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Anxiety associated with perceived 
uncontrollable stress enhances 
expectations of environmental 
volatility and impairs reward 
learning
Marc Guitart‑Masip 1,2,3*, Amy Walsh 1,3,4, Peter Dayan 5,6 & Andreas Olsson 2,3,4

Unavoidable stress can lead to perceived lack of control and learned helplessness, a risk factor for 
depression. Avoiding punishment and gaining rewards involve updating the values of actions based 
on experience. Such updating is however useful only if action values are sufficiently stable, something 
that a lack of control may impair. We examined whether self‑reported stress uncontrollability during 
the first wave of the COVID‑19 pandemic predicted impaired reward‑learning. In a preregistered study 
during the first‑wave of the COVID‑19 pandemic, we used self‑reported measures of depression, 
anxiety, uncontrollable stress, and COVID‑19 risk from 427 online participants to predict performance 
in a three‑armed‑bandit probabilistic reward learning task. As hypothesised, uncontrollable stress 
predicted impaired learning, and a greater proportion of probabilistic errors following negative 
feedback for correct choices, an effect mediated by state anxiety. A parameter from the best‑fitting 
hidden Markov model that estimates expected beliefs that the identity of the optimal choice will 
shift across images, mediated effects of state anxiety on probabilistic errors and learning deficits. Our 
findings show that following uncontrollable stress, anxiety promotes an overly volatile representation 
of the reward‑structure of uncertain environments, impairing reward attainment, which is a potential 
path to anhedonia in depression.

To obtain rewards successfully from complex, ever-changing environments, people flexibly learn to adapt behav-
iour based on prior  experience1–3. Better than expected outcomes elicit positive prediction errors, while worse 
than expected outcomes elicit negative prediction errors, thus updating estimated action values to support 
optimal  choices4,5. Stress can interfere with this learning process, damaging reward  maximization6 and impair-
ing avoidance of aversive  outcomes7. For example, anticipating a shock impairs performance in probabilistic 
reward learning  tasks8–10. It is, however, unknown if the perceived uncontrollability of stress (i.e., unavoidable 
through one’s actions; a key form of  helplessness11) determines the extent of these cognitive  consequences12,13.

When actions result in desired outcomes, a subjective sense of controllability or agency arises that leads to 
exploration and goal-directed  action12,14,15. It is thought that expectations regarding controllability are deter-
mined through generalization from experiences in similar  contexts16–18. When actions do not lead to desired 
consequences, a sense of uncontrollability leads to reflexive, passive behaviour and learned helplessness (a fail-
ure to attempt to avoid controllable stressors in new  contexts13,15,16). Given the contribution of  stress19–21 and 
 uncontrollability22 to aspects of depression, learned helplessness is a widely used model of  depression13,21,23.

It is well established that learned helplessness disturbs the normal course of action  learning13,21. However, 
there are many potential computational mechanisms that may give rise to impaired learning. Some of these 
have been systematically studied in learned helplessness and anhedonia, namely issues with reward processing, 
and biases or deficits in the learned associations between stimuli and/or actions and  rewards21,24–29. Another 
potential source of the observed deficits in action learning may be an inability to adapt behaviour appropriately 
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when changing reward contingencies induce second-order  uncertainty30. In these circumstances, problems may 
arise for learning if subjects believe they cannot control whether environmental relationships are long lasting. 
In fact, one of the most robust findings in both depression and state and trait anxiety is a disruption to reward 
learning coming from dysfunctional behavioural adjustments to the rate of change in reward  contingencies24,31–36. 
However, the ability to adapt to changing reward contingencies in learned helplessness has not previously been 
studied.

In this preregistered study, we ask whether uncontrollable stress is associated with impaired reward learn-
ing and examine possible computational mechanisms by which this might arise. The COVID-19 pandemic 
presented a stressful context, with naturally varying subjective responses across  individuals37,38. During the 
first-wave of the COVID-19 pandemic in April 2020, 427 online participants self-reported levels of perceived 
uncontrollable stress and lack of self-efficacy39, depressive  symptoms40, state and trait  anxiety41,42, and perceived 
risk of COVID-1943. Participants also performed two reward learning tasks (Fig. 1) adapted from Leong et al44 
that differed in the level of second-order uncertainty. 49 of the same participants completed an identical session 
approximately 3 days later.

In both tasks, the goal was to maximise monetary reward. On each trial, participants chose one of three verti-
cal columns, each comprising three images. Images in each horizontal row were from the same class (landscape; 
mode of transport; animal) but were randomly shuffled within row on each trial. On any given trial, one of the 
images (e.g., a cat) was the target. Participants had to learn by accumulating evidence from their composite 
choices. Participants first completed the signalled task in which they were informed that the target had changed 
at the start of each new game of 25 trials (5 games in total). Choosing the composite stimulus with the target had 
a reward probability of 0.75 whereas non-target composites had a reward probability of 0.25. Participants then 
completed the reversal task, which comprised one continuous game of 125 trials in which the target changed 
without warning every 20–30 trials. Participants were informed about the existence of the reversals. As the rever-
sal task was more difficult than the signalled task, we increased reward probability upon choosing the target to 
0.8 (0.2 for non-targets). Participants were informed about reward probabilities for both tasks. As the learning 
task is very challenging, we reasoned that it would be easier for participants to learn to perform the task without 
reversal first, and only afterwards to face the reversal component. We expected that uncontrollable stress would 
impair learning in both tasks. To examine possible cognitive mechanisms by which uncontrollable stress might 
impair reward learning, we compared different computational models that were fit to the participants’ choices.

Figure 1.  A trial diagram showing a rewarded trial (a), and an no reward trial (b). Participants saw a fixation 
cross for 500 ms, followed by the image stimuli until a response was made, or for 2000 ms if they failed to 
respond in time. Participants selected one of the three vertical composite stimuli (comprising one landscape, 
one animal, and one mode of transport) on each trial using the arrow keys (left, down, right). Images in each 
horizontal row were from the same class (landscape; mode of transport; animal) but were randomly shuffled 
within row on each trial. On any given trial, one of the images (e.g., a cat) was the target. Participants had to 
learn by accumulating evidence from their composite choices. Following participants choices, reward feedback 
was presented along with the chosen composite stimulus: a star on reward trials, and a cross on no reward 
trials. If no response was made, an image of a clock was shown to remind participants to respond more quickly. 
Participants first completed the signalled task in which they were informed that the target had changed at the 
start of each new game of 25 trials (5 games in total). Choosing the composite stimulus with the target had a 
reward probability of 0.75 whereas non-target composites had a reward probability of 0.25. Participants then 
completed the reversal task, which comprised one continuous game of 125 trials in which the target changed 
without warning every 20–30 trials. Participants were informed about the existence of the reversals. As the 
reversal task was more difficult than the signalled task, we increased reward probability upon choosing the 
target to 0.8 (0.2 for non-targets).
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Results
Calculating factor scores from the questionnaires
As preregistered, we initially used Exploratory Factor Analysis (EFA) to derive latent factor scores within and 
across questionnaires (see supplementary methods). However, these EFA scores were not reliable as assessed 
on the 49 participants who completed the scales twice 3 day apart  (ICC45,46 ranged between 0.14 and 0.61; see 
Table S.1). This was surprising as the sum scores for each scale and subscale showed good test–retest reliability 
(ICC range: 0.75–0.95). As scales are normally validated using factor analysis, using sum scores implies using a 
model that is different from the validation  model47. As such, the use of sum scores is not  recommended47. We 
deviated from the preregistration and calculated congeneric factor scores, using confirmatory factor analysis to 
produce weighted scores based on previously established structure of the  questionaires47. In this way, the scores 
we used are closer to the latent construct that the scales are meant to measure. See “Materials and methods” for 
details. We also determined whether each scale should be subset into previously established subscales.

