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Targeting allosteric binding site 
in methylenetetrahydrofolate 
dehydrogenase 2 (MTHFD2) 
to identify natural product 
inhibitors via structure‑based 
computational approach
Nisarg Rana 1, Dhaval Patel 2, Meet Parmar 2, Nandini Mukherjee 1, Prakash C. Jha 3 & 
Anu Manhas 1*

Cancer has been viewed as one of the deadliest diseases worldwide. Among various types of 
cancer, breast cancer is the most common type of cancer in women. Methylenetetrahydrofolate 
dehydrogenase 2 (MTHFD2) is a promising druggable target and is overexpressed in cancerous cells, 
like, breast cancer. We conducted structure-based modeling on the allosteric site of the enzyme. 
Targeting the allosteric site avoids the problem of drug resistance. Pharmacophore modeling, 
molecular docking, HYDE assessment, drug-likeness, ADMET predictions, simulations, and free-
energy calculations were performed. The RMSD, RMSF, RoG, SASA, and Hydrogen-bonding studies 
showed that seven candidates displayed stable behaviour. As per the literature, average superimposed 
simulated structures revealed a similar protein conformational change in the αEʹ-βfʹ loop, causing its 
displacement away from the allosteric site. The MM-PBSA showed tight binding of six compounds 
with the allosteric pocket. The effect of inhibitors interacting in the allosteric site causes a decrease in 
the binding energy of J49 (active-site inhibitor), suggesting the effect of allosteric binding. The PCA 
and FEL analysis revealed the significance of the docked compounds in the stable behaviour of the 
complexes. The outcome can contribute to the development of potential natural products with drug-
like properties that can inhibit the MTHFD2 enzyme.

