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Local cell densities and positioning within cellular monolayers and stratified epithelia have important 
implications for cell interactions and the functionality of various biological processes. To analyze the 
relationship between cell localization and tissue physiology, density‑based clustering algorithms, 
such as DBSCAN, allow for a detailed characterization of the spatial distribution and positioning of 
individual cells. However, these methods rely on predefined parameters that influence the outcome of 
the analysis. With varying cell densities in cell cultures or tissues impacting cell sizes and, thus, cellular 
proximities, these parameters need to be carefully chosen. In addition, standard DBSCAN approaches 
generally come short in appropriately identifying individual cell positions. We therefore developed 
three extensions to the standard DBSCAN‑algorithm that provide: (i) an automated parameter 
identification to reliably identify cell clusters, (ii) an improved identification of cluster edges; and (iii) 
an improved characterization of the relative positioning of cells within clusters. We apply our novel 
methods, which are provided as a user‑friendly OpenSource‑software package (DBSCAN‑CellX), 
to cellular monolayers of different cell lines. Thereby, we show the importance of the developed 
extensions for the appropriate analysis of cell culture experiments to determine the relationship 
between cell localization and tissue physiology.

Human tissues are constituted by heterogeneous cellular structures that fulfill different functions. Besides their 
composition and the involved cell types that e.g. distinguish gut and respiratory epithelium, the spatial organiza-
tion and positioning of cells in tissues has been intimately linked to their biological  function1. Abnormal tissue 
architectures formed by the irregular spatial organization of cells in tissues are associated with different disease 
conditions and impaired tissue  functionality2. Recent studies using novel methods of spatial-omics analyses and 
multiplexed imaging show gene expression differences in the vicinity of the pathogenic hallmarks in different 
 tissues3–5. Thus, understanding the impact of the spatial organization of cells on tissue physiology and, thereby, 
on health or disease conditions is of utmost importance.

To identify the location of different cells or cell states in a tissue or cell population, spatial clustering methods 
can be used to segregate cells into distinct subclasses—called cell clusters—where each cell cluster could consist 
of phenotypic similar, associated, or connected cells (Fig. 1a). Spatial statistics offers various methods to identify 
cellular clusters and cell clustering behavior, including  supervised6 and unsupervised clustering methods, such 
as k-means  clustering7 and model-based  clustering8,9. Although many available clustering techniques can effec-
tively accommodate the spatial relationships between cells, clustering cells given growth in arbitrary geometrical 
shapes, variable cellular densities, and typically large amounts of measurement noise, as well as characterizing 
the spatial context of individual cells, remains a challenge within biological research.

Among many clustering techniques available, density-based clustering methods are often used for analyzing 
biological/tissue  samples10. Density-based clustering methods have relatively high scalability with respect to the 
number of clusters. The density-based spatial clustering of applications with noise (DBSCAN) is the best-known 
density-based clustering  algorithm11. The DBSCAN algorithm involves a stepwise approach: in the first step, 
a spatial proximity relationship is built among the individual objects, in our case cells, by evaluating the local 

OPEN

1BioQuant-Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany. 2Department of 
Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA. 3Department 
of Infectious Diseases, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, 
69120 Heidelberg, Germany. 4Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 
Heidelberg, Germany. 5Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120 Heidelberg, 
Germany. 6Department of Medicine 5, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 
12, 91054 Erlangen, Germany. 7These authors contributed equally: Leonie Küchenhoff and Pascal Lukas. *email: 
frederik.graw@fau.de

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-45190-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18868  | https://doi.org/10.1038/s41598-023-45190-4

www.nature.com/scientificreports/

neighborhood of each object. If a sufficient number of other cells is found within the local surrounding of a cell, 
this cell is assumed to belong to a specific cluster. If not, the cell is defined as noise without contact to a cluster 
(Fig. 1b). DBSCAN not only assigns cells as belonging to a cluster or being noise, but also classifies them based 
on their local density within a cluster as being at the edge or densely packed within a cluster (Fig. 1b). To use 
DBSCAN, one has to define the size of the neighborhood and the minimum number of points in the neighbor-
hood of each object to be considered as part of a cluster, making clustering sensitive to the choice of these param-
eters. Different methods have been developed to overcome this limitation and to improve the method’s sensitivity 
to variation in the density of objects in  space12–15. While these methods improve the identification of individual 
clusters, the classification of cells based on their location within clusters is still hampered by the standard clas-
sifications of DBSCAN and the generally irregular shapes and densities of patches within cell culture experiments.