Model fit comparison (Table S.2) of the one-factor (full scale) and two-factor (subscales) models determined 
the following factor structure: Uncontrollable Stress; Lack of Self-efficacy; Depression; Perceived Likelihood of 
COVID-19 Risk; Perceived Severity of COVID-19 Risk; State Anxiety (negatively-framed items), State Anxiety 
(positively-framed items), Trait Anxiety (negatively-framed items), and Trait Anxiety (positively-framed items). 
Unlike the EFA factor scores, congeneric scores were test–retest reliable (ICC range: 0.75–0.93; Table S.3).

Impact of uncontrollable stress and state anxiety on reward learning
Distribution of learning measures are displayed in supplemental Fig. S.1. To examine which factors affected 
learning, separately for the signalled and reversal tasks, we ran preregistered generalised logistic mixed-models 
(GLMMs) on accuracy (0, 1), with Trial (centred around 0) as a fixed-effect, and by-subject random intercepts 
and slopes for Trial, thus allowing for between-subject learning variability. We systematically added Factor 
Score × Trial interactions as fixed-effects and then as random-effects in separate models for each of the nine 
factors. Adding random-effect interaction terms did not significantly improve fit of any of the models. We note 
that in the preregistration we planned to use factor scores from the EFA, but because of low reliability we use 
factor scores from the confirmatory factor models.

Learning in the signalled task was not modulated by any of the factors (see Table S.6 for GLMMs). Therefore, 
the signalled task was not considered further.

The reversal task GLMM results are presented in Table 1. Importantly, as predicted in the preregistration, 
an Uncontrollable Stress × Trial interaction supported our key hypothesis that perceived lack of stress control-
lability is associated with impaired reward learning. As positively-framed State Anxiety had no effects on learn-
ing, we refer to negatively-framed State Anxiety simply as State Anxiety. State Anxiety significantly predicted 
lower accuracy and impaired learning (a State Anxiety × Trial interaction). With Holm correction for multiple 
 comparisons48 only the State Anxiety × Trial interaction remained significant (Table 1). These significant effects 
were not dependent on using congeneric scores and were replicated when using the respective summed score 
(see supplemental table S.8). Although the Uncontrollable Stress x Trial interaction did not survive the Holm 
correction, it supported our key preregistered and theoretically driven prediction. Indeed, the effects of other 
factors were exploratory in the preregistration. See Fig. 2 for a depiction of effects of Uncontrollable Stress and 
State Anxiety on learning, with a median split of participants for visualisation purposes only (see supplementary 
Fig. S2 for a distribution of the scores for state and trait anxiety as well as the perceived stress scale along with 
stablished cutoffs).

Uncontrollable Stress × Trial and State Anxiety × Trial were entered into a combined GLMM as fixed-effects 
(Fig. 2; Table S.5). Variance inflation factors were < 2.40, indicating that multicollinearity was not an issue (typi-
cal cut-offs are > 5 or 10;49). No effects reached significance: the main effect of State Anxiety was p = 0.057; the 
Trial × State Anxiety interaction was p = 0.080; and the Trial × Uncontrollable Stress interaction was p = 0.349. 
The combined model did not provide a significantly better fit to the data than either of the simpler models (see 
Table S.4for model comparisons). These analyses were followed by an exploratory mediation analysis that did 
not reach significance (see supplementary results).

Impact of uncontrollable stress and state anxiety on proportion of probabilistic errors
We performed preregistered linear regressions examining how the nine factors predicted the proportion of 
probabilistic errors. The proportion of probabilistic errors was the ratio of the number of times participants made 
an erroneous shift away from a correctly chosen learned target after receiving probabilistic negative feedback, 
to the total number of times they received probabilistic negative feedback. In other words, probabilistic errors 
are the proportion of times participants shift away from choosing a learned target following negative feedback 
for a correct response, suggesting pre-emptive anticipation of a target reversal. This measure is evidently not 
meaningful for the signalled task. Not all participants had the opportunity to commit probabilistic errors as some 
never experienced probabilistic negative feedback after meeting the learning criterion of five consecutive correct 
trials. This reduced the sample size for this analysis to 393. The 34 excluded participants were less accurate overall 
(mean proportion correct = 0.329, compared to 0.535 for the included participants), and so the sample included 
in the probabilistic error analyses is skewed towards more accurate participants.

Uncontrollable Stress, negatively-framed State Anxiety, and positively-framed State Anxiety significantly 
positively predicted a greater proportion of probabilistic errors (Table 2). These significant effects were not 
dependent on using congeneric scores and were replicated when using the respective summed score (see sup-
plemental table S.9). However, positively-framed State Anxiety did not survive Holm correction (p = 0.031, 
threshold p = 0.007). In a multiple regression model with the above three factors, only negatively-framed State 
Anxiety significantly predicted higher proportion of probabilistic errors (β = 0.047, p = 0.022; other p’s > 0.439).
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Given that the predicted significant effect of Uncontrollable Stress was non-significant when State Anxiety was 
included in the model, we ran a mediation on probabilistic error proportions with Uncontrollable Stress as the 
predictor and State Anxiety as the mediator (Table 3). State Anxiety mediated 70% of the effect of Uncontrollable 
Stress on probabilistic error proportions (p = 0.028). Thus, uncontrollable stress was associated with a propensity 
to shift choices in anticipation of changes to reward contingencies, an effect which depended on current anxiety.