Cancer is considered one of the prime causes of mortality worldwide. In 2022, it was observed that around 19.3 
million new cases and 609,360 deaths were observed1. As per World Health Organization (WHO), the statistics 
of cancer deaths and new cases are predicted to reach 25 million over the next twenty years if not treated earlier2. 
Thus, based on cancer report-2022, cancer treatment should be prioritized2. In light of this, several anticancer 
drugs have been proposed. Besides, chemotherapy is also employed to fight cancer. However, the excessive use 
of chemotherapeutic drugs leads to the death of healthy normal cells, thus, causing severe side effects3. According 
to the WHO reports, chemotherapy in case of treatment of cancer is responsible for causing various side effects 
like instant toxicity and late chronic toxicity4,5. These toxicity symptoms can be life-threatening, severe, moderate 
or mild as defined by the WHO4. Instant effects are visible on hair, blood, skin, kidneys, gastrointestinal tract 
and bone marrow. Also, chemotherapy can affect various body organs like lungs, heart and brain4. Neurotoxicity 
caused by chemotherapy can induce weakness, paralysis, spasm, vomiting, fatigue, somnolence, hair loss and 
many more4. Apart from all these side effects, it also causes drug resistance, infertility and carcinogenicity4. 
Therefore, it is necessary to target the cancer-specific cells to deal with the severe cancer problem. In this regard, 
methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) has gained attention as an attractive anticancer target 
due to its presence in the cancerous cells only6. It is reported that the level of MTHFD2 enzyme is increased in 
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various types of cancers, developing embryos, and transformed cells, but its detection is low or minimal in the 
normal healthy cells7. Also, its detection enhances the risk of bladder cancer, hepatocellular carcinoma, colorectal 
cancer, and renal cell carcinoma. MTHFD2 is overexpressed in breast cancer, colorectal cancer, liver cancer, 
hepatocellular carcinoma, and bladder cancer too7–9. Along with this, studies show that the depletion of the 
MTHFD2 enzyme can cause cell death in various types of cancers7. Therefore, considering all these points, it can 
be concluded that the MTHFD2 enzyme is oncogenic and can act as a prognostic indicator, making it a promis-
ing therapeutic druggable target in cancer7. MTHFD2 plays a crucial role in performing one-carbon metabolism 
in human mitochondria, thus also known as NAD-dependent MTHFD-cyclohydrolase. It is involved in the 
biosynthesis of purines and thymidine building blocks10. This enzyme carries out the bifunctional activity; it 
catalyzes the dehydrogenation of 5,10-methylene-tetrahydrofolate in the presence of NAD + cofactor followed 
by the cyclohydrolysis of 5,10-methenyl-tetrahydrofolate to produce 10-formyl-tetrahydrofolate, thus results in 
the production of formate as a one-carbon unit11. MTHFD1 is known as the homologous protein of MTHFD2, 
and as per the Needle program in the European Molecular Biology Open Software Suite (EMBOSS), it shares 
55.6% of sequence similarity with its homologous MTHFD2 enzyme12. Both of the enzymes are involved in 
carrying out the same reaction, but the only difference is that the MTHFD1 is expressed in normal cells too, 
thus; designing inhibitors against MTHFD2 specifically is expected to provide a wider therapeutic window with 
less toxicity and side effects6. MTHFD2 is a homodimer enzyme where each domain, i.e., N and C domains, 
forms a cleft of α/β strands. These domains are further connected by two α helices. These α/β strands contain 
highly conserved amino acids13. NAD + cofactor binds with one side of the strands, and the substrate-binding 
cavity is located at the interface of the two domains. As per the studies, MTHFD2 is involved in purine synthesis, 
and there are evidence that suggests the undefined role of the enzyme in carcinogenic transformation and 
embryonic development10. The role of the MTHFD2 enzyme in causing cancer is explained by its overexpression 
in the tumour cells and its relation with the patients suffering from cancer. Moreover, to explain the role of the 
MTHFD2 enzyme in causing cancer, gene knockdown studies have been reported that showed the impact of the 
MTHFD2 enzyme in causing depletion of the cancers14. Inhibition of the MTHFD2 enzyme reduces tumour 
growth, migration, invasion, and proliferation and promotes cell death, chemosensitivity and differentiation in 
various cancer cells7. Thus, the clinical importance of the MTHFD2 enzyme has intensified the interest of 
researchers in developing therapeutics against the MTHFD2 enzyme. In the literature, few inhibitors are reported 
against the MTHFD2 than the MTHFD1 enzyme. Gustafsson et. al. reported the first MTHFD2 inhibitor, a folate 
analogue LY345899. In the active site of the MTHFD2 enzyme, LY345899 showed interactions with crucial amino 
acids, like, Asn87, Lys88, Val131, Leu133, Asp155 and Gly310 and which possesses the capability to inhibit the 
enzyme with inhibitory activity of 663 nM (IC50). However, this inhibitor was proved to be a more potent inhibi-
tor for MTHFD1 with IC50 of 96 nM9. The inhibitor LY345899 interacts in the cleft between the two lobes of the 
enzyme, also known as the substrate binding position, along with the NAD + cofactor9. Also, Chengzhang et. al. 
reported a natural substance, carolacton (inhibitor of E. coli isoform), to be active against MTHFD1 and 
MTHFD2 enzymes. However, the carolacton was selective towards MTHFD1 rather than MTHFD2 enzyme15. 
A new class of MTHFD2 inhibitors based on the caffeine scaffold was reported by Raze Therapeutics16. Also, 
several MTHFD2-specific inhibitors with tricyclic coumarin skeletons (sulphonamide derivatives) were reported 
by Kawai et. al., and from enzymatic assay studies, they observed the IC50 value as 1.6µM17. Also, these inhibitors 
showed hydrogen bond interaction with crucial amino acids like Asn87, Lys88, Gln132 and Gly310. However, 
these molecules lacked the potency against the MTHFD2 enzyme. In the complex, the inhibitors interact in the 
same substrate binding pocket but showed different binding modes compared to the LY34589917. Later, they 