Here, we propose DBSCAN-CellX as an extension to DBSCAN that provides a statistical identification of 
the DBSCAN parameters based on a generalized functional relationship between cell density and distribution, 
and especially aims at improving identification of cell positioning within clusters by a geometrical treatment of 
the DBSCAN prediction. Compared to DBSCAN, DBSCAN-CellX demonstrated better identification of local 
boundaries (i.e., edges) of cell clusters on simulated and experimental datasets. In addition, DBSCAN-CellX pro-
vides a method to classify cells based on their relative positioning within a cluster, which could help to improve 
the characterization of cellular functionality dependent on their local context. DBSCAN-CellX is provided as 
an OpenSource python package to analyze and classify microscopy images of cell populations that includes a 
user-friendly graphical user interface for non-expert users.

Results
Selecting appropriate parameters for density‑based clustering of tissue cultures
To determine individual cell clusters and classify cells with regard to their individual position within a cluster, 
i.e., being at the edge or surrounded by other cells, the density-based spatial clustering of applications with noise 
(DBSCAN)  algorithm11 requires the specification of two parameters: the radius parameter ε , and the minimal cell 
number nmin in a cluster. The algorithm examines the local density of cells within a radius ε around each cell. Cells 
having at least nmin number of cells within this radius are classified as center cells, while cells with fewer cells in the 
surrounding are specified as edge cells—when there is a center cell in their surrounding—or noise cells otherwise 
(Fig. 1b). The choice of the parameter combination (ε, nmin) has important implications for the classification of 
individual cells (Fig. 2a,b). For example, if for a given parameter nmin the radius ε is chosen quite small, a lot of 
cells are classified as noise cells although they might actually be connected to other cell clusters. Analogously, 
if for a given nmin the radius ε is chosen too large, individual clusters might remain undetected and too many 
cells might get classified as center cells, although they could be possibly better qualified as edge cells (Fig. 2b). 
To determine general relationships for the appropriate definition of (ε, nmin) , we analyzed several images of cells 
grown at different densities by systematically testing different parameter combinations, and selected appropriate 
combinations by visual inspection (see “Materials and methods” section). We found that the choice of appropriate 
parameter combinations is related to the average local cell density within each image, � , with the average local 
cell density defined by applying a regular grid to the observed image and dividing the total number of cells within 
the observed image by the covered area, i.e., the number of grid sites with at least one cell present (Fig. 2c). Based 
on the manually determined parameter combinations, the radius ε and the minimum cell number nmin were then 
specified as functions of the average local cell density, � (Fig. 2d,e; Table 1; “Materials and methods” section). 
We applied this newly developed method to determine appropriate parameter combinations for (ε, nmin) to cell 
culture experiments on H2B-turquoise cells grown at different densities. Visual inspection indicated a reason-
able identification of individual cell clusters when using DBSCAN with these parameters (Fig. 2f), especially 
with regard to the classification of noise cells, i.e., cells not belonging to any other cell agglomeration. However, 
independent of the parameter combinations used, we generally observe that cell classification as defined by 
DBSCAN (Fig. 1b) tends to classify cells as center cells that are arguably at the edge of a cluster, i.e., not fitting 
with the common definition of an edge cell as being at the border of a cluster (Fig. 2b,f).
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Figure 1.  Clustering of cell populations: (a) Schematic of cell clustering with characterization of the location 
of individual cells. (b) Definition of the radius, ε , and the required minimum number of cells within the radius, 
nmin , to characterize cells as center (green), edge (orange) or noise cells (black) by DBSCAN.
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Figure 2.  Identifying appropriate parameters for DBSCAN for cell culture data: (a) Original image and (b) 
example of cell characterization using DBSCAN with different combinations for the parameters ε and nmin based 
on images of T84 pMx1-mCherry H2B-turquoise cells grown at a cell seeding density of �seeding = 104 cells/
well. (c) Calculation of the average local cell density � by separating images into regular grids of 20 μm grid size 
and classification of local areas as being covered or empty dependent on the presence or absence of cells within 
the particular grid sites, respectively. (d,e) Specification of the radius, ε , and the minimum number of cells, nmin , 
as functions of the average local cell density,� . The manually characterized images (dots) and fitted functions 
(best fit—line, 95%-confidence interval—shaded area) are shown. For nmin(�) the continuous function, as well 
as the integer-valued step-function using rounded values is shown (see also Table 1). (f) Characterized images 
from different experiments using DBSCAN with (ε, nmin) determined according to (d,e).
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An Edge‑Correction algorithm improves cell characterization by DBSCAN
In order to improve the identification of cluster edges according to the common interpretation of cells as being 
at the border of a cluster, we developed an Edge-Correction algorithm as an extension to the standard DBSCAN 
classification method. The standard DBSCAN approach classifies a cell as a center cell if at least nmin cells are 
within an area with radius ε around the cell. However, this approach completely neglects the actual spatial dis-
tribution of the neighboring cells. If the distribution of the surrounding cells is unbalanced, i.e., if cells are only 
located in one specific local area around the cell, this cell might be better described as an edge cell (Fig. 3a). 
To determine the “balancedness” of the surrounding cells for each center cell, our newly developed algorithm 
evaluates the angle between each of the surrounding cells and a reference line (Fig. 3b). Sorting the angles and 
calculating the intermediate differences, a center cell will be re-classified as edge cell if one of these intermediate 
differences is larger than a predefined threshold value θ for the angular difference (Fig. 3b).