Computational modelling
To examine possible cognitive mechanisms underlying effects of Uncontrollable Stress and State Anxiety on 
choices, we assessed the ability of a range of models from two families to capture trial-by-trial data (see “Materials 
and methods”). The first family of models includes preregistered variations of classical reinforcement learning 
models (RLMs) in which actions are learned through reward prediction errors and the Rescorla Wagner updat-
ing rule. However, because the RLMs were rather incompetent at explaining the observed choices, we deviated 
from the preregistration and additionally fitted a hidden Markov model (HMM; Fig. 2, panel D). As we did not 
observe any significant effects of our factors on signalled task performance, we only report modelling results 
for the reversal task. For completeness, model comparison results for the signalled task are shown in Table S.9. 
The winning model for the signalled task was an RLM, yet, even there, 34% of participants were better fitted by 
the HMM model.

The most parsimonious account of the reversal task data was provided by an HMM (Table 4; Fig. 2, panel 
D) with three free parameters (Table S.10 shows summary statistics). The identity of the target is a hidden state 
because it cannot be observed directly, but only indirectly through reward feedback after each choice. On each 
trial, the HMM estimates the probability that each of the nine images is the target given the choices and the 
outcome of the trial and uses this to calculate the posterior distribution over the hidden state. This likelihood is 
calculated differently for chosen and unchosen images and is dependent on two free parameters representing: 
the model’s expected probability that a reward is observed when the chosen stimulus includes the target (q); and 
the model’s expected probability that a non-reward outcome is observed when the chosen stimulus does not 
include the target (p). We note that the distribution of p was highly skewed towards 1, which is too high given 
that the notional expected probability of not obtaining a reward when non-target stimuli are chosen was 0.8. By 

Table 1.  Generalised logistic mixed model (GLMM) results for the reversal task: results from the nine 
separate models with Factor Score × Trial interactions. Confidence intervals are 95%. se is the standard error 
of the log odds estimate. Significant fixed-effects and interactions are shown in bold. Log odds estimates can 
be transformed into odds ratios by exponentiating the value. Across these nine models, the coefficients for the 
intercept ranged from: log odds = 0.102, se = 0.025, z = 4.023–4.056, p < 0.001, 95% CI = 0.053–0.152; and for the 
main effect of Trial: log odds = 0.357, se = 0.018–0.019, z = 19.232–19.461, p < 0.001, 95% CI = 0.321–0.394. With 
a Holm correction for multiple comparisons (Holm, 1979) only the negatively-framed State Anxiety x Trial 
interaction remained significant. Although the Uncontrollable Stress × Trial interaction did not survive the 
Holm correction, it supported our key preregistered theoretically-driven prediction; effects of all other factors 
were relatively exploratory. *One asterisk indicates a significant effect before the Holm correction; **two 
asterisks indicate a Holm-corrected significant effect. A Holm correction is more powerful than a Bonferroni 
correction, is valid under the same assumptions, and controls the family-wise error rate. To perform the Holm 
correction, p-values are ordered from smallest to largest. A p-value is significant when pk < α/(m + 1−k), where 
α is the alpha level; m is the number of p-values (18 in this case); and k is the p-value ranking. For all three 
significant effects, the adjusted alpha threshold rounded to 0.003.

Model Fixed effects Log odds se z value p value CI lower CI higher

Uncontroll-able stress
Main effect − 0.045 0.023 − 1.905 0.057 − 0.091 0.001

Uncontrollable stress × Trial − 0.045 0.017 − 2.655 0.008* − 0.079 − 0.012

State anxiety neg-framed
Main effect − 0.065 0.024 − 2.685 0.007* − 0.113 − 0.018

State anxiety × Trial − 0.054 0.018 − 3.047 0.002** − 0.088 − 0.019

Lack of self- efficacy
Main effect − 0.007 0.023 − 0.287 0.774 − 0.051 0.038

Lack of self- efficacy × Trial 0.004 0.017 0.267 0.789 − 0.028 0.037

Depression
Main effect − 0.030 0.024 − 1.240 0.215 − 0.078 0.017

Depression × Trial − 0.006 0.018 − 0.356 0.722 − 0.041 0.028

Likely COVID-19 risk
Main effect − 0.022 0.024 − 0.905 0.365 − 0.069 0.025

Likely COVID-19 Risk × Trial 0.003 0.018 0.181 0.856 − 0.031 0.038

Severity COVID-19 risk
Main effect − 0.007 0.022 − 0.338 0.735 − 0.050 0.035

Severity COVID-19 Risk × Trial − 0.012 0.016 − 0.761 0.446 − 0.043 0.019

Trait anxiety neg-framed
Main effect − 0.044 0.024 − 1.817 0.069 − 0.091 0.003

Trait anxiety neg-framed × Trial − 0.016 0.018 − 0.879 0.379 − 0.050 0.019

State anxiety pos-framed
Main effect − 0.045 0.025 − 1.834 0.067 − 0.093 0.003

State anxiety pos-framed × Trial − 0.033 0.018 − 1.832 0.067 − 0.068 0.002

Trait anxiety pos-framed
Main effect − 0.020 0.024 − 0.801 0.423 − 0.067 0.028

Trait anxiety pos-framed × Trial 0.002 0.018 0.128 0.898 − 0.033 0.037
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contrast, the distribution of q was relatively normal but underestimated the true probability of obtaining a reward 
after selecting a target. After updating, the hidden states are multiplied by a transition matrix characterizing the 
subjective probabilistic relationship between the hidden state on the current trial and that on the next trial. This 
transition matrix is parameterized by a third free parameter, assuming that any new target is chosen uniformly 
amongst the eight other images. More formally, the off-diagonal entries of this transition matrix are set to be 
the transition parameter (tr) divided by 8. The diagonal entries are defined as 1 minus that free parameter and 
describe the probability that the target image remains the same on the next trial.

We examined possible relationships between State Anxiety and Uncontrollable Stress and the three param-
eters from the HMM (q, p, and tr). The positive correlation between State Anxiety and tr was r = 0.124, p = 0.010 
(uncorrected p value). No other correlations were significant. These results suggest that anxiety is associated with 
an increased tendency to believe that the target identity will change, shifting interpretation of negative feedback 
towards a change in reward contingencies rather than being due to chance. This is in line with higher anxiety 
being associated with a higher proportion of probabilistic errors. To test this hypothesis, we ran two explora-
tory mediation analyses with State Anxiety as the treatment variable and tr as the mediator on learning slopes, 

