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Multifractal foundations 
of biomarker discovery for heart 
disease and stroke
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Damian G. Kelty‑Stephen 7

Any reliable biomarker has to be specific, generalizable, and reproducible across individuals and 
contexts. The exact values of such a biomarker must represent similar health states in different 
individuals and at different times within the same individual to result in the minimum possible false‑
positive and false‑negative rates. The application of standard cut‑off points and risk scores across 
populations hinges upon the assumption of such generalizability. Such generalizability, in turn, hinges 
upon this condition that the phenomenon investigated by current statistical methods is ergodic, i.e., 
its statistical measures converge over individuals and time within the finite limit of observations. 
However, emerging evidence indicates that biological processes abound with nonergodicity, 
threatening this generalizability. Here, we present a solution for how to make generalizable inferences 
by deriving ergodic descriptions of nonergodic phenomena. For this aim, we proposed capturing 
the origin of ergodicity‑breaking in many biological processes: cascade dynamics. To assess our 
hypotheses, we embraced the challenge of identifying reliable biomarkers for heart disease and 
stroke, which, despite being the leading cause of death worldwide and decades of research, lacks 
reliable biomarkers and risk stratification tools. We showed that raw R‑R interval data and its common 
descriptors based on mean and variance are nonergodic and non‑specific. On the other hand, the 
cascade‑dynamical descriptors, the Hurst exponent encoding linear temporal correlations, and 
multifractal nonlinearity encoding nonlinear interactions across scales described the nonergodic heart 
rate variability more ergodically and were specific. This study inaugurates applying the critical concept 
of ergodicity in discovering and applying digital biomarkers of health and disease.

Heart disease and stroke are the leading causes of disease and disability globally and in the United States, claiming 
655,000 American lives every year—one in four  deaths1,2. This staggering toll of cardiovascular diseases does not 
end here, as it costs the nation over $200 billion annually in direct medical expenses and lost productivity. This 
colossal burden highlights the importance of early diagnosis and intervention of heart disease and stroke. One 
of the primary requisites for effective diagnosis is the availability of specific and reliable biomarkers. Although 
numerous biomarkers, risk stratification models, and risk scores for various cardiovascular diseases have been 
proposed over the past decades, effective diagnostic and prognostic digital biomarkers are still  missing3–5. The 
urgency of addressing this need is amplified by the rise and ever-growing expansion of diverse digital health 
and telehealth solutions in recent years, specifically in the cardiovascular  field6–8. Such solutions, like mobile 
applications (mhealth), smart watches, wearable devices, implantable electronic devices, and implantable hemo-
dynamic monitors, enable the gathering of vast amounts of data for everyone; however, the lack of diagnostic 
and prognostic biomarkers lays waste to this ability as such valuable amounts of data cannot be appropriately 
used. Lack of evidence of effect has been cited as one of the reasons why digital health technologies have not 
been widely employed in clinical  settings9. The lack of reliable digital biomarkers can be considered one of the 
main contributors to this lack of evidence.
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Heart rate variability (HRV) has been one of the key noninvasive biomarkers of cardiovascular  health10. It 
measures the fluctuations and variations in time intervals between successive heartbeats or R-R intervals (RRi). 
HRV is an emergent phenomenon that emerges out of the complex and nonlinear interactions between the 
cardiovascular and nervous  systems11–13 and represents the peripheral output of the central autonomic network 
(CAN) and the capacity for behavioral adaption to environmental  stresses14–22. Because it emerges from such 
complex and integral interactions, HRV can be a representative marker of cardiovascular health. Healthy human 
HRV indicates desirable balance and interaction between the functions of the sympathetic and parasympathetic 
nervous  systems23–25. Group-level findings have shown that HRV might be superior to many other biomarkers 
in representing the overall state of health and well-being26,27.

Although the emergence of HRV out of complex and intricate interactions confers HRV such an ability 
to represent the state of the body, it also makes its appropriate application as a digital biomarker replete with 
nuances. Analyses of heartbeat dynamics and HRV reveal significant nonlinearity, non-Gaussianity, and chaotic 
behaviors in the RRi  series28–42. These statistical signatures of nonlinearity, non-Gaussianity, and chaotic behav-
iors in RRi can be interpreted as manifestations of the emergence of HRV from interdependent and bidirectional 
interactions across multiple timescales. Such processes which lead to multiplicative fluctuations and dynamics 
have been termed multifractal cascades43–47. The cascade dynamical nature of HRV, like many other behavioral 
and physiological  functions48–54, inclines many of its measurements and descriptors toward a characteristic that 
has been, unfortunately, grossly overlooked in the biomedical literature: ergodicity. We believe the overlooking 
of ergodicity has hindered the broad application of HRV probably much more than the other challenges that 
have been discussed regarding HRV, like analytical challenges associated with data variability, missing data and 
artifacts, and lack of theory for data  interpretation55–66.

Ergodicity is an essential requirement of a digital biomarker to be applied reliably in current medical practice. 
Similar values of a digital biomarker across different individuals must represent similar bodily states. In other 
words, standard cut-off points of such a biomarker must reliably separate the states of health and disease in each 
different  individual67,68. Based on these practices, most medical research, similar to most biological, psychologi-
cal, and social research, has aggregated the data gathered from randomly selected groups of individuals and used 
group-based statistical methods to reach conclusions. Such conclusions are then deemed generalizable to the 
behaviors of different individuals across different contexts. However, ergodicity is a requisite of this generaliz-
ability from group-level data to an individual’s behaviors. In nonergodic measurements, the behaviors of an 
individual at a specific time diverge from the average of that measurement across a group of individuals and also 
the average of that individual’s behaviors over an extended  period69–72. Ergodicity refers to the convergence of 
these two averages: the finite-ensemble average and the finite-time average (Fig. 1). The finite-ensemble average, 
which is also recognized as the “sample average,” is

(1)�xi(t)�N =
1

N

N∑

i=1

xi(t),

Figure 1.  Nonergodicity refers to the lack of equivalence between finite-ensemble and finite-time 
averages. The finite-ensemble average, which biomedical discourse recognizes as the “sample average,” is 
�xi(t)�N = 1

N

∑N
i=1 xi(t) , where xi(t) is the ith of N individual cases of x(t) included in the finite-ensemble 

average. The finite-time average when the measured behavior x changes at T = �t/δt discrete times 
t + δt, t + 2δt, . . . is x�t =

1
Tδt

∑T
τ=1 x(t + τδt).
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where xi(t) is the ith of N individual cases of x(t) included in the finite-ensemble average. The finite-time average, 
which biomedical discourse recognizes as the “average performance/trajectory of the individual,” is

for continuous change. The finite-time average when the measured behavior x changes at T = �t/δt discrete 
times t + δt, t + 2δt, . . . is

So, ergodicity is an equivalence between these two averages,

Another phrasing of the concept of ergodicity is that ergodic systems visit all of their possible states—in a 
sense, ergodic systems do not have a deep sense of “history.” The criterion of “mixing” emphasizes this addition 
to the traditional interpretation of ergodicity. Mixing denotes independence of the states of a system across time 
in a way that all values of a stochastic process across all times would have equal  probabilities73. This concept clari-
fies why emerging experimental data suggests that the processes related to organisms teem with, and probably 
are even dominated by,  nonergodicity74–76, although the inferences of the majority of biological, psychological, 
and social studies in the past century have been based on this implicit presupposition that the processes they 
study and their measurements are ergodic. Biological processes teem with properties like interactions across 
space and time  scales43,47, historical  contingency77,78, and context dependency to break  ergodicity71. Consider 
the exemplary biological process we have chosen in this study: HRV. As we mentioned earlier, data strongly 
suggests that heartbeat dynamics and HRV have a cascade dynamical nature and emerge from interdependent 
and bidirectional interactions across  scales28–42. Also, HRV and many of its descriptors highly depend on various 
individual, contextual, and measurement factors such as sex and  age65. Such historical contingency and context-
dependency of HRV and other biological processes generally lead to nonergodicity and lack of generalizability 
from group-level findings to  individuals71,72.