We tested our approach against several simulated data in which cells were randomly placed within regular and 
irregular shapes (squares, circles, etc.) (Fig. 3c). Cell classification by DBSCAN without and with our additional 
Edge-Correction algorithm was compared to manually annotated ground truth data, in which a cell is classified 
as an edge cell if there is a direct connectivity to the border of the shape, i.e., in line with the interpretation of 
edge cells as representing the smallest hull around a point pattern (Fig. 3c). For all tested shapes, the standard 
(i.e., uncorrected) cell classification by DBSCAN had a very low accuracy in identifying edge cells (Fig. 3d) reach-
ing only values in between 0.44–0.56 across all simulated patterns. The Edge-Correction algorithm provided 
by DBSCAN-CellX outperformd the standard approach, showing accuracies between 0.76 and 0.98 dependent 
on the choice of θ and the underlying point pattern. Testing different threshold values, we found that best clas-
sification performance was achieved using threshold values between θ = 120

◦

− 160
◦ , with results very robust 

when choosing θ within this range (Figs. 3d, S1).
We also applied our approach to actual experimental data of varying cell density (Fig. 4a). Also here we 

could see a substantially improved identification of edge cells by DBSCAN-CellX in comparison to the stand-
ard DBSCAN approach using manually annotated ground truth, with most appropriate results achieved for a 
threshold value of θ = 120

◦

− 160
◦ independent of the cellular density (Figs. 4b, S2). As the choice of θ might 

also depend on the specific cell type and cell density evaluated, the algorithm generally allows for user-defined 
threshold values.

Determining cell embedding within clusters
Besides classifying cells as being at the edge or within a cluster, for analyses that aim to relate the functionality of 
a cell to its spatial positioning, it is also relevant to determine to which extent cells are embedded within a cluster, 
i.e., how distant they are to the cluster edge. As cluster edges represent access to the environment, this distance 
can have important implications for individual cell behavior with regard to the susceptibility to infection or cell 
reactivity. Therefore, we developed a method that assesses the distance of individual cells to the closest edge of 
the cluster that they belong to.