Figure 2.  The effects of Uncontrollable Stress and State Anxiety on reward learning (accuracy across trials) 
in the reversal task (n = 427). (a) Shows reward learning collapsed across games with a median split of 
Uncontrollable Stress scores; and a median split of State Anxiety scores in (b). High scorers are in purple and 
low scorers are in green. These median splits are only for the purpose of visualisation, and we treated the factor 
scores as continuous variables in analyses. Shaded error bars are standard errors of the mean. Solid lines indicate 
the observed data, dotted lines indicate simulated accuracy by the winning computational hidden Markov 
model (HMM, see methods for details). (c) shows the estimates (log odds) from the Generalised Logistic 
Mixed Models (GLMMs) that included the Uncontrollable Stress × Trial interaction alone (yellow), the State 
Anxiety × Trial interaction alone (green), and the combined model with both interactions (purple). Error bars 
reflect 95% confidence intervals around the mean estimates. Error bars that cross the dotted horizontal line 
indicate non-significant effects. For results of the mediation model see Table 3. (d) The observed accuracy data 
(“real data”) and simulated choice data created by the various reinforcement learning models (RLMs), and the 
hidden Markov Model (HMM). ba = beta-alpha; baf = beta-alpha-forget; bafc = beta-alpha-forget-confidence; 
hmm = hidden Markov model with 3 free parameters. The simulations were done by sampling each individual 
subject’s set of parameters 100 times (see “Materials and methods” for details). The HMM is clearly the best 
fitting model to participants’ choices, although we note that the simulated data deviates slightly from the 
observed data from trial 20–30.
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and on probabilistic errors (Table 3). The transition parameter mediated 45% of the relationship between State 
Anxiety and learning (n = 427, p = 0.013), and 34% of the relationship between State Anxiety and probabilistic 
error proportions (n = 393, p = 0.013). The above findings show that anxiety is associated with impaired reward 
learning via a propensity to anticipate changes to reward contingencies, an effect which depends on expected 
beliefs about environmental volatility.

Test–retest reliability of task performance and model parameters from HHM
For the 49 participants who completed the probabilistic reward learning tasks twice, ICC between the two 
sessions was low (ICC(48, 48) = 0.28, p = 0.024, CI = 0.0048–0.52 for the reversal task, and ICC(48, 48) = 0.18, 
p = 0.092, CI = − 0.082 to 0.42 for the signalled task), as is the case for many cognitive  tasks1,12. Although low 
test–retest reliability suggests that our task may be less suited to study individual variability and may result in 
underestimation of effect sizes, our ability to detect significant effects is enhanced by our relatively large sample 
(N = 427).

We also examined test–retest reliability for the three parameters from the winning HMM. Test–retest reli-
ability for p was absent: ICC(48, 48) =  < 0.001, p = 0.500, CI = − 0.26 to 0.27. Test–retest for q was better, ICC(48, 
48) = 0.24, p = 0.042, CI = − 0.03 to 0.49. Test–retest for the tr was relatively high, ICC(48, 48) = 0.48, p < 0.001, 
CI = 0.21–0.67. Importantly, although still relatively low, the reliability for the tr parameter was the highest we 
observed in the current experiment, suggesting that the computational model provides a more robust measure 
of task performance. This is unsurprising as this parameter showed the highest recoverability (r = 0.9096, see 
supplemental Fig. S.3).

Discussion
We found that self-reported uncontrollable stress and state anxiety together predicted impaired performance 
in a probabilistic reversal learning task. Both uncontrollable stress and anxiety were associated with a propen-
sity to commit probabilistic errors, reflecting incomplete learning because of enhanced anticipation of target 
reversals. We also found that Reinforcement Learning Models failed to capture participants’ performance in 
the reversal learning task whereas a Hidden Markov Model (HMM) provided a satisfactory fit to participants’ 
choices. The tr parameter of the HMM reflecting participants’ beliefs that the identity of the target image shifts 

Table 2.  Linear regression model results (n = 393) for the reversal task examining the effect of each factor 
on probabilistic error proportions (preregistered as the ratio of probabilistic errors, and calculated as the 
number of times participants made an erroneous shift away from a correctly chosen target after receiving 
probabilistic negative feedback, divided by the total number of times they received probabilistic negative 
feedback), indexing a tendency to interpret negative feedback as a change in reward contingencies (i.e., a target 
reversal). Confidence intervals are 95%. se is the standard error of the model estimate. With a Holm correction 
 (Holm48) the Uncontrollable Stress, and the State Anxiety (negatively-framed) effects remained significant 
(for both effects, the adjusted alpha threshold rounded to 0.006). The State Anxiety (positively-framed) main 
effect did not survive the Holm correction (threshold .007). Asterisks * indicate a significant effect before 
the Holm correction; ** indicates a Holm-corrected significant effect. A Holm correction is more powerful 
than a Bonferroni correction, is valid under the same assumptions, and controls the family-wise error rate. 
To perform the Holm correction, p-values are ordered from smallest to largest. A p-value is significant when 
pk < α/m + 1−k, where α is the alpha level; m is the number of p-values (18 in this case); and k is the p-value 
ranking.

Model Fixed effects Estimate se t value p value CI lower CI higher

Uncontroll-able stress
Intercept 0.341 0.015 22.647  < 0.001 0.311 0.370

Main effect 0.038 0.014 2.802 0.005** 0.012 0.065

State anxiety
neg-framed

Intercept 0.341 0.015 22.801  < 0.001 0.311 0.370

Main effect 0.051 0.014 3.575  < 0.001** 0.023 0.079

State anxiety
pos-framed

Intercept 0.341 0.015 22.556  < 0.001 0.311 0.370

Main effect 0.031 0.014 2.168 0.031* 0.003 0.060

Trait anxiety
neg-framed

Intercept 0.341 0.015 22.532  < 0.001 0.311 0.370

Main effect 0.026 0.014 1.849 0.065 − 0.002 0.054

Trait anxiety
pos-framed

Intercept 0.341 0.015 22.473  < 0.001 0.311 0.370

Main effect 0.017 0.014 1.161 0.246 − 0.011 0.045

Lack of self-efficacy
Intercept 0.341 0.015 22.448  < 0.001 0.311 0.370

Main effect 0.013 0.014 0.922 0.357 − 0.014 0.039

Depression
Intercept 0.341 0.015 22.510  < 0.001 0.311 0.371

Main effect 0.021 0.014 1.478 0.140 − 0.007 0.050

Likelihood of COVID-19 risk
Intercept 0.341 0.015 22.470  < 0.001 0.311 0.370

Main effect − 0.015 0.014 − 1.077 0.282 − 0.043 0.013

Severity of COVID-19 risk
Intercept 0.341 0.015 22.462  < 0.001 0.311 0.371

Main effect 0.008 0.013 0.587 0.558 − 0.018 0.033
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from trial-to-trial mediated effects of state anxiety on reward learning and probabilistic errors. These findings 
suggest that uncontrollable stress and anxiety are associated with an overly volatile representation of the reward 
structure of the environment, promoting interpretation of probabilistic negative feedback as changes in reward 
contingencies, ultimately impairing reward learning in ambiguous contexts.