The concern for ergodicity is evident in the application of HRV. An appropriate diagnosis and risk stratification 
based on HRV depends on two conditions: First, the limited data gathered during the visits, consultations, or 
laboratory assays should sufficiently represent the states of the individual’s body over time. Second, the standard 
and established principles and cut-off points used to make decisions should be generalizable to that individual. 
These conditions have been taken for granted until now. However, as we discussed, evidence suggests that 
nonergodicity probably violates these conditions. Neglecting this violation can be detrimental; for instance, if 
screening is conducted on the entire general population, a minor increase in false positive rate can hugely raise 
subsequent medical tests and  expenses58,79,80. An increased false-negative rate also implies delayed anticoagulant 
medication and increased risk of stroke in symptomatic or high-risk patients.

Our concern for ergodicity is not restricted to the application of HRV.  We72,73,81,82, alongside a few  others69–71,74, 
believe that ergodicity is an integral concept that undermines how scientific research across diverse fields has 
tried to identify cause-effect relationships. The breaking of ergodicity is abundant in biological processes and 
invalidates many conclusions of group-based research designs and statistical methods. Indeed, neglecting this 
nonergodicity and lack of generalizability could be the leading cause of the reproducibility  crisis72,74, which 
currently encompasses diverse fields from biomedical and psychological sciences to social sciences and 
 economics83,84. Specifically, in applying HRV as a biomarker of health and disease, some studies have suggested 
that the irreproducibility of results could be a critical  problem85–94.

This study is an attempt in continuation of our previous works to obtain a solution to the problem of making 
generalizable inferences about nonergodic processes. In this series of works, we first tried identifying sources of 
nonergodicity in biological processes. Having recognized the abundance of multifractal and cascade dynamics 
in biological  processes48–54, we hypothesized that a potential source of nonergodicity could be the emergence of 
many biological processes out of interdependent and bidirectional interactions across spatial and temporal scales, 
as in cascades. We observed phenomena that corroborated this  hypothesis73,81,82,95. Afterward, interestingly, we 
observed that descriptors that could capture the cascade-dynamical sources of ergodicity breaking in a process 
might provide ergodic descriptions of that  process73,81,82,95.

Here, prompted by the huge amount of evidence that had suggested the multifractal and cascade-dynamical 
nature of  HRV28–42, We hypothesized that this nature of HRV leads to the nonergodicity of this phenomenon. 
Consequently, We predicted that the linear commonly used descriptors of HRV and raw RRi series, like 
sample means and variances, would be nonergodic and lack generalizability and reproducibility. Afterward, we 
hypothesized that descriptors that would capture the source of the nonergodicity of HRV might provide ergodic 
descriptions of this nonergodic phenomenon. Descriptors of the nonlinear, non-Gaussian, multifractal, and 
cascade-dynamical behaviors of HRV, some of which we had developed in our previous works, seemed worthy 
 candidates29,33,34,96,96–101. For this study, we chose descriptors of long-range correlations, HfGn , and multifractal 
nonlinearity, tMF . We found strong support for our hypotheses.
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Results
We analyzed the long-term ambulatory HRV in 108 chronic heart failure (CHF) patients—69 survivors (age 
(mean±SD) = 64± 15 years; 27 women) and 39 nonsurvivors ( 70± 14 years; 20 women)—who died due to any 
cause within the follow-up period of 33± 17 months, and 115 age-matched healthy older adults ( 47.7± 18.2 
years; 25 women). The endpoint was all-cause mortality. The majority of deaths (34/39) were cardiac-related, 
including death from progressive heart failure ( n = 23 ), sudden death ( n = 10 ), and acute myocardial infarction 
( n = 1 ). The remaining five patients died of sepsis ( n = 1 ), pneumonia ( n = 3 ), and stroke ( n = 1 ). We reanalyzed 
HRV data from one of our previous published  studies99. Table 1 summarizes the demographic and baseline 
clinical characteristics of the CHF patients.

HRV breaks ergodicity
To examine the ergodic properties of the RRi series (exemplified in Fig. 2a–c), we submitted the original RRi 
series and the corresponding shuffled versions to the Thirumalai-Mountain  analysis102,103, which yields a 
dimensionless metric called the ergodicity breaking factor, EB,

where δ2(x(t)) =
∫ t−�

0 [x(t ′ +�)− x(t ′)]2dt′
/
(t −�) is the time average mean-squared displacement of the 

stochastic series x(t) for lag time � . Rapid decay of EB to a finite asymptotic value for progressively larger samples, 
i.e., EB → 0 as t → ∞ implies ergodicity. Slower decay indicates less ergodic systems in which trajectories are 
less reproducible. No decay or convergence to a finite asymptotic value indicates strong ergodicity  breaking104,105. 
EB(x(t)) thus allows testing whether a given series breaks ergodicity. EB for the original RRi series did not 
decay at all with t in the finite range of 1000 secs, essentially remaining unchanged over a progressively longer 
time for healthy controls as well as the two patient groups ( EB(x(t)) = −0.0183�

t , 0.0194
�
t  , and −0.0306�

t  
for healthy controls, CHF nonsurvivors, and CHF survivors, respectively; colored lines in Fig. 2d–f). These 
values of EB(x(t)) indicate strong ergodicity breaking in the original RRi series. In contrast, EB for the shuffled 
RRi series rapidly decayed to a finite asymptotic value in the finite range of 1000 secs, indicating ergodicity 
( EB(x(t)) = −1.0274�

t ,−1.0475�
t  , and −1.0029�

t  for healthy controls, CHF nonsurvivors, and CHF survivors, 

(5)EB(x(t)) =

〈[
δ2(x(t))

]2〉
−

〈
δ2(x(t))

〉2

〈
δ2(x(t))

〉2
.

Table 1.  Baseline clinical characteristics of the chronic heart failure patients. Reproduced from Kiyono et al.99. 
BNP = brain natriuretic protein; BUN = blood urea nitrogen; Cr = creatinine; ACE = angiotensin-converting 
enzyme inhibitor; ARB = angiotensin II receptor blocker.

Characteristics Nonsurvivors (n = 39) Survivors (n = 69)

Age (years) 70± 14 64± 15

Sex (M/F) 19/20 42/27

New York Heart Association functional class

   II 3(8%) 3(13%)

   III–IV 36(92%) 60(87%)

   Ischemia 17(43%) 19(28%)

   Left ventricular ejection fraction (%) 40± 12 39± 14

   BNP (pg/mL) 1, 225± 903 704± 606

   ln BNP 6.8± 0.8 6.1± 1.1

   BUN (mg/dL) 32± 18 23± 13

   ln BUN 3.3± 0.5 3.0± 0.5

   Cr (mg/dL) 1.7± 1.3 1.1± 1.0

   ln Cr 0.25± 0.69 −0.13± 0.60

Medication at Holter recording

   Beta-blocker 11(28%) 23(33%)

   ACE/ARB 19(49%) 32(46%)

   Loop diuretic 26(67%) 30(43%)

   Spironolactone 16(41%) 17(25%)

Medication before hospital discharge

   Beta-blocker 26(67%) 48(70%)

   ACE/ARB 26(67%) 55(80%)

   Loop diuretic 27(95%) 62(90%)

   Spironolactone 23(59%) 40(58%)

   Ventricular premature beats per hour 22± 64 24± 70
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respectively; grey lines in Fig. 2d–f). As by shuffling the original RRi series, the temporal structure and informa-
tion of the RRi series are removed, these values of EB(x(t)) suggest that the very temporal structure of HRV is 
the source of nonergodicity in HRV.