discovered DS18561882, an MTHFD2 selective inhibitor that displayed the inhibitory activity of 6.3 nM (IC50 
value)18. However, the compound still lacked potency; therefore, the same research group modified the chemical 
scaffold of the already reported inhibitor (DS18561882) to enhance the in vitro and in vivo efficacy18. Many 
inhibitors are reported against the enzyme; however, very few crystal structures of the MTHFD2-inhibitor 
complex have been reported. In most of the reported complexes, the inhibitors bind in the substrate binding 
cavity, thus, inhibiting the catalytic functioning of the enzyme. Therefore, in most of the studies, the interaction 
of the inhibitors is reported in the substrate-binding domain. Recently, a new allosteric binding site crystallised 
with xanthine derivatives was reported by Lee et. al., which is entirely distinct from the reported one (substrate-
binding)6. Moreover, they have reported that the binding of the xanthine derivative in the allosteric site leads to 
the conformational change in the protein, which prevents the binding of the cofactor NAD + and phosphate to 
the enzyme6. Allosteric sites provide various routes for drug discovery, and the molecules that bind in the allos-
teric site are considered highly specific as they do not bind in the active cavity of the protein19. Furthermore, 
numerous studies have highlighted the advantages of allosteric inhibitors indrug development20. Allostery is a 
naturally occurring process which causes a conformational and functional change in the protein. The research 
has shifted to the search for inhibitors against the allosteric sites owing to the difficulty of drug resistance and 
the search for alternative inhibitors for the substrate binding site19. One key advantage is that the allosteric bind-
ing site typically exhibits lower conservation than the substrate-binding site among enzymes within the same 
family. Consequently, allosteric inhibitors tend to display higher levels of selectivity than nonallosteric inhibitors, 
resulting in fewer off-target side effects21. Finding inhibitors that form interaction within the allosteric site of 
the protein also reduces the chances of drug resistance and enhances their selectivity as well19. While searching 
for the studies reported on the allosteric site of the MTHFD2 protein in the literature, it was observed that until 
now, the work was limited to xanthine derivatives only. As per our understanding, this is the only study reported 
on the allosteric site with xanthine inhibitors. Also, the crystal structures of the MTHFD2 enzyme were reported 
with the inhibitors of the xanthine derivatives class only. The less exploration of the inhibitors against the allos-
teric site of the MTHFD2 enzyme gives an opportunity to explore the interaction of various inhibitors against 
the enzyme. Therefore, considering the importance of the MTHFD2 enzyme, allosteric site in the drug design, 
the lack of variety of inhibitors tested against this enzyme, and the limitation of the research conducted on this 
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enzyme, we performed our studies on the allosteric site of the MTHFD2 enzyme using natural products. Despite 
recent work in the cancer treatment against the MTHFD2 enzyme, still limited wet lab and molecular modeling 
attempts have been made to discover the effective inhibitors against the allosteric site of the MTHFD2 enzyme, 
which explain the importance and novelty of the current work.We present the in silico drug designing methods 
where structure-based tools were compiled with the molecular dynamics and free energy calculations to search 
for the inhibitors that can bind in the allosteric binding domain of the MTHFD2 enzyme. Moreover, the 
MTHFD2 enzyme was considered with the active site-bound substrate analogue while performing all the calcula-
tions. As per our understanding, for the first time, the multicomplex-based pharmacophore modeling is per-
formed on the allosteric bonded reported inhibitors of the MTHFD2 enzyme. The generated models were vali-
dated, and the representative pharmacophores were employed to conduct the virtual screening process using the 
natural product database. The screened allosteric candidates were compiled to undergo molecular docking 
followed by molecular dynamics simulations and free energy studies to scrutinise their binding stability within 
the biological conditions. Once computational studies shortlist an inhibitor, it should be procured or synthesized. 
The purified inhibitor should then be characterized for its physical and chemical properties, including solubility, 
lipophilicity and stability at various pH. Subsequently, in vitro and pre-clinical in vivo experiments are performed 
to understand its efficacy and toxicity profile (ADMET). Obtaining a crystal structure of the target protein-
inhibitor complex (enzyme-inhibitor complex) remains one of the crucial steps in this context. Further in silico 
experiments can provide better insights with more concrete experimental evidence in hand22,23. Drug delivery 
is also crucial in drug discovery, where suitable excipients are to be determined and tested. It’s essential to analyse 
an inhibitor’s actual in vivo performance before it is taken to clinical studies and considered therapeutic. The 
inhibitors retrieved in the studies can be used as potent anticancer compounds to conduct further drug-designing 
processes like in vitro studies and drug optimization. The synthesis of these compounds is under process, and 
after synthesis, they will be evaluated for their anticancer activities. As per literature, natural compounds are 
important for diagnosing and treating diseases, including cancer24. They can be multi-target specific and might 
affect multiple biological pathways simultaneously. There is both advantage and challenges to this aspect. As an 
advantage, the therapeutic window becomes broader if a compound is multi-target specific. Therefore the com-
pound becomes particularly suitable for complex heterogeneous diseases like cancer25,26. On the other hand, the 
interaction of the compound with undesired biological pathways may lead to off-target effects leading to toxicity/
side effects. It is therefore suggestive to experimentally determine the therapeutic/safety limitation (in vitro or 
in vivo) to choose lead based on optimum multi-target affinity to avoid side effects.