The negative results on the signalled task were unexpected but are concordant with the importance of proba-
bilistic errors in driving the effects on the reversal task. In both tasks, an element of first-order uncertainty 
arises from the probabilistic nature of the reward structure. A second-order source of uncertainty is related to 
the volatility of the environment and differs between tasks. Whereas both tasks had frequent changes of reward 
contingencies, their occurrence was known to the participants in the signalled task but occurred silently in the 
reversal task. This results in negative feedback being unambiguous in the signalled task but ambiguous in the 
reversal task. In the latter, negative feedback could be the result of first-order uncertainty present in both tasks 
or a sign that the target image had changed. Accordingly, humans give more weight to unexpected outcomes 
(increased learning rate) in contexts with non-signalled and rapidly-changing reward  contingencies30,32. Thus, 
rather than simply impairing the ability of learning the value of actions from feedback, perceived uncontrollable 

Table 3.  Results from the two causal mediation analyses on reward learning slopes (estimated from the 
GLMM with only Trial as a fixed-effect, with by-subject random-intercepts and slopes for Trial), and the two 
mediation analyses on probabilistic error proportions (Prob Errors), which index the proportion of times 
participants make errors following probabilistic negative feedback for a correct response, after they have 
learned the target. For both variables, we tested whether the effects of uncontrollable stress were mediated 
by state anxiety and whether the effects of state anxiety were mediated by the tr parameter of the HMM 
which estimates expected beliefs about the chance of the target changing identity from trial-to-trial (see 
“Computational modelling”). In other words, probabilistic errors index pre-emptive anticipation of a target 
reversal. State Anxiety is the negatively-framed items factor. Confidence intervals are 95%. The Average Causal 
Mediated Effect (ACME) is the indirect effect of the predictor on the outcome, via the mediator. The Average 
Direct Effect (ADE) is the unmediated effect of the predictor on the outcome. The Total Effect (ADE + ACME) 
is the combined effect of the predictor and mediator on the outcome. Asterisks * indicate significant effects 
(alpha threshold of 0.05). The sample size is indicated in the table; numbers vary in the probabilistic error 
analyses (n = 393) as some participants did not experience ambiguous negative feedback after learning the 
target and so did not have the opportunity to make probabilistic errors.

Predictor Mediator Outcome n Effect Estimate
p
value CI lower CI upper

Uncontrol stress State anxiety Learning slopes 427

ACME − 0.020 0.048* − 0.042 0.000

ADE − 0.014 0.395 − 0.046 0.019

Total effect − 0.034 0.009* − 0.059 − 0.009

Proportion mediated 0.589 0.056 − 0.023 2.353

Uncontrol stress State anxiety Prob errors 393

ACME 0.027 0.023* 0.004 0.051

ADE 0.011 0.530 − 0.024 0.046

Total effect 0.039 0.005* 0.012 0.065

Proportion mediated 0.696 0.028* 0.088 2.462

State anxiety Transition parameter (tr) Learning slopes 427

ACME − 0.019 0.010* − 0.034 − 0.004

ADE − 0.023 0.036* − 0.045 − 0.002

Total effect − 0.042 0.002* − 0.069 − 0.016

Proportion mediated 0.445 0.013* 0.136 0.919

State anxiety Transition parameter (tr) Prob errors 393

ACME 0.018 0.012* 0.004 0.000

ADE 0.034 0.007* 0.009 0.019

Total effect 0.051  < 0.001* 0.023 − 0.009

Proportion mediated 0.341 0.013* 0.093 2.402

Table 4.  Model comparison statistics for the reversal task using the Hierarchical Bayesian Inference toolbox 
(Piray et al.50). RLM refers to Reinforcement Learning Models; HMM refers to the hidden Markov model with 
three parameters. Model frequency indicates the ratio of participants assigned to each model. Exceedance 
probability is the likelihood that each model is the most likely model, considering the possibility that 
differences in model evidence are due to chance.

Model family Model name # Of parameters Model frequency Exceedance probability

RLM Beta-alpha 2  < 0.001 0

RLM Beta-alpha-forget 3 0.090 0

RLM Beta-alpha-forget-confidence 6 0.382 0.001

HMM Hidden Markov model 3 0.528 0.999
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stress and associated anxiety appear to interfere with the ability to flexibly relearn the values of actions in the 
more volatile and ambiguous context of the reversal task.

We used computational modelling to examine possible cognitive mechanisms that might underpin these 
effects. Our preregistered RLMs did not adequately capture participants’ choices in the reversal task. Although we 
expected that RLMs with fixed learning rates would not recapitulate participants’ choices in the reversal  task30,51,52, 
we were surprised by the poor performance of the RLM that uses estimates of confidence to update learning 
 rates53. This suggests that adapting the learning rate is not sufficient to capture how participants adapted to the 
change in reward contingencies in our task, perhaps because of the complexities of the interactions between the 
three images associated with each choice. An additional consideration could be narrowing the focus of attention 
to the relevant category to learn a new  target44. In sharp contrast, our HMM with only three parameters provided 
an excellent fit to participants’ choices in the reversal task, even though the recovered parameters do not reflect 
the statistics of the task. This demonstrates the potential for HMMs to understand the mechanisms underly-
ing reward learning in complex and unstable environments and suggest a computationally simple mechanism 
by which the human brain infers the probability of hidden states. State anxiety positively correlated with the 
parameter of the HMM governing the transition matrix that determines the diffusion of hidden states between 
images from trial-to-trial. In participants with high state anxiety, the hidden states tend to diffuse more freely 
among the stimuli. This suggests that anxiety promotes imprecision in the representation of the reward structure 
of the task with enhanced expectation that established reward contingencies are likely to shift. In the reversal 
task, this belief appears to increase the tendency to interpret negative feedback as a target reversal rather than 
due to chance. Supporting this notion, the transition parameter mediated effects of deleterious effects of state 
anxiety on probabilistic error proportions and reward learning.

Our findings extend previous evidence for protective effects of perceived environmental controllability, and 
maladaptive effects of experiencing lack of control. For example, a sense of control in stressful environments 
attenuates later behavioural and neural responses to aversive  stimuli54–63. Conversely, perceived stress uncon-
trollability can enhance feelings of  helplessness58, increase stress responses, and promote passive behaviour in 
the face of later  stressors15,16. Our findings suggest that, similarly to how uncontrollable stress impairs acting 
to avoid stress, it also can impair acting to gain rewards in ambiguous contexts. Thus, perceived uncontrollable 
stress may affect processes that encompass learning from both positive and aversive outcomes to make optimal 
choices to avoid stress or gain rewards in uncertain contexts.

Trait anxiety, state anxiety, and acute stress have all been linked to deficits in adjusting learning rates to match 
current environmental  volatility7,24,32,60. Moreover, failures to adaptively adjust learning rates in volatile contexts 
has been linked to a more general trait negative affect factor that includes both anxiety and depressive symptoms, 
and this deficit generalises across learning from rewarding and aversive  outcomes34. But there are mixed find-
ings regarding the mechanisms underlying this altered flexibility. For example, trait anxiety has been seemingly 
paradoxically linked to quicker behavioural adjustments in response to  punishments31 and to less sensitivity to 
negative  feedback36. Our findings suggest that state (but not trait) anxiety is specifically associated with greater 
anticipation of environmental volatility under conditions of second-order uncertainty, thus increasing proba-
bilistic errors and impairing reward learning.