Linear descriptors based on mean and variance are nonergodic
Now that we have witnessed ergodicity breaking in the raw RRi series, let us investigate the ergodic prop-
erties of some of the linear descriptors widely used in cardiovascular digital medicine: HRV parameters 
based on mean and  variance65. Here, we chose the mean and root mean square of successive RR intervals, 
hereinafter noted as M and RMS, respectively. M and RMS were computed by dividing the RRi series into 
nonoverlapping epochs comprising 500 beats. So, for example, a raw RRi series of 100,000 beats yielded 
2000 nonoverlapping epochs, each comprising 500 beats, ultimately yielding M and RMS series of 2000 sam-
ples each. Similar to the behavior of EB for the raw RRi series, EB for M and RMS did not decay at all over 
epochs in the narrow range of 20 epochs ( EB(M(epoch)) = −0.0848 �

epoch ,−0.1461 �
epoch and − 0.0935 �

epoch; 
EB(RMS(epoch)) = −0.0846 �

epoch ,−0.1480 �
epoch and − 0.0937 �

epoch for healthy controls, CHF nonsurvivors, 
and CHF survivors, respectively). EB remained unchanged over a progressively larger number of epochs for all 
three groups (colored lines in Fig. 3a,c). In contrast, EB for M and RMS of the shuffled RRi series rapidly decayed 
to a finite asymptotic value in the narrow range of 20 epochs ( EB(M(epoch)) = −1.2337 �

epoch ,−1.2890 �
epoch and

−1.2275 �
epoch;EB(RMS(epoch)) = −1.2400 �

epoch ,−1.2951 �
epoch and − 1.2321 �

epoch for healthy controls, CHF 
nonsurvivors, and CHF survivors, respectively; grey lines in Fig. 3a,c). In other words, M and RMS-based HRV 
parameters failed to provide ergodic descriptions of HRV. Furthermore, the contrast between behaviors of EB 
for the original and the shuffled RRi series indicates that the very temporal structure of HRV contributes to this 
failure.

To test the specificity and reliability of these HRV parameters, we also performed Monte Carlo simulations by 
randomly sampling the 1000-sample RRi series from the 24-hour recordings for each individual and performing 
one-way ANOVA tests separately on these series’ M and RMS values. We repeated this process 1000 times. 
One-way ANOVAs failed to detect reduced M of HRV due to the CHF, 36.8% and 12.7% times in nonsurvivors 

Figure 2.  The raw R–R interval (RRi) series are nonergodic. (a–c) Representative examples of the original 
and shuffled RRi series (colored lines and grey lines, respectively). (a) The RRi series for a healthy control (a 
54-year-old woman). (b) The RRi series for a 74-year-old man with congestive heart failure (CHF) who died 
101 days after the measurement. (c) The RRi series for an 82-year-old woman who survived CHF. The original 
RRi series, for healthy controls (d) as well as the two patient groups (e, f), show no change in the ergodicity 
breaking parameter, EB , over progressively longer periods, reflecting that HRV breaks ergodicity (colored lines). 
Shuffling the original RRi series produces an RRi series that is ergodic, as indicated by the rapid decay in EB 
over progressively longer periods (grey lines). Thin lines and thick lines in (d–f) represent ergodicity breaking for 
individuals and mean ergodicity breaking for the three groups, respectively.
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(red histogram in Fig. 3b) and survivors (green histogram in Fig. 3b), respectively, compared to healthy controls. 
Likewise, one-way ANOVAs failed to detect reduced RMS of HRV due to the CHF, 34.6% and 11.3% times 
in nonsurvivors (red histogram in Fig. 3d) and survivors (green histogram in Fig. 3d), respectively, compared 
to healthy controls. In other words, we found a high likelihood of failing to identify statistically significant 
differences among the three groups’ M and RMS. These results confirm that linear descriptors M and RMS cannot 
be used as reliable HRV parameters for digital biomarkers of health and disease.

Linear descriptors NN50 and pNN50 are only weakly ergodic but not specific
The number of adjacent RR intervals that differ by more than 50 milliseconds and the percentage of 
such RR intervals are two other linear descriptors widely used as HRV  parameters65. EB for NN50 and 
pNN50 had similar behavior to that of the shuffled RRi series; however, EB had a shallower initial decay 
for NN50 and pNN50 with a progressively larger number of epochs in the narrow range of 20 epochs 
( EB(NN50(epoch)) = −0.4297 �

epoch ,−0.4281 �
epoch and − 0.7090 �

epoch ; EB(pNN50(epoch)) = −0.4295 �
epoch ,

−0.4340 �
epoch and − 0.7124 �

epoch for healthy controls, CHF nonsurvivors, and CHF survivors, respectively). Even-
tually, EB reached an asymptotic finite but a relatively larger value over a progressively larger number of epochs 
(colored lines in Fig. 4a,c). These EBNN50(epoch)) and EB(pNN50(epoch)) curves were only marginally shallower 
than those for the epoch series of NN50 and pNN50 for the shuffled RRi series in the narrow range of 20 epochs 
(  EB(NN50(epoch)) = −1.2289 �

epoch ,−1.3169 �
epoch and − 1.2557 �

epoch ;EB(pNN50(epoch)) = −1.2286 �
epoch ,

−1.3166 �
epoch and − 1.2556 �

epoch for healthy controls, CHF nonsurvivors, and CHF survivors, respectively; grey 
lines in Fig. 4a,c). Thus, NN50 and pNN50 break ergodicity only weakly, providing more ergodic descriptions 
of the nonergodic HRV than the previous two linear descriptors, M and RMS. Again, the contrast between the 
original and shuffled RRi series indicates that the very temporal structure of HRV contributes to this weak 
ergodicity breaking by NN50 and pNN50.

To test the specificity and reliability of these parameters, we performed Monte Carlo simulations by ran-
domly sampling 1000-sample RRi series from 24-hour recordings for each individual and performing one-way 
ANOVA tests separately on these series’ NN50 and pNN50 values. We repeated this process 1000 times. One-way 
ANOVAs revealed that NN50 of HRV did not differ between either patient populations and healthy controls: 
CHF nonsurvivors and survivors (red histogram and green histogram, respectively, in Fig. 4b). Likewise, one-way 

Figure 3.  Commonly used linear descriptors of HRV based on mean and root mean square are nonergodic. 
(a) The ergodicity breaking parameter, EB , did not change for the mean of successive RR intervals, M, in the 
original RRi series over a progressively larger number of epochs (colored lines). In contrast, EB decayed rapidly 
for the M of the shuffled RRi series (grey lines). (b) Null hypothesis significance testing (NHST) for M across the 
three groups. One-way ANOVAs failed to detect reduced M of HRV due to the CHF, 36.8% and 12.7% times in 
nonsurvivors (red histogram) and survivors (green histogram), respectively, compared to healthy controls. (c) EB , 
did not change for the root mean square of successive RR interval differences, RMS, in the original RRi series 
over a progressively larger number of epochs (colored lines). In contrast, EB decayed rapidly for the RMS of the 
shuffled RRi series (grey lines). (d) Null hypothesis significance testing (NHST) for RMS across the three groups. 
One-way ANOVAs failed to detect reduced M of HRV due to the CHF, 34.6% and 11.3% times in nonsurvivors 
(red histogram) and survivors (green histogram), respectively, compared to healthy controls. Thin lines and thick 
lines in (a,c) represent EB for individuals and mean EB for the three groups, respectively.
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ANOVAs revealed that pNN50 of HRV did not differ between either patient populations and healthy controls: 
CHF nonsurvivors and survivors (red histogram and green histogram, respectively, in Fig. 4d). Hence, NN50 and 
pNN50 might only weakly break ergodicity but also not diagnose CHF.