The stepwise algorithm relies on a repeated application of DBSCAN with Edge-Correction to the data. After 
each classification round, all edge cells are removed before the analysis is repeated on the reduced data set (Fig. 5). 
This provides each cell with an edge degree value ψ , which determines the iteration step at which the cell would 
be classified as an edge cell, and, thus, indicates the embedding of a cell within the cluster. Higher edge degrees 
indicate a deeper embedding of cells within the cluster with noise cells having an edge degree of ψ = 0 and edges 
of clusters defined by ψ = 1 . Knowing the average diameter of the investigated cell type, the continuous distance 
of a cell to the cluster edge can be calculated based on the edge degree.

Table 1.  Estimating DBSCAN parameters using functional relationships dependent on the cellular Estimates 
for the radius, ε , and the minimal number of cells, nmin , as functions of the average local cell density, � , 
by fitting the relationships as defined in Eqs. (1) and (2) to 50 manually selected appropriate parameter 
combinations based on images of T84pMx1-mCherry H2B-turquoise cells grown at different densities (see also 
Fig. 2d,e). The best fit, as well as the estimated standard errors (SE) for each of the parameters are shown using 
python’s lmfit function (see “Materials and methods” section).

Parameter Best estimate (± SE)

Equation (1): radius, ε(�)

 α 2.2× 10
4
(

±7.8× 10
4
)

 δ 6.35 (±3.07)

 c 93.42 (±2.21)

Equation (2): minimal number of cells, nmin(�)

 α 2.13 (±0.25)

 β 1.33 (±0.03)

 κ 15.70 (±4.93)

 c 4.48 (±0.15)
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DBSCAN‑CellX, an extension to DBSCAN for the spatial analysis of cell cultures
In order to validate the general appropriateness of the developed methods for cell culture experiments, and the 
determined functional relationship for the DBSCAN parameters (ε, nmin) and the local density � (Fig. 2d,e), we 
applied our methods to data from different experimental conditions. Besides the analysis of T84 pMx1-mCherry 
H2B-turquoise cells grown at different densities as shown above (Fig. 2f), we also applied our methods to data 
from Huh7 cells that were infected with Dengue  virus17 or hepatitis C  virus18 (Fig. S3). By this, we were able to 
test our approach against cell populations that differed in their growth patterns, as well as variations in image 
resolution. Our analyses indicate that the determined parameterizations for DBSCAN allow reasonable identifica-
tion of cellular clusters for different conditions, with the Edge-Correction algorithm providing an improved clas-
sification of cells with regard to their spatial orientation within clusters according to visual inspection (Fig. S3). 
Hereby, variations to the assumed threshold angle for edge-correction, as well as accounting for the average cell 
size used for calculating the average local cell density � (see “Materials and methods” section), were required to 
account for different cell sizes and cellular patterns (e.g. convex vs. concave shaped cluster edges corresponding 
to foci of cells or “holes” in tissues, respectively).

We therefore combined the individual methods described above within the software package DBSCAN-CellX 
to allow an improved classification of the spatial distribution of cells and their relative location. Providing a table 
with the position of the individual cells as obtained by image analysis as an input, DBSCAN-CellX (i) automati-
cally determines appropriate parameter combinations of (ε, nmin) for the application of DBSCAN, (ii) performs 
Edge-Correction according to the chosen angle θ , and (iii) allows Edge-Degree determination. In addition, it 
includes several aspects that can also be optionally defined by the user (Fig. 6). We developed DBSCAN-CellX 
as an OpenSource python-package easy to use by experimentalists and non-expert users, and which is addition-
ally accompanied by an app that provides a graphical user-interface, as well as visualization tools to qualify the 
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Figure 3.  Edge-Correction algorithm: (a) Examples of cells classified as center cells by DBSCAN given more 
balanced and unbalanced distributions of the (at least) nmin surrounding cells. (b) Schematic of the algorithm 
for correcting center cells as edge cells dependent on the angular distribution of neighboring cells by choosing 
an appropriate threshold value θ for the angular difference characterizing cell distributions as inbalanced. (c) 
Simulated data with cells distributed in varying regular shapes or based on Matérn Cluster processes using 
different  parameterizations16. Classification of cells as edge and center cells is based on manually annotated 
ground truth (upper row), the standard DBSCAN-classification (middle row) and the novel edge-correction 
provided by DBSCAN-CellX using an angular threshold value of θ = 120