Methodology
Collection of the allosteric‑bound protein complexes
From the RCSB database, all the reported complexes (allosteric sites) of the MTHFD2 enzyme were downloaded27. 
The selection of the MTHFD2 enzyme was based on the following criteria: (1) the crystallised protein–ligand 
complex must have experimentally reported inhibitory activity, (2) if the same protein–ligand complex is crystal-
lised at two different resolution values, the one with higher resolution must be selected, (3) the inhibitors must 
be co-crystallised in the allosteric site of the enzyme (Table 1)28. Finally, the selected enzymes were prepared 
separately in the Discovery Studio suite version 4.0 via Prepare Protein protocol29. The preparation of the protein 
involves the steps of the elimination of crystallographic water, removal of alternate conformation, addition of 
missing atoms and loops, protonation of the titrable residues at physiological pH, and assigning the acid disso-
ciation constant. Further, the prepared proteins were superimposed via Align and Superimposed Protein module 
of Discovery Studio suit of version 4.030 to generate a single coordinate file.

The main aim of constructing the superimposed coordinate file is to generate a common coordinate file 
encompassing all the reported allosteric site inhibitors and their crucial interactions responsible for show-
ing inhibition of the enzyme. Based on the resolution value, apart from the reference protein chain, all other 
chains were deleted from the single coordinate file, thus, leaving the coordinates of one protein chain and the 
superimposed inhibitors bound in the allosteric site. The main aim of deleting the protein chain was to avoid 
the repetition of the same MTHFD2 chain. The generated coordinate file was subjected to common feature 
pharmacophore modeling generation.

Common feature pharmacophore generation
The single coordinate file was subjected to common feature pharmacophore generation by using the Common 
Feature Pharmacophore Generation protocol of the Discovery Studio suit of version 4.030. During pharmacophore 
preparation, the conformation generation of the cocrystallised ligands was disabled to retain the bioactive con-
formation for pharmacophore construction, as reported in our previous studies28. Also, the HipHop algorithm 

Table 1.   List of the allosteric-bonded PDBs of MTHFD2 protein selected for conducting the superimposition 
process. *Inhibitors binded in the allosteric site of MTHFD2 protein (selected for superimposition). **Selected 
as reference.

PDB ID Ligand ID Resolution (Å) Activity (IC50 μM) Reference

7EHV J4L*, J49 2.61 4.00 6

7EHN J4F*, J49 2.25 0.69 6

7EHM** J4C*, J49 2.13 0.78 6



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18090  | https://doi.org/10.1038/s41598-023-45175-3

www.nature.com/scientificreports/

was implemented to construct the model at default parameters. During pharmacophore generation, the common 
features were obtained via the in-built LUDI program. The features were hydrogen bond acceptor (A), hydrogen 
bond donor (D), hydrophobic (H), hydrophobic aromatic (Y), hydrophobic aliphatic (Z), positive ionisable (P), 
negative ionisable (N), and ring aromatic (R).

Validation of pharmacophore models
The generated models were evaluated via a series of validation studies to search for the pharmacophores that can 
predict/screen their actives from a dataset with both actives and inactive ligands. The models were subjected to 
the preliminary test set validation method. Thereafter, the shortlisted hypotheses were subjected to an external 
validation process, i.e., Gunner Henry (GH) and Enrichment Factor (EF), to obtain an efficient model for the 
virtual screening (VS) process. External validation involves constructing a dataset with decoys seeded with 
known active ligands. Mainly, the quality of the constructed models can be evaluated by statistical parameters, 
viz. (1) specificity, which defines the capacity to exclude the inactive molecules, (2) sensitivity, which defines 
the capacity to screen the active compounds, (3) the yield of actives, which defines the ratio between the true 
positive and number of screened hits, (4) EF which explains the yield of actives in comparison to the composi-
tion of the screened dataset, (5) the GH scoring method, that calculate the percentage of yield of actives (EF), 
(6) percentage of sensitivity, which evaluate the efficiency of the screening of the dataset31. The value of GH 
varies from 0 to 1, where 1 represents the ideal value of the ideal mode. The generated ROC curves display the 
enrichment power of a model in plotting sensitivity against 1-specificity. The AUC display the performance of 
the pharmacophores and is considered a useful parameter in evaluating the model performance. The value of 
AUC also varies from 0 to 1. The value of 1 represents the ideal model where the actives are detected first in 
comparison to the inactive ligands, 0.5 represents the random screening result, and 0 represents the screening 
of inactive ligands prior to actives31.

To conduct the test set validation process, three separate datasets of 62 actives, 221 presumed inactive and 
3895 presumed inactive ligands, were collected from literature and Decoy Finder32, respectively. These datasets 
were employed to conduct two sets of calculations. In the first set of calculations, 62 actives and 221 presumed 
inactive ligands were selected, whereas in the second set of calculations, 62 actives and 3895 presumed inac-
tive ligands were considered. Owing to the lack of inhibitors of the allosteric site, we selected the inhibitors of 
the active site of the MTHFD2 enzyme as the active inhibitors. For presumed inactive, we selected ChEMBL 
database33 to retrieve presumed inactive by using the Molecular Descriptor based parameter of Decoy Finder32. 
From the test set validation parameter, we obtain parameters like specificity, sensitivity, and area under the curve 
of receiver operator characteristic (AUC-ROC). In general, all those models that fit the criteria (high specificity 
and sensitivity) were selected for conducting the virtual screening or secondary validation method. However, 
in the current study, we selected the models mainly based on their higher sensitivity and lower specificity value 
owing to the non-availability of the allosteric bonded inhibitors. The selected hypotheses were subjected to a 
secondary validation method. A mixed dataset of 15 actives and 796 presumed actives was used to conduct the 
secondary validation study. The mixed dataset was prepared as per the FAST Conformation Generation method 
under CHARMm force field34 of Prepare Ligand protocol of Discovery Studio version 4.030. For the conformation 
generation step, maximum conformations were fixed to 255 with a minimum energy of 20.0 kcal/mol threshold. 
The Ligand Pharmacophore Mapping module was employed to conduct the secondary validation method. From 
the secondary validation method, we retrieve parameters like % yield of actives (A), % ratio of actives (RA), 
Goodness of hits (GH), and Enrichment factor (EF) score. Generally, the models shortlisted to conduct the VS 
should possess higher A, RA, GH and EF values. However, in our case, we utilise the dataset of actives prepared 
from the inhibitors bound in the primary binding site. Therefore, we may not obtain the expected values. Lesser 
A, RA, GH, and EF values will define our model’s sensitivity.