Cascade‑dynamical descriptors HfGn and tMF are both ergodic and specific
We hypothesized that cascade-dynamical descriptors might provide ergodic descriptions of the nonergodic HRV 
by capturing the source of ergodicity breaking. The most compelling descriptions of cascading dynamics come 
from multifractal  geometry43,47,106. Simulations of cascade processes show two critical features: long-range linear 
temporal correlations and nonlinear correlations involving interactions across timescales. The former feature 
appears most frequently as a fractional Gaussian noise (fGn) in which the standard deviation increases as a power 
function of the timescale. The fractional power in this function is known as the Hurst exponent, HfGn . HfGn and 
has already been shown to be sensitive to differences in HRV due to congestive heart  failure38. The latter feature 
of nonlinear correlations concerns the effects spreading across the hierarchical organization of biological struc-
tures, producing a variation in HfGn , i.e., multifractality. We can estimate this nonlinear variation by estimating 
the variation in power functions over time and then comparing this multifractal variation to what a linear model 
of the underlying RRi series can produce. That is, by comparing the multifractality (i.e., the number of power 
functions) estimable for the original RRi series to the same multifractal property for a sample of synthetic RRi 
series. The one-sample t-test comparing the multifractality of the original to the synthetic RRi series provides 
a t-statistic, multifractal nonlinearity, tMF , which quantifies nonlinear correlations due to cascade  dynamics107. 
HfGn and tMF have been shown to provide ergodic descriptions of the nonergodic series of both simulated and 
empirical biological  measurements73,81,82. We aim to determine whether HfGn and tMF can adequately describe 
the nonergodic HRV. Furthermore, we test whether HfGn and tMF provide specificity.

HfGn and tMF were computed by first interpolating the RRi series to 2 Hz and then dividing it into nonoverlap-
ping epochs comprising 1000 samples (i.e., spanning 500 s). So, for example, a raw RRi series of 100, 000 samples 
yielded 1000 nonoverlapping epochs, each comprising 1000 samples, ultimately yielding HfGn and tMF series of 
2000 samples each. The behavior of EB for the epoch series of HfGn and tMF bears a strong resemblance to the 
behavior of EB for the shuffled raw RRi series. For HfGn , EB had an initial rapid decay in the narrow range of 20 
e p o c hs  t h at  b e c am e  s h a l l owe r  ove r  a  pro g re s s ive ly  l a rge r  nu mb e r  o f  e p o c hs 
( EB(HfGn(epoch)) = −0.4640 �

epoch ,−0.1648 �
epoch and − 0.2121 �

epoch ; colored lines in Fig. 5a). For tMF , EB rapidly 
decayed initially over a progressively larger number of epochs in the narrow range of 20 epochs 

Figure 4.  NN50 and pNN50 are specific but only weakly ergodic. (a) The epoch series of NN50 describing 
the original RRi series show an initial decay in the ergodicity breaking parameter, EB , with epochs (colored 
lines), albeit shallower compared to the epoch series of NN50 describing the shuffled RRi series (grey lines). (b) 
Null hypothesis significance testing (NHST) for NN50 across the three groups. One-way ANOVAs revealed 
that NN50 of HRV did not differ between either patient populations and healthy controls: CHF nonsurvivors 
and survivors (red histogram and green histogram, respectively). (c) The epoch series of pNN50 describing the 
original RRi series show an initial decay in EB over epochs (colored lines), albeit shallower compared to the 
epoch series of pNN50 describing the shuffled RRi series (grey lines). (d) NHST for pNN50 across the three 
groups. One-way ANOVAs revealed that pNN50 of HRV did not differ between either patient populations and 
healthy controls: CHF nonsurvivors and survivors (red histogram and green histogram, respectively). Thin lines 
and thick lines in (a,c) represent EB for individuals and mean EB for the three groups, respectively.
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( EB(tMF(epoch)) = −0.8372 �
epoch ,−1.0238 �

epoch and − 1.1759 �
epoch  ;  colored lines  in Fig.  5c). These 

EB(HfGn(epoch)) curves show a faster decay for the shuffled RRi series in the narrow range of 20 epochs 
( EB(HfGn(epoch)) = −1.2423 �

epoch ,−1.2434 �
epoch and − 1.2002 �

epoch ; grey lines in Fig. 5a). However, the decay 
rate of EB(tMF(epoch)) curves for the shuffled RRi series was comparable to that of the original RRi series in the 
narrow range of 20 epochs ( EB(tMF(epoch)) = −1.2091 �

epoch ,−1.1555 �
epoch and − 0.9862 �

epoch for healthy con-

trols, CHF nonsurvivors, and CHF survivors, respectively; grey lines in Fig. 5c). As epoch size increased, CHF 
survivors and CHF nonsurvivors exhibited an EB decay fully comparable with shuffled versions of the series for 
short to medium epoch sizes and all epoch sizes, respectively. Healthy patients showed much shallower decay 
for the original RRi series than for the shuffled RRi series. These results show that the cascade-dynamical descrip-
tors, HfGn and tMF , provide more ergodic descriptions of the nonergodic HRV but only over a narrow range of 
short epoch sizes for healthy cases and only for longer epochs in CHF cases. The cascade-dynamical nature of 
HRV that contributed to the nonergodicity of linear descriptors like M and RMS was thus captured by cascade-
dynamical descriptors HfGn and tMF marginally more than traditional linear descriptors. But the truth is that 
these EB-vs.-epoch curves show a heterogeneity across epochs that we had not previously observed in theoretical 
simulations. Hence, the success of ergodic characterization by cascade-dynamical descriptors is mixed at best 
and encouraging only in contrast to the much poorer performance of the linear descriptors. In the Discussion, 
we reflect on what these mixed results could mean for methodological and theoretical concerns moving 
forward.

To test the specificity of these cascade-dynamical descriptors, we performed Monte Carlo simulations by 
randomly sampling 1000-sample RRi series from 24-hour recordings for each individual and performing one-
way ANOVA tests separately on these series’ HfGn and tMF values. We repeated this process 1000 times. One-way 
ANOVAs failed to detect reduced HfGn of HRV due to the CHF, 0.2% and 1.8% times in nonsurvivors (red histo‑
gram in Fig. 5b) and survivors (green histogram in Fig. 5b), respectively, compared to healthy controls. Likewise, 
one-way ANOVAs failed to detect reduced M of HRV due to the CHF, 13.2% and 2.4% times in nonsurvivors 
(red histogram in Fig. 5d) and survivors (green histogram in Fig. 5d), respectively, compared to healthy controls. 
Thus, HfGn and tMF provide ergodic descriptions of the nonergodic HRV and can specifically differentiate clinical 

Figure 5.  Cascade-dynamical descriptors of long-range correlations, HfGn , and multifractal nonlinearity, tMF , 
are ergodic and specific. (a) The ergodicity breaking parameter, EB , decayed initially for the HfGn of the original 
RRi series over short epochs (colored lines). However, this decay was shallower compared to that of the HfGn of 
the shuffled RRi series(grey lines) overall longer epochs. (b) NHST of HfGn across the three groups. One-way 
ANOVAs failed to detect reduced HfGn of HRV due to the CHF, only 0.2% and 1.8% times in nonsurvivors (red 
histogram) and survivors (green histogram), respectively, compared to healthy controls. (c) EB decayed rapidly 
over epochs for the tMF of both the original RRi series (colored lines) and the shuffled RRi series (grey lines) but 
only for the CHF nonsurvivors. Rapid decays of EB for the original RRi series comparable to the shuffled RRi 
series only held for extremely short epochs in the healthy case and for small to medium epoch sizes in the CHF 
survivors. (d) One-way ANOVAs failed to detect reduced tMF of HRV due to the CHF, 13.2% and 2.4% times in 
nonsurvivors (red histogram) and survivors (green histogram), respectively, compared to healthy controls. Thin 
lines and thick lines in (a,c) represent EB for individuals and mean EB for the three groups, respectively.
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groups with high reliability. These results support our proposal of capitalizing cascade-dynamical descriptors as 
generalizable and reproducible HRV parameters for digital biomarkers of health and disease.