◦ (lower row). For manually annotated 
ground truth cells were classified as edge cells if they have a direct connectivity to the border of the shape or cell 
cluster, respectively. (d) Accuracy of cell classification testing different values of θ (see also Fig. S1). Noise cells 
were not considered in calculation of the accuracy.
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analyses by overlaying original images with the obtained classifications. The package and additional documenta-
tion including its implementation is provided under https:// github. com/ GrawL ab/ DBSCAN- CellX/.

Discussion
Revealing and characterizing the spatial distribution and organization of cells has become an important aspect 
for deciphering their interaction and functionality within tissues. Here, we developed novel extensions for the 
standard and widely used density-based clustering algorithm DBSCAN to provide an improved identification 
and classification of cells with regard to their spatial location.

One of the challenging steps for the application of DBSCAN is the appropriate determination of the param-
eters that define the assumed affiliation of a cell to a cluster, i.e., the assumed minimum number of cells nmin 
within a radius ε around each cell. With the outcome of the clustering analysis being sensitive to the choice of 
these parameters, we aimed for determining a functional relationship between the average local cell density 
within an analyzed image and the values of  nmin and ε that provides appropriate parameter combinations for the 
application of DBSCAN to the data. Hereby, optimization especially focused on minimizing the determination 
of noise cells, i.e., cells not belonging to any cluster, as cells are usually assumed to grow within attached cel-
lular agglomerates. We showed that DBSCAN-CellX provides appropriate cluster identification and spatial cell 
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Figure 4.  Edge-Correction improves cell classification in cell culture experiments: (a) Examples of cell 
characterization using standard DBSCAN methods (middle row) and the improved Edge-Correction algorithm 
(lower row) choosing a value of θ = 140

◦ in comparison to manually annotated ground truth (upper row) based 
on images of T84 pMx1-mCherry H2B-turquoise cells grown at different cell seeding densities (compare to 
Fig. 2f). Center (green), edge (orange) and noise (black) cells are indicated as classified by the respective methods 
(see also Fig. S2). (b) Accuracy of cell classification testing different values of θ (see also Fig. S2). Noise cells were 
not considered in calculation of the accuracy.
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Figure 5.  Edge-Degree specifies centrality of cells within clusters: (a) Representation of the stepwise-algorithm 
consisting of the combined application of DBSCAN with Edge-Correction to the data that are subsequently 
depleted of all classified edge cells before the evaluation is repeated on the reduced data set. (b) Higher edge 
degrees indicate a deeper embedding of cells within the cluster with initial noise cells having an edge degree of 
ψ = 0 and edges of clusters given by ψ = 1.

https://github.com/GrawLab/DBSCAN-CellX/
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classifications regardless of the experimental dataset type (Figs. 2f, S3). However, the functional relationships 
to determine the parameters nmin and ε dependent on the average local cell density relied on simple phenotypic 
characterizations based on several independent observations. Additional analyses will be needed to determine if 
there is also theoretical evidence supporting the relationship between average cellular density and the appropri-
ate choice of the parameters for DBSCAN, making the suggested relationship generally applicable. In addition, 
the parameter identification method within DBSCAN-CellX relies on the application of a regular grid to the 
image data to calculate average local cell densities. For our applications, we used a grid size of 20 μm which 
worked reasonably well for different experimental conditions. However, the appropriate choice of this grid size 
might depend on the actual cell sizes/diameters and image resolution, and more analyses are needed to analyze 
this point. Within the DBSCAN-CellX app, users are already able to account for this by varying the parameter 
influencing image resolution, and, thus, accounting for varying cell sizes.