Database preparation and virtual screening
For conducting the virtual screening process, we selected natural product-based datasets. Extensive research has 
been conducted on natural products to check their activity against various cancer cell lines35. Also, as an advan-
tage, they played a significant role in developing chemotherapeutic drugs, alone or in combination with other 
medicines, thus, can be used as a starting lead for various novel anti-cancer drugs36. Many hits are discovered 
from natural products that paved paths for developing new and effective anti-cancer agents. In drug design, more 
than 50% of FDA-approved drugs belong to the category of natural products or their derivatives. The source of 
natural products can be a chemically synthetic molecule synthesized based on the natural product, semi-synthetic 
natural product, and original natural compound37. Natural product molecules are essential for diagnosing and 
treating diseases, including cancer24. As per the studies conducted by Khazir et. al., natural products-based 
synthetic drug molecules account for more than 65%, and most of the plant-based natural products account for 
more than 75% of anti-cancer drugs38. Natural products are considered reducing agents, free radical scavengers, 
and singlet oxygen quenchers as they are rich sources of natural antioxidants. Their antioxidant property is due 
to bioactive compounds like isoflavones, isocatechin, flavonoids, and many more. They can reduce the toxic side 
effect of the chemotherapy treatments36. Therefore, considering the importance of natural products in the anti-
cancer drug design, we selected three different open-access natural product datasets, i.e., Specs39, COlleCtion of 
Open Natural prodUcTs (COCONUT)40, Universal Natural Product Database (UNPD)41, and one in-built dataset 
of Discovery Studio version 4.0, i.e., DruglikeDiverse dataset (DDD). As discussed, natural products have gained 
attention from researchers as they play a significant role in drug discovery and have displayed selectivity towards 
the cellular targets42. Specs natural product database incorporates industrial catalogues. It is one of the datasets 
that include the catalogue of the chemical compounds synthesised and isolated via companies. They contain their 
chemical structure and annotations39. COCONUT is the dataset that includes unique natural product datasets 
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of plant origin (phytochemicals), marine-based, and microbial-based origin. This dataset is available freely for 
conducting screening and other computational drug design applications40. UNPD dataset is a rich source of 
natural product structures that contain information on the chirality of the natural compounds, which can act as 
an advantage. UNPD database was built to compile all the natural product scaffolds in one dataset, which can 
be employed for in silico drug designing process41. The UNPD dataset is not available in the link in the actual 
publication; however, the structures are compiled and maintained by ISDB website18. Specs dataset had 813 
molecules, COCONUT had 1000 molecules, UNPD possessed 2,29,358 natural products, and DDD possessed 
5390 molecules. Overall, we selected 2,36,561 compounds for conducting a virtual screening process over the 
representative pharmacophores. The Search 3D Database module of the Discovery Studio version 4.0 was used 
to conduct virtual screening. However, before screening, the three open-access datasets (Specs, COCONUT, and 
UNPD) were built via the Build 3D Database module based on the Catalyst algorithm of the Discovery Studio 
version 4.030. This method uses CHARMm force field34 to remove the structural duplicates, correct the atom types 
and bond types, add hydrogen atoms, and assign formal charges while generating 3D conformations based on 
the BEST Conformational Generation method with a flexible fitting mode. Finally, the screened candidates were 
saved in a single mol2 coordinate file, which was subjected to molecular docking studies.

Allosteric site‑based molecular docking and binding affinity calculations
All the screened candidates were docked in the allosteric site of the MTHFD2 protein (co-crystallised with the 
active site-bound substrate analogue). Docking calculations were performed using FlexX suit43 of LeadIT 2.3.2 
software, a comprehensive drug design suit (BioSolveIT, GmbH)44. This suit uses incremental construction 
(IC) based algorithm to bind the ligand in the selected binding cavity. This algorithm constructs the molecule 
in three steps, i.e., selection of base, placement of base, and construction of the complex. During docking, the 
IC algorithm disintegrates the molecule into smaller moieties and then constructs it incrementally within the 
selected binding domain of the protein, thus providing flexibility simultaneously43. Also, the module uses a 
modified Böhm scoring function to calculate the binding free energy (ΔG) of the protein–ligand interactions 
of the docked complexes45.