To assess the prognostic potential of the cascade-dynamical descriptors HfGn and tMF in predicting mortality 
among CHF  patients108,109, survival analysis was conducted. Kaplan-Meier cumulative survival curves utilizing 
HfGn and tMF as predictive variables are depicted in Fig. 6. The dichotomization of these descriptors was deter-
mined by their respective medians (Mdn). However, the analysis revealed that HfGn and tMF failed to predict mor-
tality effectively. Mantel-Haenszel log-rank statistics were calculated, yielding hazard ratios of 0.814 [0.619, 1.010] 
with a p-value of 0.295 for HfGn and 0.846 [0.652, 1.040] with a p-value of 0.391 for tMF . These results suggest that 
neither of these descriptors exhibited significant prognostic capacities in this cohort of CHF patients, highlighting 
their limited utility. Therefore, incorporating cascade-dynamical descriptors like HfGn and tMF alongside conven-
tional ones could be advantageous for optimizing predictivity, specificity, generalizability, and reproducibility in 
post-CHF prognosis until further advancements enhance the capabilities of these descriptors.

Discussion
Here, we surveyed various descriptors that could be used by traditional and digital medicine to inform the 
diagnosis and prognosis of cardiovascular conditions such as CHF to identify those descriptors that could 
provide predictive, specific, generalizable, and reproducible assessments. The primary risk we have highlighted 
is that the raw RRi series breaks ergodicity. This nonergodicity of HRV is a liability to clinical care because the 
raw RRi series fails to converge toward an average. Without this convergence, any sequence of RRi cannot be 
deemed sufficiently representative—whether of the patient’s long-term HRV or groups with a definitive clinical 
diagnosis or prognosis. We found that many of the most conventional linear descriptors are all as nonergodic 
as the raw RRi series they summarize. We also identified that the primary source of these nonergodicities is 
the very temporal structure of HRV and its cascade-dynamical nature. Afterward, we hypothesized that this 
very origin of nonergodicities might hold the key to the ergodic descriptions of HRV. The cascade-dynamical 
descriptors HfGn and tMF confirmed this hypothesis, provided ergodic descriptions of the nonergodic HRV, 
and could also specifically differentiate clinical groups. However, our survival analysis indicated that even HfGn 
and tMF cannot sufficiently predict post-CHF prognosis. Previous works exploring the usefulness of cascade-
dynamical descriptors have often relied on a suite of descriptors, including those sensitive to the non-Gaussian 
statistics of  HRV33,34,96–101. This suggests that it might be best to employ cascade-dynamical descriptors, like HfGn 
and tMF , alongside more traditional descriptors to achieve maximum predictivity, specificity, generalizability, 
and reproducibility.

The widespread adoption of smartwatches and other wearable biosensors with heart-rate monitoring capa-
bilities has sparked hope for the early detection of cardiovascular diseases. However, the belief that more data is 
sufficient to improve predictions is overly optimistic and misguided. Machine learning/artificial intelligence (ML/
AI) models are being developed to achieve highly accurate, sensitive, and specific measures of cardiovascular 
health; however, to aptly capitalize on these powerful tools, the need for a theoretical understanding of heart rate 
variability must be addressed. Despite the availability of vast amounts of data, the advancement in understanding 
the nature of heart rate variability has been modest despite years of work and thousands of scientific publica-
tions. This limitation prevents us from making meaningful inferences using ML/AI models. The current reliance 
on manual or automatic feature  extraction110–115 is problematic since these features may not suitably reflect the 

Figure 6.  Kaplan-Meier cumulative survival curves of patients with congestive heart failure—both 
nonsurvivors and survivors. (a) Stratified to patients with long-range correlations in HRV, HfGn ≤ Mdn 
and HfGn > Mdn , with log-rank statistics. (b) Stratified to patients with multifractal nonlinearity in HRV, 
tMF ≤ Mdn and tMF > Mdn , with log-rank statistics. The cutoff points for dichotomization were determined by 
the respective descriptor’s median (Mdn). Shaded areas indicate 95% confidence intervals. n denotes the number 
of patients in a subgroup, with the number of deaths during the observation period in parentheses. The obtained 
hazard ratios 0.814[0.619, 1.010], p = 0.295 for HfGn and 0.846[0.652, 1.040], p = 0.391 for tMF indicate that 
these descriptors are not sufficient for reliable prognostics.
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primary causal mechanisms and be too much dependent on contextual  variables116–119. This study emphasizes 
that the current optimism surrounding the use of wearables and ML/AI models to detect cardiovascular diseases 
must be accompanied by a deeper understanding of the ergodicity-breaking behavior of HRV.

Our conclusions merit urgent attention as they show the unreliability of prevalent linear descriptors of HRV-
like mean-based parameters. We have shown that some of the most intuitive conventional descriptors of HRV, like 
mean-based descriptors, are nonergodic. In contrast, cascade-dynamical descriptors, such as tMF , can improve 
the assessment of cardiovascular health when used along with traditional linear descriptors. These results align 
with those of previous studies that had reported that nonlinear descriptors could provide additional prognostic 
information compared to conventional linear  descriptors39,42,97,99,101, e.g., short-term scaling exponent is a better 
predictor of mortality or other primary endpoints in cardiovascular  patients120,121. Moreover, such nonlinear 
descriptors have even been found to be reproducible across different  populations122–124 and contexts, e.g., receiv-
ing or not receiving beta-blockers125, and different times and methods of  measurement39,123.

Our results also show that a descriptor’s ergodicity is necessary but insufficient for its prognostic capability. 
Although HfGn and tMF provided ergodic descriptions of HRV, they failed to predict mortality in CHF patients. 
Thus, although ergodicity is necessary for generalizable and reproducible inferences, to reach the utmost specific, 
generalizable, and reproducible assessment, combining descriptors that provide ergodic descriptions, like the 
cascade-dynamical descriptors investigated here, with other descriptors, like the conventional ones. These cascade 
dynamics descriptors encapsulate a pivotal facet of physiological functionality and remain firmly rooted in theo-
retical validity. Although the precise governing mechanism underlying the intricate heart rate dynamics remains 
elusive, a study by Lin and  Hughson37 has drawn attention to a captivating analogy between heart rate dynamics 
and turbulence. This analogy is unveiled through the revelation of structural parallels within the realm of mul-
tifractal  formalism126—specifically, Lin and Hughson established a correlation between heart rate increments 
and spatial velocity differences within a stochastic cascade process, which serves as a model for hydrodynamic 
turbulence. In our present investigation, we have harnessed this concept together with long-range correlations 
characterized by the fractal Hurst exponent to delineate the heart’s operation at a critical  juncture127,128. Fluc-
tuations occurring within systems operating near critical points are inherently entwined with scale invariance 
and universal behavior, as encapsulated by the scaling  function129,130. Consequently, we could access the ergodic 
manifestation of these scale-invariant structures quantified by our cascade-dynamical  descriptors73,81,82.

To also compare the nonlinear descriptors investigated here, it must be noted that HfGn is primarily a monof-
ractal descriptor and is best suited to describe series generated based on one fractal-scaling exponent. However, 
the modeling of cascade dynamics due to nonlinear interactions across scales inherent to HRV is beyond the 
scope of HfGn and requires multifractal  formalism47,106,131. Monofractal fluctuations such as fGn are ideally 
defined exhaustively by single fractional exponents HfGn and fall cleanly within the linear model through an 
autocorrelation function indicative of fractional  integration132,133. The nonlinearity of interactions across scales 
requires not only one but many fractional scaling exponents in addition to strictly linear long-range correla-
tions. Hence, multifractal modeling is necessary to analyze the putative cascade-dynamical route to nonergodic-
ity  thoroughly73,81,82, i.e., the inherently multifractal descriptor, tMF , is superior to HfGn in encoding nonlinear 
interactions across scales, which is characteristic of HRV.

It is important to recognize that ergodicity functions on various levels, including those of the individual and 
the group. When referring to an individual, ergodicity refers to the capacity to generalize through time. On the 
other hand, it entails extrapolating from a group level to an individual level when observed in a group setting. 
The former is ideal since it is compatible with personalized medicine; however, the latter situation is less prefer-
able unless we support non-personalized medicine and more inclusive species-wide strategies. We mainly relied 
on the ergodicity breaking parameter EB102,103,134, which reflects a strictly intraindividual analysis. Specifically, 
the EB metric refers to the time average across various epochs within the same measurement series, i.e., intra-
series variation of the mean, not inter-series variability. When we compare EB to shuffled versions of the same 
measurement series, this comparison again uses the original measurement to construct the standard. In other 
words, EB is never calculated by comparing one participant to another, let alone to any population parameters. 
Nonetheless, our stance is justified because ergodicity-breaking implies the absence of either type of ergodicity 
at the individual and group levels.