By using DBSCAN, cell cluster identification by DBSCAN-CellX relies on this standard algorithm. With 
DBSCAN being generally sensitive to heterogeneous cell densities, several methods have already been developed 
to account for this issue. Extensions to DBSCAN that either use hierarchical clustering methods (HDBSCAN)13 
or novel ordering methods of points regarding to their distances (OPTICS)12, allow the detection of clusters of 
different densities. However, despite reducing the number of dependencies, these algorithms still remain sensi-
tive to the choice of certain parameters. Performing a rough comparison of DBSCAN with parameter identi-
fication provided by our method to HDBSCAN and OPTICS based on selected experimental data, we observe 
that our approach shows comparable performance to HDBSCAN with regard to cluster identification, as well 
as computational run time, with HDBSCAN seeming to be more sensitive to local density changes observable 
at the larger number of classified noise cells (Fig. S4). OPTICS seems to have problems with cluster detection 
for cells at high confluency, also needing a roughly 250–300-fold longer run time (Fig. S4). Thus, our parameter 
identification method could represent an appropriate and efficient extension for DBSCAN for identifying clusters 
within cellular monolayers.

Compared to HDBSCAN and OPTICS, the standard DBSCAN, and therefore also DBSCAN-CellX, addition-
ally provides a classification of cells into center, edge and noise cells. DBSCAN-CellX was particularly developed to 
overcome arguable shortcomings of the edge-cell classification by the standard DBSCAN-definition (Figs. 1b, 2f). 
The developed Edge-Correction algorithm within DBSCAN-CellX, as well as the definition of the Edge-Degree 
developed herein, allow for a better characterization of cells dependent on their relative positioning within clus-
ters, which has so far been insufficiently characterized by the standard DBSCAN-algorithm. This does not only 
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Figure 6.  Schematic of the DBSCAN-CellX package: DBSCAN-CellX combines the original DBSCAN 
implementation with the extensions introduced above to allow an improved classification of cell clustering and 
individual cell positioning. DBSCAN-CellX performs (i) an automatic determination of appropriate parameter 
combinations of (ε, nmin) for DBSCAN based on cellular density, (ii) an Edge-Correction, and (iii) Edge-
Degree determination. DBSCAN-CellX is developed as an OpenSource python-package and accompanied by 
an app which provides a user-friendly graphical user-interface that allows non-export users to perform cell 
classification and visual comparison of cell classification with the original images (see https:// github. com/ GrawL 
ab/ DBSCAN- CellX/ for further details).

https://github.com/GrawLab/DBSCAN-CellX
https://github.com/GrawLab/DBSCAN-CellX


8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18868  | https://doi.org/10.1038/s41598-023-45190-4

www.nature.com/scientificreports/

apply to irregular patterns and cell densities as observed in cell culture experiments (Fig. 4) but even to regular 
shapes, in which the standard DBSCAN falls short in identifying edge cells according to the common defini-
tion, i.e., with edge cells representing the smallest hull around the identified cluster/point pattern (Fig. 3). While 
cell classification by the standard DBSCAN approach could potentially be improved by varying the parameters 
(ε, nmin) for a particular image, with results being sensitive to the choice of this parameter combination, the 
Edge-Correction algorithm provided here could be applied to any spatial point pattern that is obtained from a 
clustering method and seems to provide robust results for choices of θ ∼ 120

◦

− 160
◦.

Robust identification and characterization of cellular positions within tissues and multicellular systems have 
become important factors within different areas of biological research, such as organism  development19,20, the 
functionality of heterogeneous microbial  communities21 and individual cell  physiology22–25. Moreover, recent 
advances in imaging and single-cell technologies, such as in-situ spatial transcriptomics, will increase the need for 
improved characterization methods of spatial relationships. In response to the increasing demands for analyzing 
the spatial distribution of cells and their response in tissue samples, several analytical methods and toolboxes 
have been developed recently, including  PySpacell26,  cytoNet27,  CytoMAP28, and Context-Explorer29. While 
these tools provide sophisticated and advanced methods to determine cellular relationships directly accounting 
for functional and spatial connectivity, our method focuses on the classification of cellular positioning within 
clusters. Developed as an OpenSource python package that includes an App-based graphical-user interface, 
DBSCAN-CellX provides a simple tool that can be directly used by biological researchers to identify cellular 
clusters and determine the spatial organization of cells within them. By overcoming well-known shortcomings of 
the standard DBSCAN implementation specifically affecting the analysis of cell culture data or tissue monolayers, 
DBSCAN-CellX could help to decipher the influence of spatial context on cellular functionality within tissues.