In the above equation, ΔGo represents the fixed ground term of the protein–ligand complex, ΔGrot and Nrot 
represent the conformational entropy caused by the binding of the ligand, ΔGhb, ΔGio, and ΔGaro calculate the 
pairwise interactions based on the geometrical interaction model function f, ΔR represents the distance condi-
tions, and Δα represents the angular conditions, the last term in the modified Böhm scoring equation represents 
the hydrophobic interactions and unfavourable steric clashes because of atom–atom interactions43,44.

Prior to the molecular docking, redocking was performed on J4C to validate the docking software and 
protocol applied in the current study. Thereafter, molecular docking calculations were conducted on 7EHM 
allosteric site by using screened natural product compounds. We selected the allosteric site as it is reported in the 
literature that identifying allosteric inhibitors confirms more selectivity than the non-allosteric site inhibitors21. 
Also, targeting the allosteric site avoids the drug resistance issue, which arises mainly because of mutation in 
the active binding site to the protein6,21. Based on the resolution value, we selected 7EHM as the reference PDB 
co-crystallised with xanthine derivative (J4C) as the reference inhibitor for docking calculations. To perform 
docking, the protein chain was prepared using the Receptor Preparation tool of the LeadIT 2.3.2 program. This 
step ensures the assigning of atom types, the addition of polar hydrogen atoms, removal of crystallographic 
water. The default allosteric binding site of 6.5 Å was defined from the centre of the co-crystallised inhibitor 
JC4. The selected docking site incorporates all the crucial residues that form bonding with the inhibitors and 
are responsible for causing inhibition. The chemical ambiguities existing in the allosteric sites were resolved by 
ProToss module of the LeadIT 2.3.2 program46. This module optimises the reference ligand (JC4), co-factor (if 
any), and amino acids and assigns the protonation state and tautomers to the allosteric binding cavity of the 
protein. Default docking and chemical parameters were employed to deal with the steric clashes that arise within 
the protein–ligand binding cavity. Moreover, an enthalpy and entropy-based docking scheme was used to place 
the disintegrated fragments into the binding cavity of the protein. All the successfully docked candidates were 
subjected to HYDE assessment to check their binding affinity within the allosteric binding site47. This module 
helps in investigating the stability of the docked complexes by integrating the factors like desolvation effects, 
hydrogen bonding, and hydrophobic effect during complex formation. After HYDE assessment, based on the 
ligand binding affinity, all the selected candidates were subjected to drug-likeness and ADMET studies. The 
docked protein–ligand 2D-interaction plots were constructed by using the PoseView module of the LeadIT 
2.3.2 program48.

Drug‑likeness and pharmacokinetic properties
All the prioritised HYDE-assessed candidates were subjected to Drug-likeness studies as the primary filter, fol-
lowed by ADMET studies as the secondary filter. Drug-likeness studies were conducted using Lipinski’s rule of 
five49 and Veber’s rule50. For the primary filter, eight descriptors were calculated, i.e., number of hydrogen bond 

�G = �Go +�Grot + Nrot +�Ghb

∑

neutral
H − bond

f (�R,� ∝)+�Gio

∑

ionic
interactions

f (�R,� ∝)

+�Garo

∑

aromatic
interactions

f (�R,� ∝)+�Glipo

∑

lipocontact

f ∗(�R)



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18090  | https://doi.org/10.1038/s41598-023-45175-3

www.nature.com/scientificreports/

acceptor, donor, molecular weight, lipophilicity (AlogP), polar surface area, number of aromatic rings, number 
of rotatable bonds, and the total of hydrogen bond donor and acceptor. These filter parameters were computed 
via the Filter Ligand protocol of Discovery Studio version 4.030. In the current work, the natural product data-
base was selected; therefore, considering the nature of the database, the number of violations allowed was kept 
at ‘1’51. As per the criteria, only those molecules were selected for the ADMET studies that possess molecular 
weight < 500 Dalton, hydrogen bond donor, and AlogP < 5, hydrogen bond acceptor < 10 as per Lipinski’s rule of 
five49, and the number of rotatable bonds < 10, polar surface area < 140 Å2, and the number of rotatable bonds < 10 
as per Veber rule50. After primary filtration, the filtered compounds were subjected to ADMET studies. For 
secondary filtration, six descriptors were calculated, i.e., blood–brain barrier (BBB), plasma protein binding 
(PPB), hepatotoxicity, aqueous solubility, intestine absorption, and CYP2D6 binding. To perform secondary 
validation, Calculate Molecular Property module of Discovery Studio version 4.030 was utilised. Different values 
of the ADMET parameters explain different behaviour of the molecules. In the case of solubility level, 0 defines 
extremely low solubility, 1 defines very low but possible solubility, 2 defines low, 3 defines good solubility, 4 
defines optimal, and 5 defines too soluble. In the case of ADMET BBB level, 0 defines high penetrating power, 2 
defines medium penetration, 3 defines low penetration, and 4 remains undefined. An adsorption level of 0 defines 
good absorption, 1 defines moderate absorption, and 2, and 3 define poor and very poor absorption respectively. 
As per ADMET cut-off criteria, only those candidates were selected that showed FALSE prediction for CYP2D6 
and Hepatoxicity, TRUE prediction for PPB, favourable values of solubility level (3), adsorption level (0), and 
BBB level (2 ad 3). The filtered candidates were evaluated via their 2D-interaction plot retrieved via molecular 
docking studies. Based on the presence of crucial interactions, the final shortlisted candidates were subjected to 
molecular dynamics simulation studies.