At first glance, it can seem absurd to seek ergodicity in a physiological measurement because biological 
and psychological processes routinely break  ergodicity69,70,72,74,135–140. However, biological and physiological sci-
ences explicitly identify those scales and spans where ergodicity holds. They do so because ergodicity supports 
the clearest information-theoretic and predictive modeling that our statistics could marshal for understanding 
biology and  physiology141. This carving out of ranges where ergodicity holds might be why we still have many 
valuable biomarkers used in clinical practice and established through extensive group data. Indeed, at clinically 
relevant timescales, the best biomarkers have been those with little temporal change, allowing the expectation 
of consistent repetition throughout time for each individual and accurately reflecting their biological status. 
We usually prefer such intraindividual ergodicity rather than the less likely ergodicity at the scale of a whole 
population of organisms. Whereas ergodicity is likely to fail at the scale of a species population, the best hope 
for biomarkers is with ergodicity within the intraindividual variation, such as might support a more context-
sensitive, personalized clinical approach.

Some other points also warrant further attention. For more comprehensive employment of nonlinear descrip-
tors, such as those proposed here, especially in traditional medical settings, it might be necessary to provide more 
intuitive interpretations for clinicians and educate clinicians so that the biological basis of these mathematical 
parameters is  clear28. Also, cascade dynamics is only one of the mechanisms that can lead to ergodicity-breaking 
physiological variabilities. It is still being determined whether all such mechanisms could be modeled as cascade 
processes (e.g.,95). Despite the central role of cascade processes in biomedical  explanation142, we hope that future 
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investigations examine a broader class of anomalous diffusion  regimes143–152 that can also lead to ergodicity-
breaking physiological variabilities. Further work is needed to determine whether cascade-dynamical descriptors 
enable reproducible health assessment when the sources of ergodicity breaking are more nuanced. The statistical 
modeling framework presented in the present study will be fundamental in guiding these investigations.

This study presents several salient limitations warranting scrutiny: First and foremost, excluding patients 
with cardiac pacemakers represents a notable constraint. However, we must recognize that patients possessing 
dual-chamber devices, thoughtfully programmed to forestall atrial pacing, could have been judiciously integrated 
into the analytical framework. In such instances, the sinus rate and rhythm regulation would have mirrored 
those observed in non-paced patients. This consideration bears particular relevance in light of the escalating 
prevalence of CHF patients undergoing cardiac resynchronization therapy. Secondly, it is conceivable that the 
prognostic potential of the cascade-dynamical descriptor may have been obscured by the relatively modest 
sample size, comprising a mere cohort of 108 CHF patients. Consequently, it becomes imperative to embark 
on further inquiries to unravel the prognostic import of the cascade-dynamical descriptors within the realm of 
CHF prognosis. In summation, notwithstanding the commendable contributions engendered by this study, it is 
paramount to acknowledge and systematically address these limitations. Such endeavors are quintessential for 
fostering a more encompassing comprehension of the repercussions and applicability of the findings, particularly 
within the context of biomarker research.

Eventually, the challenges faced in this study and our proposed solutions should be unrestricted to the case 
of HRV and cardiovascular health. nonergodicity and cascade dynamics abound in biological processes and 
are regularities—not exceptions. Much more attention must be paid to the ergodicity of investigated biological 
phenomena. Moreover, in cases of ergodicity breaking, we have shown here and in previous  studies73,81,82 that 
cascade dynamics should be considered one of the primary candidates for its origin and that capturing this origin 
through nonlinear, multifractal, and cascade-dynamical descriptors may be the key to ergodically describing 
nonergodic phenomena. The importance of these insights cannot be exaggerated as they are crucial for reliable 
and reproducible diagnosis and prognosis across all fields. nonergodicity may be a signature of life, but seeking 
ergodicity in our generalizations and causal reasoning is pivotal for arriving at generalizable and reproducible 
digital biomarkers of health and disease.

In pragmatic terms, our investigation illuminates the inherent constraints of conventional biomarker descrip-
tors predicated on the mean and variance calculations derived from raw R-R interval data. These erstwhile mark-
ers exhibit a pronounced nonergodic and non-specific character. In contrast, cascade-dynamical descriptors, 
exemplified by the Hurst exponent and multifractal nonlinearity, furnish a conspicuously more ergodic and 
precise portrayal of HRV. The discerned outcome carries profound implications, as it intimates that our cascade 
dynamics-centered methodology can unearth biomarkers of superior reliability germane to the domains of heart 
disease and stroke. This addresses a critical lacuna endemic to contemporary clinical practice, charting the course 
for integrating ergodicity paradigms into digital biomarker exploration. This paradigm shift holds the promise 
of catalyzing advancements in risk stratification and diagnostic precision, thereby auguring tangible enhance-
ments in the quality of patient care within the intricate realm of cardiovascular health. Future inquiries should 
delve further into the comparative evaluation of our cascade-dynamical HRV descriptors vis-á-vis established 
clinical biomarkers, scrutinizing their synergistic potential to yield an amalgamated diagnostic and prognostic 
arsenal of heightened potency.

Theoretical and practical implications of ergodicity in mining physiological data for biomark‑
ers: the curious choice of RRi series
A significant challenge in using the RRi series to yield a biomarker is the requirement for ergodicity. The standard 
linear descriptors fail to offer an ergodic description of nonergodic HRV. Theoretical work had previously found 
that time series like HRV with temporal correlations or non-Gaussian histograms thwart ergodic characterization 
by linear  descriptors73,81,82. The same theoretical work had also found that descriptors derived for cascade-like 
dynamics, HfGN and tMF , could do better. We see in the present results that the ergodic description these cascade-
dynamical parameters provide is, at once, better than that from linear descriptors but also only suitable for short 
time windows. The EB for HfGn and tMF for the original RRi series had decays comparable to the shuffled RRi 
series only for the smallest epochs. Beyond short epochs on the order of 5 epochs, HfGn series describing the 
RRi series over longer timescales have comparable ergodicity breaking as the prior linear descriptors. We could 
punt this limitation back to the fact that the linear model has room to encompass the linear autocorrelation 
encoded by HfGn . By such logic, tMF should be better at ergodically describing the nonergodic HRV because it 
encodes the nonlinear interactivity capable of breaking  ergodicity81. However, the ergodicity breaking of the RRi 
series is so rampant that tMF now only provides a fleeting improvement over HfGn—tMF provides more ergodic 
description across all epochs than all prior descriptors but only for the surviving CHF case. This group showed 
EB for the original RRi series that decayed comparably to the shuffled RRi series across all epochs only in the 
CHF nonsurviving case. In healthy participants, tMF was scarcely better than HfGn , yielding EB-vs.-epoch cures 
resembling results for HfGn with the decay of EB resembling those for the shuffled RRi series for slightly longer 
epochs. In CHF nonsurviving case, tMF exhibited ergodicity breaking similar to HfGn across all epochs, with the 
EB-vs.-epoch cures for the original RRi series exhibiting shallow decay than the shuffled RRi series over short to 
medium epochs and even more shallow decay over the longer epochs.