One limitation is that within-subject test–retest reliability for task performance was low. Low test–retest reli-
ability does not indicate that a task is not a replicable, valid, or a robust measure of a construct, but it does make 
it more difficult to detect relationships between task performance and individual  differences64. Thus, although 
this issue is mitigated by our relatively large sample of 427 participants, our effect sizes may be underestimated. 
In future studies, using multiple tasks to obtain a composite index that reflects performance of a common latent 
construct such as reward learning may increase test–retest  reliability65. Another limitation is that our prereg-
istered exploratory factor analysis did not produce reliable factor scores, and so we instead used confirmatory 
factor models to obtain weighted scores based on previously established scales and subscales. A promising avenue 
for future work is using Computational Factor Modelling to identify and validate symptom dimensions against 
computationally well-defined neurocognitive  processes66,66.

To conclude, our results show that perceived uncontrollable stress and state anxiety collectively predicted 
worse reward learning in the reversal task involving second order uncertainty. The computational modelling 
suggests that state anxiety promotes a misrepresentation of the reward structure of the environment, enhanc-
ing expectations of environmental volatility. As a result, participants with higher state anxiety tend to interpret 
ambiguous negative feedback as a change in reward contingencies, impairing exploitation of known reward 
regimes in uncertain contexts.

Materials and methods
Participants
500 participants were recruited via the online platform Prolific (https:// www. proli fic. co) with the only criteria 
being fluent in English. Eleven participants’ data could not be recovered from Pavlovia (see below). Nine par-
ticipants were excluded based on the preregistered criterion (mean response time/RT < 300 ms). 53 participants 
were excluded from the reversal task because of a programming error. This left a total of 427 participants (189 
female) from 47 different countries, with a mean age of 30 years (range 18–74). 50 of the same participants (49 
after one exclusion) completed an identical session approximately three days later to check test–retest reliability 
of task performance. According to Swedish law on ethical approval of research on human participants (2003: 
460), this study did not require approval from the Swedish Ethics Review Authority (https:// etikp rovni ngsmy 
ndigh eten. se/) because no personal data or biological material was collected, and we did not use any physical 
or mental intervention.

https://www.prolific.co
https://etikprovningsmyndigheten.se/
https://etikprovningsmyndigheten.se/
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Experimental task and procedure
The experiment was hosted on Pavlovia (https:// pavlo via. org/) and lasted on average 28 min. Participants were 
given information about the experimental task and questionnaires before giving informed consent by pressing 
a button. They read task instructions and completed three practice games of the signalled task. After the two 
tasks, participants were given overall points tally, and total money earned. Lastly, they completed the mood 
questionnaires. Participants were paid £3.00 GPB and could earn a bonus of up to £2.30 GBP based on task 
performance (total average £4.39).

All participants performed two versions of a probabilistic reward learning, a three-armed bandit task (Fig. 1) 
adapted from Leong et al.44. In both tasks, the goal was to maximise monetary reward. On each trial, participants 
chose one of three vertical columns, each comprising three images. Images in each horizontal row were from 
the same class (landscape; mode of transport; animal) but were randomly shuffled within row on each trial. On 
any given trial, one of the images (e.g., a cat) was the target. Participants had to learn by accumulating evidence 
from their composite choices. Participants first completed the signalled task in which they were informed that the 
target had changed at the start of each new game of 25 trials (5 games in total). Choosing the composite stimulus 
with the target had a reward probability of 0.75 whereas non-target composites had a reward probability of 0.25. 
Participants then completed the reversal task, which comprised one continuous game of 125 trials in which the 
target changed without warning every 20–30 trials. Participants were informed about the existence of the rever-
sals. As the reversal task was more difficult than the signalled task, we increased reward probability upon choos-
ing the target to 0.8 (0.2 for non-targets). Participants were informed about reward probabilities for both tasks.

Questionnaires
All questionnaires are well-validated and established measures of their respective constructs except the new 
Perceived Risk of COVID-19 scale that included 10 items assessing perceived potential impact of COVID-19 on 
oneself and  others43. The PHQ-9 included 9 items assessing depressive symptoms rated on a 4-point Likert scale 
from “never” to “almost every day”40. The PSS included 10 items assessing perceived ability to cope with stress 
rated on a 5-point Likert scale from “never” to “very often”39. The State-Trait Anxiety Inventory (STAI) included 
40 items rated on a 4-point Likert scale from “not at all” to “very much so” assessing how they felt right at that 
moment, and how they feel  generally41,42. Positively worded items (e.g., “I feel comfortable”) were reverse-coded 
so that higher scores indicated greater stress, state and trait anxiety, depression, and perceived risk of COVID-19. 
We did not collect data on the use of psychiatric medications or previous diagnosis.

Data analyses
Analyses follow the preregistration plan (https:// osf. io/ h8a2v) unless otherwise noted (see supplementary mate-
rials for a summary of all deviations). Code and data to reproduce all analyses is included on the OSF project 
page (https:// osf. io/ ps38n/). Our key dependent variable (DV) was accuracy. Choosing the composite stimulus 
that included the target image was coded as a correct response. Non-responses (fewer than 1% of trials) were 
recorded as errors.

Another preregistered DV was the proportion of probabilistic errors: the ratio of the number of times par-
ticipants made an erroneous shift away from a correctly chosen learned target after receiving probabilistic nega-
tive feedback, to the total number of times they received probabilistic negative feedback. As preregistered, the 
criterion of learning was five consecutive correct trials. 34 participants never experienced probabilistic negative 
feedback after meeting the learning criterion and were excluded from the probabilistic error analyses. Excluded 
participants were less accurate (mean proportion correct = 0.329, compared to 0.535 for the included partici-
pants), and so the sample included (N = 393) is skewed towards more accurate participants.

Test–retest reliability for factor scores, mean task performance, and the estimated parameters from the win-
ning HMM were indexed by intraclass correlation coefficient (ICC) using two-way random-effects  models45,46.

In the preregistration we predicted that Uncontrollable Stress would be associated with fewer win-stay trials 
in the reversal task. We also expected perceived uncontrollable stress to result in greater sensitivity to negative 
feedback, which would be observed in fewer perseveration errors. Win-stay trials are choosing the target directly 
after being rewarded for choosing the target. Perseverative errors index the tendency to stick with choosing the 
previously learned target after a target reversal has occurred, despite receiving negative feedback for choosing 
the previous target. These dependent variables are typically used in two-armed bandit tasks with non-composite 
stimuli, when it is clear what stimulus participants are basing their value estimation and choice on. However, in 
our three-armed bandit task, a choice could be based on a prediction that any one of the three images compris-
ing the chosen stimulus were the target. Because the images shuffle on each trial, it therefore makes less sense to 
examine these dependent variables with our task, and we did not analyse these DVs.

