in which 
the upstream pressure drops due to leakage in the cylinder or in the connecting pipes. The figure shows the dif-
ferent rates of pressure drop in the cylinder chamber found experimentally and simulated using DT compare 
to a healthy parking brake system (red curve). Some curves represent a rapid pressure drop, simulating a severe 
leak typical of a torn pipe, while other curves (yellow) represent a pressure drop reminiscent of a small leak due 
to improper sealing. Figure 4c shows that a severe leak due to a torn pipe causes the air pressure in the cylinder 
chamber to drop rapidly, causing the piston to move uncontrollably toward its initial position. Such a movement 
can severely damage the brake pad. On the other hand, a leak resulting from improper sealing can be overcome by 
the supplying pressure to the cylinder. However, this results in a considerable delay in releasing the parking brake.

To evaluate the capacities of the DT, the relative Normalized Mean Squared Error (NMSE) between the meas-
ured and simulated pressures in the cylinder chamber at each time point was calculated as follows:

where N is the total number of time points, PA is the measured signal, P̂A is the DT simulated signal and i the 
index represents the time points.

To calculate the NMSE, the same experiments simulating the different scenarios (see Table 1) were performed 
with six locomotives. Figure 5 shows the NMSE comparing each DT simulated scenario and the corresponding 
measured scenario. For example, the leftmost column shows the NMSE index between the measured and simu-
lated air pressure in the cylinder chamber at normal state. The highest error was calculated for the experiment 
simulating an air leak in the cylinder together with an air blockage. The relatively high error can be explained 
by the relative complexity of the experiment and the sensitivity of the different parking brake valves. However, 
Fig. 5 shows that the mean square error is relatively small (highest value, approx. 5%) for all simulated scenarios, 
reflecting the quality of the DT.

The proposed algorithm
The proposed algorithm is integrated in the locomotive DT. It consists of four steps, illustrated in Fig. 6.

(16)NMSE = 100%×

√√√√√ 1

N

N∑

i=1

(
PAi − P̂Ai

)2

P2Ai

Figure 4.   Model results show the response of the pressure in the cylinder chamber for different faults compared 
with healthy experimental results (red curve). (a) low up-stream pressures, (b) different sizes of the orifice, (c) 
sudden air leak in up-stream pressure.
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The pressure in the parking brake cylinder (marked by PA ) was routinely measured on the tested locomotives, 
as can be seen in Fig. 6. In the current study, the internal latent physical variables ( K ,B, σ0 and σ1 ) are estimated 
by solving a least squares problem, where the variables minimize the constraints presented in Eq. (17). This is 
achieved in Eq. (18), also known as a least squares estimation:

where xk[n] represents the corresponding values of the internal parameters θk in the coordinate n [
e.g., for θk in time t the corresponding value is PA

(
t
�t

)]
 , y[n] represents the measured parameters in the 

coordinate n and X is the matrix of xk[n] with N rows and j − i + 1 columns.
The internal variables ( θ1, θ2, θ3 and θ4 ) can be used to calculate the process coefficients presented in Eq. (19):

For each Real Twin (RT) (i.e., physical measurement PA ) in the training set, an individualized DT is gener-
ated by estimating the internal variables ( θ1 − θ4) . These variables are estimated by the least squares method 
presented in Eq. (17).

Based on the internal estimated parameters, a model of Deep Neural Network (DNN) is trained on the 
estimated parameters where, at first, the training set is divided into 80% training and 20% validation. The DNN 
model uses the sigmoid activation function in the input and hidden layers, while the Softmax function is used 
in the output layer. The selected optimization algorithm was Adam with an initial learning rate of 0.001 and 
the loss was categorical cross entropy. The DNN model included an input layer, eight hidden layers with eight 
neurons each, and one output layer. The number of epochs was regulated using early stopping based on three 
followed unimproved loss on the validation set.