These results reflect a convergence of multiple constraints all at once. First, finite-size limitations are a peren-
nial constraint on empirical work, preventing a clean resemblance to the theoretical work. For instance, even 
theoretical work using simulated time series with lengths customary to most empirical work rarely shows EB 
converging to zero, even for the shuffled time  series73,81,82. Second, previous theoretical work has already shown 
that the non-Gaussianity and temporal correlations implicit in cascade dynamics can together make the ergodic 
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characterization by HfGn mediocre, i.e., showing neither the non-decay of EB for characteristically nonergodic 
process nor the same rapid decay of EB for tMF

81. Third, the non-Gaussianity of the HRV could be so excessive 
as to introduce asymmetric multifractal spectra (e.g.,153), and such asymmetry could be such as to cloud the tMF 
with surplus meaning. For instance, the tMF offers a way to test for multifractality arising from nonlinearity as 
the marginal difference in spectrum width between original and surrogate spectra (e.g.,  ref47). Nevertheless, this 
proposed difference comes traditionally without clarifying how each side of the multifractal spectrum contributes 
to that marginal difference between original and surrogates. It is meanwhile well known that the left side of the 
spectrum is often more stable than the right for finite-length empirical  series154–159. Hence, for time series with 
such multifaceted sources of ergodicity breaking as the RRi series, it is likely that tMF is a crude simplification 
of a multifractal spectrum with more asymmetric nuance than a simple t-test can convey. Non-Gaussianity and 
finite-size limitations on the RRi series may increase tMF for reasons that do not reflect nonlinearity. This point 
warrants reexamination of how we use t-tests for multifractal tests of nonlinearity, let alone how we use such 
tests as biomarkers.

These results point to two broader concerns about how we even begin approaching the theoretical and 
methodological work implicit in mining physiological data for biomarkers. First, it may be worth considering 
the rationale for using the RRi series in the first place—given current wisdom about the RRi series as containing 
nonlinear correlations across multiple timescales, treating each RR interval as an isolated event is a curious 
choice. The reduction of the ECG time series to an interval series through first-differences (i.e., subtractions 
of previous R-event time from current R-event time) is a methodological choice that could have yet-unknown 
implications for the reliability of any signal-processing outcomes that follow (e.g.,  ref160). Although this choice 
of how to reduce a raw series for subsequent analysis may be explicitly theoretical or may reflect convenience 
or habit, the fact that it can have implications for the reproducibility of a result may give us pause. Indeed, it is 
alarming that, at this late date, it remains an ongoing research question how to classify and detect the peaks in 
the QRS complex of an ECG  record161,162.

Second, and more deeply theoretically, the heterogeneity of EB-vs.-epoch curves for empirical applications 
instead of theoretical demonstrations raises old and persistent questions about how to envision ergodicity. In 
effect, what sort of variable is ergodicity? Is it a dichotomy in which systems are or are not ergodic, with no 
gradation or grey areas between (e.g.,  ref163)? Such a position feels formally clean, but it may raise questions that 
reflect a pretheoretical choice instead of a conclusion informed by empirical tests. This choice presents some 
steep challenges for future scientific  enterprise164. Then again, is ergodicity more of a continuum? There has been 
a decades-long tradition of dabbling in considering ergodicity as a continuous property that can become “more” 
or “less”—or even “quasi”165–178. This latter position sometimes deals in quotation marks around these terms as 
though to dodge the critique of being mush-mouthed or nonspecific—as though defending against or reacting 
to the claims to the clarity of theories enlisting ergodicity-as-dichotomy. The time may come when the practical 
need for biomarkers brings enough empirical scientists to the theoretical concern of ergodicity. Measurements 
like the RRi series and EB curves they yield may be an essential catalyst for the following dialogue. We suspect that 
the theoretical clarity from dichotomy may need to give way to some compromise with ergodicity-as-continuum 
if we are to confront the practicalities of diagnosis. Theoretical clarity and empirical/applied practicality reflect 
different motivations. Still, ergodicity-as-continuum may offer no less and more theoretical clarity—new 
theoretical clarity that could advise the interpretation of such heterogeneous EB curves.

Methods
Each patient gave informed written consent with full knowledge of the details. The ethics committee of Fujita 
Health University approved the research, which followed the guidelines stated in the Declaration of Helsinki. 
All data were fully anonymized before we accessed them.

Subjects
Based on the data of one of our previous  studies99, we retrospectively enrolled the patients referred to the hos-
pital of the Fujita Health University from January 2000 to December 2001 for assessment or treatment of CHF. 
24-hour monitoring of Holter ECG was conducted before their hospital discharge. To be eligible for this study, the 
patients had to be in normal sinus rhythm and had Holter ECG recordings whose periods taken up by artifacts 
or noise were less than 5% . No intravenous positive-inotropic agents or vasodilators were administered during 
the Holter ECG recordings. We excluded patients with chronic or paroxysmal atrial fibrillation, permanent or 
temporary cardiac pacemakers, active thyroid disease, or malignancy.

Follow‑up and endpoint
We recorded the baseline data upon hospital discharge and the time-to-event information for each subject in a 
database. We then periodically sent questionnaires to patients or their families during the follow-up period and 
conducted telephone interviews to gather mortality information. Death from progressive heart failure was defined 
as death resulting from multi-organ failure caused by the progression of pump failure, and sudden death was 
defined as either witnessed cardiac arrest or death within one hour of onset of acute symptoms or the unexpected 
death of a patient known to have been well within the previous 24 hours.

Analysis of holter ECG
Using proprietary software, we digitized ECG signals at 125 Hz and 12 bits (Cardy Analyzer II, Suzuken Co., 
Ltd., Nagoya, Japan). We included only recordings with at least 22 hours of data in the analysis and > 95% of 
quantified sinus beats. Although the Cardy Analyzer II software had detected and labeled all QRS complexes 
in each recording, we manually corrected any errors in R-wave detection and QRS labeling. We then exported 
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the individual files containing the duration of individual RRi intervals and morphology classifications of 
individual QRS complexes (normal, supraventricular, and ventricular premature complexes, supraventricular, 
and ventricular escape beats). We analyzed the 24-hour sequence of intervals between two successive R waves of 
sinus rhythm (i.e., heart rate variability or HRV). To avoid the adverse effects of any remaining errors in detecting 
the R wave, we reviewed large ( > 20% ) consecutive RRi interval differences until all errors were corrected. In 
addition, when we encountered atrial or ventricular premature complexes, we interpolated the corresponding 
RRi intervals by the median of the two successive beat-to-beat intervals. We also confirmed that no sustained 
tachyarrhythmias were present in the HRV recordings. We then interpolated the observed RRi series with a cubic 
spline function and resampled at an interval ( �t ) of 500 ms (2 Hz), yielding interpolated RRi series.

A previous study employing the same dataset, as reported by Kiyono et al.99, did not reveal any noticeable 
distinctions related to sex, disease severity based on the New York Heart Association classification, prevalence 
of ischemic heart disease, or ventricular premature beat frequency when comparing survivors and nonsurvivors. 
Furthermore, no significant differences were observed in key heart rate parameters, including mean RRi, time- 
and frequency-domain heart rate variability (HRV) measures, or the fractal exponents α1 and α2 , between the 
two groups.

Estimating descriptors of HRV for epoch series
We computed the following descriptors of HRV—linear descriptors over nonoverlapping 500-beat epochs 
extracted from the RRi series and fractal and multifractal descriptors over nonoverlapping 1000-sample epochs 
extracted from the interpolated RRi series. Hence, we computed fractal and multifractal descriptors in the time 
domain, as both are time-domain analytical methods. We computed these descriptors for the original (i.e., 
unshuffled) and a shuffled counterpart (i.e., a version with the temporal information destroyed) of each RRi 
series.

Conventional linear descriptors
We computed four linear descriptors of HRV. (i) Mean of successive RR intervals (M). (ii) Root mean square of 
successive RR intervals (RMS) mathematically defined as

(iii) Number of pairs of successive RRi intervals that differ by more than 50 ms ( NN50 ). (iv) The percentage of 
successive RRi intervals that differ from each other by more than 50 ms ( pNN50).

Fractal‑scaling descriptor of long‑range correlations using monofractal detrended fluctuation analysis
Detrended fluctuation analysis (DFA) computes the Hurst exponent, HfGn , quantifying the strength of long-range 
correlations in  series179,180 using the first-order integration of T-length series x(t):

DFA computes root mean square (RMS; i.e., averaging the residuals) for each linear trend yn(t) fit to Nn 
nonoverlapping n-length bins to build a fluctuation function:

f(n) is a power law,

where HfGn is the scaling exponent estimable using logarithmic transformation:

Higher HfGn corresponds to stronger long-range correlations.