Molecular dynamics (MD) simulation of MTHFD2 and MTHFD2 docked complexes
Classical MD simulations were performed for the Methylenetetrahydrofolate dehydrogenase (MTHFD2) apo-
protein, MTHFD2_reference inhibitor (J4C), and MTHFD2 in complex with selected docked compounds. A 
total of 9 MD systems were built and subjected to a 300 ns simulation run. All the docked complexes that were 
subjected to MD had two ligands: one crystallographic ligand (J4C) docked to the main site and other docked 
compounds bound to the allosteric site. As performed in our previously reported studies52–54, MD simulations 
were undertaken using GROMACS ver.2020.655 with the CHARMM 36 force field56. Compounds parameters 
and topologies were generated using the CGenff server57. All MD simulation systems were solvated using the 
spc216 water model with a dodecahedron box configuration and a 1 nm distance from the protein’s edges in all 
directions. The MD systems were then neutralised with an equal number of counter ions (Na+/Cl−), and further 
energy minimization with the steepest descent algorithm was done to eliminate the steric collisions, poor contacts 
and generate a maximum force of less than 1000 kJmol−1 nm−1 (50,000 steps max). Post energy minimization, 
position restraint equilibration was performed for 1 ns under NVT (constant number [N], constant volume [V], 
and constant temperature [T]) and NPT (constant number [N], constant pressure [P], and constant temperature 
[T]) ensembles. The Berendsen thermostat algorithm58 was employed in NVT equilibration to keep the system 
at a constant volume (100 ps) and temperature (300 K). Furthermore, NPT equilibration was performed at a 
constant pressure (1 bar) for 100 ps using the Parrinello-Rahmanbarostat59. The Particle Mesh Ewald approxi-
mation was employed with a 1 nm cutoff to calculate long-range electrostatic interactions and coulombic and 
Van der Waals interactions60. The LINCS algorithm61 was used to set a restriction on the length of the bonds. 
Finally, a 300 ns simulation run with the default parameters was performed, and coordinates were saved every 
2 fs. The choice of simulation time and convergence criteria aims to strike a balance between capturing relevant 
dynamics and obtaining accurate and reliable results while efficiently using computational resources. The MD 
simulations were conducted for the time duration of 300 ns, as influenced by the biological questions being 
addressed for MTHFD2 protein as mentioned in previous studies62,63. VMD64 and UCSF Chimera were used 
to visualise the MD simulation trajectories65. GROMACS’ built-in ’gmx’ commands were used to calculate root 
mean square deviation (RMSD), root mean square fluctuation (RMSF), and hydrogen bonds (H-bonds), among 
other properties, and the plotting tool GRACE was used to generate and visualise the plots, as reported in our 
previous studies66,67.

Computation of binding free energy using MM/PBSA
The Poisson-Boltzmann or generalised Born and surface area continuum solvation (MM/PBSA and MM/GBSA) 
are conventional and well-acknowledged approaches for determining protein-inhibitor affinity. The MD trajec-
tories of apo-MTHFD2, MTHFD2_JC4 and MTHFD2_docked complexes were utilized for computing binding 
free energies. The binding free energy calculations and energy contributions from individual residues were uti-
lised to quantify the compound affinity for MTHFD2. In general, the binding free energy of the protein–ligand 
complex is expressed as the difference in the free energy of the complex and the total free energy of the isolated 
ligand and protein. The g_mmpbsa tool68 with default parameters was used to calculate the molecular mechanics 
potential energy (EMM) (electrostatic + Van der Waals interactions) and solvation-free energy (polar + non-polar 
solvation energies).

Ebonded represents the interactions due to bond, angle, dihedral and improper interactions, Enonbonded encom-
passes both EvdW (van der Waals) and Eelec (electrostatic) interactions. EvdW interactions are modelled by Lennard 
Jones (LJ) potential function, and Eelec interactions are modelled using Coulomb potential function. As per 

EMM = Ebonded + Enonbonded

Enonbonded = EvdW + Eelec
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studies, in the single trajectory, the protein–ligand conformation in the bound and unbound states are considered 
to be the same. Therefore, Ebonded is considered zero.