Materials and methods
Software and algorithms
The DBSCAN-CellX package and all including analytical functions were developed in python using Python 3.8. 
DBSCAN-CellX can be run in a shell by bash-commands or via a local app containing a user-friendly graphical 
user interface within the local browser. The package including information concerning installation and system 
requirements, as well as a detailed documentation and a user manual can be found at: https:// github. com/ GrawL 
ab/ DBSCAN- CellX/

Parameters of DBSCAN as functions of the average local cell density
To allow for an improved parameterization of the DBSCAN method, we assumed the following functional 
relationships between the parameters ε and nmin , and the average local cell density � : Based on the manually 
observed appropriate parameter combinations, we found that the radius ε is best described by a function that 
assumes an exponential decrease with increasing average local cell density before reaching a saturation level. 
Thus, ε is defined by

with the parameter δ defining the rate of decrease, and c the considered saturation level.
With nmin only allowed to take discrete integer values, determining a functional relationship is more difficult. 

Given the determined parameter combinations, we assumed that nmin is best described by a logistic function of 
the average local cell density �:

The actual values for nmin are then obtained by rounding nmin(�) to the next nearest integer.
For both functions, individual parameters were determined by fitting Eqs. (1) and (2) to the 50 manually 

determined appropriate parameter combinations using a maximum likelihood approach given in the package 
lmfit for python Version 1.0.330. Individual parameter estimates and standard errors are shown in Table 1. Because 
nmin is given as a discrete number when manually determining appropriate parameter combinations, for the fit-
ting of Eq. (2) the data were weighted to ensure equal weights for each value of nmin despite unequal numbers of 
manually determined parameter sets (compare Fig. 2e). Please note that both functions were developed based 
on the phenotypic shape observed within the experimental data, without particular functional evidence for these 
relationships. For the development of the functional relationships, the average local cell density was calculated 
using a regular grid with grid sites of d = 20 pixel according to the observed images. To account for varying 
cell sizes given different cell lines, for each specific experiment the optimal grid site is calculated based on the 
average cell size (diameter) η provide in µm and the image resolution τ given in µm per pixel with d = η/τ . 
Thereby, we additionally consider a scaling factor of fbase = 1/

(

τ × 2.8986 px µm−1
)

 in Eq. (1) to scale for the 
image resolution of τbase = 0.34 µm/px used within the experimental analysis for determining the parameters 
for Eqs. (1) and (2).

Edge‑Correction algorithm
As the standard DBSCAN algorithm tends to classify cells as center cells that are arguably at the edge of a cluster, 
i.e., representing cells that build the smallest hull around the cluster, the Edge-Correction algorithm tries to 
correct for this by determining the “balancedness” of the neighboring cells around a center cell (see also Fig. 3). 
To this end, each center cell i  is connected to all their j = 1, . . . ,m neighboring cells by an edge, eij , and the 

(1)ε(�) = αe−δ�
+ c

(2)
nmin(�) =

α

1+
(

β
�

)κ + c

https://github.com/GrawLab/DBSCAN-CellX/
https://github.com/GrawLab/DBSCAN-CellX/


9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18868  | https://doi.org/10.1038/s41598-023-45190-4

www.nature.com/scientificreports/

angle of each edge to a reference line, ∢
(

eij , 0
)

 , is determined. The individual angles are then sorted and their 
intermediate differences are calculated (∢(ei2, 0)− ∢(ei1, 0),∢(ei3, 0)− ∢(ei2, 0), . . .) to determine, if there is 
at least one intersection that is larger than a certain threshold angle, θ , which has been predetermined. If this is 
the case, the previously defined center cell is re-classified as an edge cell. The algorithm subsequently evaluates 
each center cell that has been identified by the standard DBSCAN method.