Calculating factor scores from the questionnaire data
As preregistered, we initially used Exploratory Factor Analysis (EFA) to derive latent factor scores within and 
across questionnaires (see supplementary methods). However, these EFA scores were not reliable as assessed 
on the 49 participants who completed the scales twice 3 day apart  (ICC45,46 ranged between 0.14 and 0.61; see 
Table S.1). This was surprising as the sum scores for each scale and subscale showed good test–retest reliability 
(ICC range: 0.75–0.95).

As the use of sum scores is not recommended, we deviated from the preregistration and calculated congeneric 
factor scores, using confirmatory factor analysis to produce weighted scores based on previously established 
structure of the questionnaires. In a congeneric model, items’ contribution to the score depends on how related 
the item is to the construct. Each item is allowed unique error variance and is constrained to have a variance 
equal to 1 and the intercept to 0. For all scales (see Table S.3), congeneric models were a better fit to the data than 

https://pavlovia.org/
https://osf.io/h8a2v
https://osf.io/ps38n/
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parallel models (equivalent to sum scores with equal contribution for all items), indicating that the weighted 
congeneric scores were preferred over sum scores to be used in subsequent analyses. We also determined whether 
each scale should be subset into previously established subscales (see supplemental methods for details). Con-
generic models were fitted using the “lavaan” package in  R67. Model comparison was done using the “nonnest2” 
package in  R68.

Generalised logistic mixed‑models
To examine the effect of each Factor on learning we performed generalised logistic mixed-models (GLMMs, 
using the lmer R  package69) with accuracy (0, 1) as the dependent variable, Trial (centred around 0) as a fixed-
effect, including subject random intercepts and slopes for Trial. Although the preregistration stated linear mixed-
models, a logistic mixed-model is appropriate for binary variables, such as accuracy (0, 1). Furthermore, we 
deviated from the preregistered inclusion of game as a fixed factor as we did not expect performance to linearly 
increase in the reversal task and it was unclear how to code this factor.

Each Factor was included as an interaction with Trial in separate models. If a significant Trial × Factor 
interaction was present, we compared the fit to a model without that interaction, using a chi-squared ANOVA 
test. If including the Trial × Factor interaction significantly improved model fit, we added, and compared, the 
Trial × Factor interaction term as by-subject random intercept and slope. Factors that interacted significantly 
with Trial were entered together into one final combined model. We checked for multicollinearity between Factor 
scores by calculating Variance Inflation Factors (VIFs) using the “car” package in  R70.

We used the “mediation” package in  R71 to perform exploratory causal mediation  analyses72. We calculated 
95% confidence intervals using 10,000 bootstrapped samples.

Computational modelling
We fitted a range of models from two main families to the observed choices in the reversal task. As indicated in 
the preregistration, we fitted a range of reinforcement learning models (RLMs) to examine the cognitive mecha-
nisms by which perceived uncontrollable stress or other latent factors might impact learning in the signalled 
or reversal tasks. Because the RLMs did a poor job at explaining the observed choices in the reversal task, we 
deviated from the preregistration and fitted two hidden Markov models (HMMs). Choices in the signalled task 
were not analysed with computational modelling because we did not observe any significant effects for any of 
the nine factor scores on performance.

Reinforcement learning models (RLMs)
Our RLMs assume that participants learn to associate each image with a value (feature learning), based on reward 
feedback, and linearly combine these values to determine the value of each choice on a given trial and assumed 
an average value across all three stimuli (e.g., Leong et al.44):

where Vt(Si) is the value of a composite stimulus i on trial t, and vt(d, Si) is the value of image d on stimulus Si . 
For the signalled task, all v were initialised to 0 at the beginning of each game. For the reversal task, all v were 
initialised to 0 at the beginning of the first game. On each trial, the prediction error is calculated as the difference 
between the reward obtained rt ∈ {0, 1} and the value of the chosen composite stimulus, Sc , on that trial Vt(Sc):

We used this prediction error to update the value of the images included in the chosen composite stimulus:

where α ( 0 < α < 1 ) is the learning rate determining how much the future values reflect the latest experienced 
outcome.

Finally, we calculated the choice probability using the softmax rule:

whereby p(c) is the probability of choosing the composite stimulus c, a enumerates over all available composite 
stimuli, and β ( β > 0 ) is the inverse temperature parameter of the softmax rule determining how much choices 
are determined by the differences in values among stimuli.

The simplest RLM has two free parameters—learning rate ( α) , and softmax inverse temperature ( β , which 
captures reward sensitivity at one end of the spectrum, and stochasticity in responding at the other). To improve 
the performance of the RLM, we deviated from the preregistration and augmented the base model with a forget 
parameter ϕ ( 0 < ϕ < 1) by which the value of the unselected images relaxed towards 0, the initial value (e.g., 
de Boer et al.73):

where the last term restricts forgetting to the non-chosen images. As indicated in the preregistration, this 
model was augmented to include two separate learning rates: αp for positive (δ > 0 ), and αn for negative reward 

(1)Vt(Si) =
∑

d

1

3
vt(d, Si)

(2)δt = rt − Vt(Sc)

(3)vt+1(d, Sc) = vt(d, Sc)+ αδt

(4)p(c) =
eβVt (Sc)

∑

a e
βVt (Sa)

(5)vt+1(d, Sa) = vt(d, Sa)+ ϕ(0− vt(d, Sa))χa �=c
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prediction errors ( δ ≤ 0). Finally, the model with forget rate and two separate learning rates was augmented 
to include a meta-learning level (Vinckier et al.53). The meta-learning model computes a trial-by-trial measure 
of confidence Conft in choice based on the absolute value of the prediction error on a given trial so that when 
prediction errors are smaller, confidence is higher:

where γ is the confidence learning rate, and is a free parameter. Confidence then modulates the learning rate 
on a trial-by-trial basis:

where κ is a free parameter determining the extent to which confidence modulates learning rate differently 
depending on whether the outcome received on that trial was better or worse than expected: the learning rate 
increases proportional to the confidence for better than expected outcomes and decreases proportionally to 
the confidence in worse than expected outcomes. In the preregistration, we planned to include a model with 
confidence modulating the softmax inverse temperature parameter. However, given the poor performance of 
the RLM in our task, we did not continue exploring the model space of RLMs.

Our preregistered predictions from the RLMs were:

1. For the signalled task we predicted that Uncontrollable Stress would decrease the learning rate for positive 
reward prediction errors (better than expected outcomes); while not affecting reward sensitivity (β); nor 
affecting learning rate for negative prediction errors ( αn, worse than expected outcomes). Alternatively, we 
predicted that Uncontrollable Stress may even increase the learning rate for negative prediction errors.