Multifractal spectrum width based on the direct estimation of singularity spectrum
Chhabra and Jensen’s181 direct method estimates multifractal spectrum width �α by sampling a series x(t) at 
progressively larger scales using the proportion of signal Pi(n) falling within the vth bin of scale n as

As n increases, Pv(n) represents a progressively larger proportion of x(t),

(6)RMS =

√
√
√
√ 1

T

T∑

t=1

|x(t)|2.

(7)y(i) =

i∑

k=1

(
x(k)− x(t)

)
, i = 1, 2, 3, . . . ,T .

(8)f (v, n) =

√
√
√
√ 1

Nn

Nn∑

v=1

(
1

n

n∑

i=1

(
y
(
(v − 1) n+ i

)
−yv(i)

)2
)

, n = {4, 8, 12, . . . } < T/4.

(9)f (n) ∼ nHfGn ,

(10)log f (n) = HfGn log n.

(11)
Pv(n) =

v·Nn∑

k=(v−1) n+1

x(k)

∑
x(t)

, n = {4, 8, 16, . . . } < T/8.
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suggesting a growth of the proportion according to one “singularity” strength α133. P(n) exhibits multifractal 
dynamics when it grows heterogeneously across time scales n according to multiple singularity strengths, such 
that

whereby each vth bin may show a distinct relationship of P(n) with n. The width of this singularity spectrum, 
�α = (αmax − αmin) , indicates the heterogeneity of these  relationships182,183.

Chhabra and Jensen’s181 method estimates P(n) for Nn nonoverlapping bins of n-sizes and transforms them 
into a “mass” µ(q) using a q parameter emphasizing higher or lower P(n) for q > 1 and q < 1 , respectively, in 
the form

Then, α(q) is the singularity for mass µ-weighted P(n) estimated as

Each estimated value of α(q) belongs to the multifractal spectrum only when the Shannon entropy of µ(q, n) 
scales with n according to the Hausdorff dimension f(q)181, where

For values of q yielding a strong relationship between Eqs. (15) and (16)—in this study, correlation coefficient 
r > 0.9975 , the parametric curve (α(q), f (q)) or (α, f (α)) constitutes the multifractal spectrum and �α (i.e., 
αmax − αmin ) constitutes the multifractal spectrum width. r determines that only scaling relationships of 
comparable strength can support the estimation of the multifractal spectrum, whether generated as cascades 
or surrogates. Using a correlation benchmark aims to operationalize previously raised concerns about mis-
specifications of the multifractal  spectrum184.

Surrogate testing using Iterated Amplitude Adjusted Fourier Transformation (IAAFT) generated t‑statistic, tMF

While multifractality is necessary for cascade-like interactivity, multifractality is not conclusive evidence of 
cascade-like interactivity, as it can follow from other sources, e.g., linear autocorrelation and outliers in the 
 histogram185. To identify whether non-zero multifractal spectrum width (i.e., �α > 0 ) reflected multifractality 
due to nonlinear interactions across scales, we compared �α for the original and shuffled RRi series to �α for 
32 iterated amplitude adjusted Fourier transform (IAAFT)  surrogates186,187. IAAFT randomizes original values 
time-symmetrically around the autoregressive structure, generating surrogates with randomized phase ordering 
of the series’ spectral amplitudes while preserving linear temporal correlations. We refer interesting readers to 
Kelty-Stephen et al.107 for a step-by-step guide to generating the IAAFT surrogates for any series. The resulting 
surrogate series should thus have the same values as the original series and thus the same mean and variance. 
It should also have the same amplitude spectrum and autocorrelation function as the original series. The one-
sample t-statistic, tMF takes the subtractive difference between �α for the original series and that for 32 surrogates, 
dividing by the standard error of �α for the surrogates.

Estimating ergodicity breaking parameter, EB
Ergodicity can be quantified using a dimensionless statistic of ergodicity breaking parameter, EB , also known as 
the Thirumalai-Mountain  metric102,103 and already mentioned by Rytov et al.134, computed as

where δ2(x(t)) =
∫ t−�

0 [x(t ′ +�)− x(t ′)]2dt′
/
(t −�) is the time average mean-squared displacement of the 

stochastic series x(t) for lag time � . This relationship is effectively the variance of sample variance divided by the 
total-sample squared variance. Rapid decay of EB to a finite asymptotic value for progressively larger samples, 

(12)P(n) ∝ nα ,

(13)P(nv) ∝ nαv ,

(14)
µv(q, n) =

[
Pv(n)

]q

Nn∑

j=1

[
Pj(n)

]q
.

(15)

α(q) = − lim
Nn→∞

1

lnNn

Nn∑

v=1

µv(q, n) ln Pv(n)

= lim
n→0

1

ln n

Nn∑

v=1

µv(q, n) ln Pv(n).

(16)

f (q) = − lim
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1

lnNn
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v→0

1

ln n
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µv(q, n) lnµv(q, n).

(17)EB(x(t)) =

〈[
δ2(x(t))

]2〉
−

〈
δ2(x(t))

〉2

〈
δ2(x(t))

〉2
.
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i.e., EB → 0 as t → ∞ implies ergodicity. Thus, for Brownian motion EB(x(t)) = 4
3 (

�
t )

148,188. Slower decay indi-
cates less ergodic systems in which trajectories are less reproducible, and no decay or convergence to a finite 
asymptotic value indicates strong ergodicity  breaking104,105. EB(x(t)) thus allows testing whether a given series 
fulfills ergodic assumptions or breaks ergodicity. For instance, it has been shown that for fractional Brownian 
motion (FBM)104,105,

The present work is less focused on firmly meeting the criterion of EB converging to zero within our finite 
samples. Instead, we compared the original and shuffled RRi series to assess ergodicity breaking instead of 
strict convergence of EB to zero. We computed EB for each original and shuffled RRi series (range = T/50 ; lag 
� = 10 ) and for each epoch series of M, RMS, NN50 , PNN50 , HfGn , and tMF for the original and shuffled RRi 
series (range = Nepochs/2 ; lag � = 1).

Monte Carlo simulations
We performed Monte Carlo simulations to test our hypothesis that ergodicity breaking by various linear and 
cascade-dynamical HRV descriptors could compromise these descriptors’ reliability as diagnostic biomarkers. 
We randomly sampled 1000-sample RRi series from 24-hour recordings for each individual and performed linear 
mixed-effects models separately on M, RMS, NN50 , pNN50 , HfGn , tMF , values calculated from these series. We 
used linear mixed-effects models with each descriptor as the dependent variable and the participant group as the 
independent variable. The t-statistic and the resultant p value were saved across the 1000 iterations. We performed 
all mixed-effects modeling in MATLAB 2022b (Mathworks, Inc., Natick, MA) using the function fitlme().

Survival analysis
We examined whether HfGn and tMF were predictive of death using univariate Cox proportional hazards regres-
sion  analysis108,109. We used the Mantel-Haenszel log-rank test to compare Kaplan-Meier cumulative survival 
curves to examine the impact of identified risk factors on survival. We performed all survival analysis in R189 
using the function coxph() from the package “survival”190. The sex ratio among the survivors, as presented in 
Table 1, exhibits a notable skew towards males (42M/27F) when contrasted with the non-survivors (19M/20F). 
Given that sex constitutes a pivotal physiological determinant in cardiac health, it merits consideration in inter-
preting results. Nonetheless, it is worth noting that a prior study utilizing the same dataset failed to uncover 
any discernible disparities concerning sex between survivors and  nonsurvivors99. Consequently, we lacked a 
compelling rationale to anticipate that sex would influence any facet of the current analysis.

Data availability
The data that support the results reported herein can be obtained upon request from the corresponding author.
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