For each Real Twin (RT) (i.e., physical measurement PA ) in the test set, an individualized DT is generated by 
estimating the internal variables ( θ1 − θ4) . These variables are estimated by the least squares method presented 
in Eq. (17). The trained model is used to predict the classes of the test set.
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Figure 5.   NMSE index showing the mean square error between the experimental and simulated pressures in 
the cylinder chamber for different scenarios for six locomotives.
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Fault diagnosis
The new algorithm described in Section “Experimental validation of the proposed parking brake model” is tested 
and compared with two other algorithms:

1.	 A regular machine-learning algorithm using a DNN model consists of Steps 3, 4, and 5 described in Fig. 7. 
The regular machine-learning algorithm was trained with 21 different possible features: Mean, Variance, 
Maximum, Kurtosis, standard deviation, skewness, Absolute Sum etc., of each RT’s features extracted directly 
from the measured signals, i.e., PA . The DNN model is trained on these extracted features, as described in 
Fig. 7. This algorithm does not use the DT.

2.	 A simple residual algorithm which uses Steps 1, 2, 3, 4 and 5 (including the DT) described in Fig. 7. For each 
RT in the training set, a DT is generated by estimating the internal variables, as explained in Fig. 7. Based 
on the internal estimated parameters, the DT calculates the residuals. From each residual, 21 features are 
extracted: mean, variance, maximal value, kurtosis, absolute sum etc. A model of deep neural network is 
trained on these extracted features, as described in Fig. 7.

The comparison process between the new algorithm and the regular machine-learning algorithm demon-
strates the contribution of the DT concept, while the comparison to the simple residual algorithm demonstrates 
the contribution of the internal variables estimation. These three algorithms, i.e., the new algorithm described in 

Figure 6.   The new suggested algorithm for machine fault diagnosis using a DT described in Section “The 
proposed algorithm”.
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Section “Experimental validation of the proposed parking brake model”, the regular machine-learning algorithm, 
and the simple algorithm, were tested on an experimental dataset containing a 5500 RT training set and a 250 
RT test set. An example of the measurements of an RT in the training set is depicted in Fig. 3.

The results of the three tested algorithms are presented in Fig. 8 on 250 test examples, 50 from each condition. 
Each table in Fig. 8a–c presents the confusion matrix after applying the tested algorithm on the test set, which 
contains 50 examples of each category (overall, 250 examples). As can be seen in Fig. 8d, the new algorithm 
achieved a significant improvement from an accuracy of 72–96. Furthermore, the use of the residuals helps to 
improve the accuracy from 72 to 81.2, as can be seen in Fig. 8d. This result demonstrates the ability of the DT to 
improve diagnosis by incorporating physical knowledge of the system.

Summary and conclusions
In this study, a DT algorithm for diagnosing faults in a locomotive parking brakes is presented. The algorithm 
comprises four steps, including estimation of the internal DT variables, training of a deep neural network, and 
prediction. The algorithm was tested with a dataset of 5500 training RTs and 250 test RTs. The results show a 
significant improvement in accuracy from 72 to 96 compared to a traditional machine-learning algorithm. It is 
shown that the DT improves diagnosis by incorporating physical knowledge about the system. The described 
method for model-based fault detection and diagnosis for locomotive parking brakes is based on standard meas-
urement of the pressure in the parking brake cylinder. A key advantage of the described DT based fault detection 
method is that it uses a physically-derived parking brake model. Therefore, it is applicable to a wide range of 
operating points and directly transferable to other parking brakes. In addition, its symptoms are usually easy to 
interpret and understand. The model-based DT approach presented here provides an application of engineering 
performance that goes beyond traditional engineering design. In addition to impacting train operation, it can 
also play a role in improving maintenance activities in which maintenance failures are effectively diagnosed and 
corrected. Ultimately, the most important benefit of the DT is its impact on customer experience and operating 
costs. This paper demonstrates the value of performance-focused engineering where real-time performance 
provides inputs to an adaptable system packaged in a digital layer—the DT.

Figure 7.   The two other algorithms use as comparison to the new suggested algorithm described in Section 
“Experimental validation of the proposed parking brake model”.
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Data availability
The datasets generated and/or analysed during the current study are not publicly available hence all data and 
codes used in this, subject to approval by Israel Railways, but are available from the corresponding author on 
reasonable request.
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