Edge‑Degree calculation
The edge-degree ψ determines the embedding of cells within clusters. The edge degree is calculated by iteratively 
applying DBSCAN and the Edge-Correction algorithm to the data, in which in each step all edge and noise cells 
are removed before the algorithm is applied again (see also Fig. 5). The edge-degree value ψ is an integer value 
that represents the step at which the corresponding cell would be classified as an edge cell, with original noise 
cells identified by ψ = 0 , and original edge cells determined by ψ = 1 . The higher ψ the more central the cell is 
located within a cluster.

Cell experiments
T84 pMx1‑mCherry H2B‑turquoise cells
WT T84 human colon carcinoma cells (ATCC CCL-248) expressing H2B-mTurquoise2 and pMx1-mCherry31 
were maintained in a 50:50 mixture of Dulbecco’s modified Eagle’s medium (DMEM) and F-12 (Gibco) sup-
plemented with 10% fetal bovine serum (FBS) and 1% penicillin–streptomycin (Gibco). Cells were seeded on 
plastic-bottom 96-well plates at 310,000, 230,000, 160,000, 80,000 and 31,000 cells/cm2. One day post-seeding, 
cells were fixed with 2% paraformaldehyde (PFA) for 20 min at room temperature. After PFA removal, cells were 
washed with 1 × PBS and permeabilized for 15 min with 0.5% Triton-X in PBS. To stain the nuclei, cells were 
washed with 1 × PBS and incubated with DAPI (4′,6′-diamidino-2-phenylindole) for 20 min. Cell imaging was 
done using the Widefield Celldiscoverer 7 (ZEISS) at a 5 × 2 magnification (Numerical Aperture = 0.35). The 
OpenSource software Ilastik 1.2.0 was used to generate a binary image representing each nucleus as an individual 
object in 2D based on the DAPI signal. Finally, using the OpenSource software CellProfiler 3.1.9, localization of 
each cell by x–y-coordinates was determined.

Huh7 cells exposed to hepatitis C virus
The experimental data and corresponding methods have been published  in18. In brief, Huh7-Lunet CD81 MAVS-
GFP-NLS cells were transfected with in vitro transcripts encoding the full-length HCV genome GLT1cc and 
co-seeded with naïve Huh7-Lunet CD81 MAVS-mCherry-NLS in a ratio of 1:5. After 72 h, cells were fixed with 
4% PFA-PBS and stained with DAPI. Nuclear transfer of GFP or mCherry, respectively, identifies HCV positive 
cells due to cleavage of the MAVS-portion by the viral protease NS3-4A32, whereas uncleaved autofluorescent 
proteins are located at mitochondria in the cytoplasm.

Huh7 cells exposed to dengue virus
The experimental data have been originally published  in17.  105 cells were seed into a 35 mm-diameter glass-
bottom culture dish (MatTek Corporation, USA) the day prior to infection. Cells were infected with dengue 
virus serotype 2 at an MOI of 10 TCID50 per cell for 1 h at 37 ºC with occasional rocking. After removal of the 
inoculum, cells were washed thrice with PBS and cells further grown in 2 mL imaging medium (phenol red-free 
DMEM supplemented with 100 U/ml penicillin, 100 mg/ml streptomycin and 10% fetal calf serum). Time-
lapse microscopy was performed using a Nikon Eclipse Ti inverted microscope (Nikon, Japan) equipped with 
a motorized stage, climate chamber (EMBLEM, Heidelberg, Germany) and with a 20 × CFI Plan Apo lambda 
air objective (NA 0,75; Nikon, Japan). Twenty observation fields were manually selected, and 3-color images 
(bright field, GFP, TRITC (tetramethylrhodamine)) acquired at intervals of 30 min for 96 h using the automated 
Nikon perfect focus system.

Data availability
All code is provided as an OpenSource software package including data examples under an MIT+-license fol-
lowing https:// github. com/ GrawL ab/ DBSCAN- CellX.
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