2. For the reversal task, in our RLMs we expected Uncontrollable Stress to increase sensitivity to negative feed-
back, reflected by an increased learning rate for negative prediction errors ( αn) . In line with the signalled 
task, we predicted that Uncontrollable Stress would decrease the learning rate for positive prediction errors 
(αp ): while not affecting reward sensitivity (β).

3. Moreover, we expected that Uncontrollable Stress would influence a second hierarchical level to our RLM: 
confidence 

(

Conf
)

 in current task representations. Higher confidence was expected to modulate the free 
parameters of the RLM by increasing exploitation (reward sensitivity, β); increasing learning rate for out-
comes that confirm expectations and reducing learning rate to outcomes that contradict expectations. We 
predicted that Uncontrollable Stress may reduce the rate of learning of confidence itself, and/or the extent to 
which confidence modulated these free parameters (learning rate for positive prediction errors ( αp) , learning 
rate for negative prediction errors ( αn) , and reward sensitivity, β).

These predictions were not explored because performance in the signalled task was not modulated by Uncon-
trollable Stress and the reversal task was poorly fitted by the RLM models.

Hidden Markov models (HMMs)
HMMs differ from RLMs as they do not use feature learning to determine a cached value of each image. Instead, 
inference based on an HMM estimates the probability that each of the individual images is the target on a given 
trial. The identity of the target image is referred to as the hidden state because it cannot be observed directly but 
only indirectly through the rewards obtained after each choice. On each trial, the model updates the probability 
αt
(

fi
)

 of each hidden state (i.e., each image fi being the target) upon observing the outcome as follows:

where liki is the likelihood that image fi is the target and is calculated differently depending on whether the image 
was part of the chosen composite stimulus or not. For the chosen features:

where 0 < q < 1 is a free parameter representing the model’s expected probability that a reward is observed when 
the chosen stimulus involves the target. For the unchosen features:

where 0 < p < 1 is a free parameter representing the model’s expected probability that a non reward outcome is 
observed when the chosen stimulus does not involve the target.

After updating, the hidden states are renormalized, and the vector of hidden states is multiplied by the transi-
tion matrix mapping the expected probability that the hidden state on the next trial will transit from each image 
to any other image. All values of the 9 × 9 matrix except for the diagonal are specified as tr/8 , 0 < tr < 1 being 
a free parameter representing the model’s expected probability that the hidden state will change to any other 
feature from one trial to the next trial. The diagonal of the transition matrix is specified as 1− tr. The diagonal 
thus represents the model’s expected probability that the hidden state will not change from one trial to the next.

(6)Conft+1 = Conft + γ
(

(2− |δt |)/2− Conft
)

αt =
(

αp + κConft
)

/
(

1+ κConft
)

if δ > 0

(7)αt = αn/
(

1+ κConft
)

otherwise

(8)αt+1

(

fi
)

∝ αt
(

fi
)

∗ liki

(9)
liki = q if rt = 1

liki = 1− q otherwise

(10)
liki = 1− p if rt = 1

liki = p otherwise
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Finally, we calculated the likelihood of the choices based directly on the hidden states assuming probability 
matching (Herrnstein, 1997; Myers, 2014; Vulkan, 2000):

whereby p(c) is the probability of choosing a composite stimulus including three chosen features c.
This HMM including 3 free parameters ( p , q , and tr; see Fig. S.3 for recoverability checks) was originally 

augmented to include another free parameter power ( 0 < power < 5) that multiplies all hidden states αt
(

fi
)

 before 
the likelihood of the choices was calculated. Thus, this parameter magnifies the differences in the hidden states 
and is akin to the inverse temperature of the softmax rule for RLMs and allows for under- and over-matching. 
However, recoverability checks (see Fig. S.4) showed that this extra parameter of the augmented model was not 
recoverable, so this model was not considered further.

Model estimation and model comparison
Model parameters for both RLM and HMM were fitted and compared using the HBI toolbox (Piray et al.50) on 
MATLAB (2020b). The HBI toolbox simultaneously achieves parameter estimation and random effect’s model 
comparison using a variational approach (Piray et al.50). The HBI toolbox implements a hierarchical Bayesian 
approach that estimates the population distribution over the model parameters as well as the parameters of 
each individual subject given the population distribution, which constrains and regularizes individual subject’s 
parameters estimates (Piray et al.50). The toolbox allows the best fitting model to vary across individual subjects 
and model comparison is done by counting the frequency of individual subjects that are best fit by each model 
and deriving the exceedance probability for each model (Piray et al.50). Moreover, by achieving concurrent 
parameters estimation and model comparison, the contribution of each subject to the group level estimates of 
the parameters are weighted by the degree to which a given model is likely to be the underlying model for that 
subject (Piray et al.50). See Table S.11 for the results of the sequential model comparison.

Our preregistration specified we would use RStan, however HBI allowed easier implementation of the HMMs, 
so we used HBI for all models. Both methods are hierarchical Bayesian approaches but whereas the HBI uses a 
variational Bayes approach to estimate the posterior probabilities of the parameter, the RStan uses Monte Carlo 
Markov Chain (MCMC) sampling to obtain the full distribution. Similarly, we deviated from the preregistration 
by not testing models in which individual-level parameters drawn from the group-level normal distributions 
were allowed to vary according to the subject score on perceived control (as suggested in Moutoussis et al.28). 
Instead, we performed correlations between the estimated parameters and the factor scores outside of the models.

Recoverability analysis
To ascertain that we were able to recover the different models that we tested, we simulated five data sets for the 
reversal task. For these simulations, we used one of the following generative models: (1) base RLM model, (2) 
base RLM model with forget parameters, (3) base RLM model with forget parameter and confidence modula-
tion of learning rate, (4) base HMM, and (5) base HMM with power parameter. For each generative model, we 
sampled 1000 combinations of the parameters using the mean and variance estimated at the group level for 
that model. As HBI weights the contribution of each subject to the group-level estimates of the parameters by 
the degree to which a given model is likely to be the underlying model for that subject, we did not have reliable 
parameter estimates for models that were very unlikely. To obtain parameters for those models, we estimated 
them by themselves, not being compared to any other model.

For each simulated data set, we then fitted all five models and performed model comparison using the HBI 
toolbox. We then constructed a confusion matrix (see Fig. S.5) and performed correlations of the generative 
parameters against the recovered parameters (see Figs. S.3 and S.4 for HMM3 and HMM4). We also checked the 
correlation between the generative parameters and the recovered parameters (see Figs. S3 and S4).

Data availability
Full data and code to run the task and reproduce all analyses are included on OSF (https:// osf. io/ ps38n/).
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