Gpolar represents the electrostatic contribution, and Gnonpolar represents non-electrostatic contributions to the 
solvation-free energy (Gsolvation).

The binding free energy of both molecules was calculated, i.e., for docked compounds in the allosteric site and 
crystallographic ligands in the main site. The stable 200 ns (1000 frames) trajectories from each bound complex, 
as determined by the RMSD plot, were used to estimate binding free energy. The frames were selected at a regular 
interval of 200 ps covering a broad range of trajectories to cover various conformational spaces of the docked 
complexes for improved structure–function correlation. As discussed, the MM/PBSA method is commonly used 
to estimate binding free energies in molecular dynamics simulations. However, it comes with limitations and 
assumptions. The PBSA component employs an implicit solvent model, which might not fully capture solvent 
effects for charged or polar surfaces and can be influenced by dielectric constant choices. Its accuracy is reliant 
on force field parameter quality. Thus, we have used uniform dielectric constant values and the same force field 
for all the simulation setups. Accurate binding free energy calculations require thorough conformational sam-
pling, but MM/PBSA’s reliance on a single MD trajectory might lead to incomplete energy landscape exploration. 
Therefore, we extracted the last stable and converged trajectory of 200 ns for conducting the calculations. The 
method’s partitioning into polar and nonpolar contributions assumes additivity, potentially oversimplifying 
intricate binding interactions. The Poisson-Boltzmann equation assumption in MM/PBSA neglects polarization 
effects, which can be significant in binding events.

Results and discussion
Common feature pharmacophore generation
The superimposed coordinates of the PDBs of the MTHFD2 enzyme were used to generate the pharmacophore 
models (Fig. 1). As discussed, during pharmacophore generation, the conformation generation of the superim-
posed coordinates of inhibitors was disabled to recognize the crucial experimental interactions only. Essential 
interaction features like A, D, H, Y, Z, P, N, and R were selected during the process of pharmacophore construc-
tion. These features are considered essential for an inhibitor to form an interaction with the amino acids of the 
protein chain. Ten models were selected from the Maximum Pharmacophore generation option. To study the 
close chemical interactions, Minimum Interfeature Distance was selected as 2 Å. Other parameters like the 
Number of Leads That May Miss and Feature Misses were set to 1 to construct the models that may consider 
the molecules that did not possess all the features required for the pharmacophore construction. Furthermore, 
to search for the molecules that may not map to any feature of the generated models, the option of Complete 
Misses was selected as 0. With the help of the in-built LUDI program, the protein–ligand interactions were 
converted into Catalyst supported features like A, D, H, Y, Z, P, N, and R. A sum of ten common feature models 
were generated (Table 2) via Common Feature Pharmacophore Generation protocol of Discovery Studio v 4.030.

On observing the generated features from the superimposed protein–ligand complexes, it is evident that 
all the constructed models contain five features. The ten different pharmacophores generated display different 

Gsolvation = Gpolar + Gnonpolar

Figure 1.   Pictorial representation of the superimposed coordinates of the allosteric-bonded inhibitors of 
MTHFD2 protein.
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Model Features Pictorial representation Difference in spatial orientation

01 YZZAA YZZAA

02 RZZAA

03 RZZAA

04 YZZHD YZZHD

05 RZZHD

06 RZZHD

Continued
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combinations of features defining the interactions formed within the protein–ligand complex. Model 1 contains 
YZZAA, Model 2 and 3 contain RZZAA, Model 4 contain YZZHD, Model 5 and 6 contain RZZHD, Model 7 
contain ZZHHA, and Model 8, 9 and 10 contain YZZHA chemical features. Among the generated five features, 
hydrophobic aliphatic (Z) interaction is commonly observed, representing the common hydrophobic aliphatic, 
an essential intermolecular interaction between the inhibitors and protein (Table 2). This hydrophobic aliphatic 
(Z) feature is formed due to the halogen-substituted aromatic ring that occupies the hydrophobic pocket of 
the MTHFD2 enzyme. The aromatic ring, which is halogen-substituted, also forms π-Sulphur interaction with 
Met165, π-Sigma interaction with Val162 and Pro208 residues of the allosteric site of the protein. Also, the 
xanthine moiety of the inhibitors is responsible for showing π-π interactions with the amino acids Phe157. 
On observing the models having similar combinations of chemical features, it can be observed that the spatial 
orientation of one or more chemical features is different (Table 2). The inter-feature distance within the features 
in the constructed models is shown in Supplementary Table S1.

In models two and three, the common five features (RZZAA) were retrieved. Though the features were com-
mon, but, the spatial orientation of the ring aromatic group (R) was different in both sets (Table 2). Similarly, 
the difference in the spatial orientation of the ring aromatic group (R) was observed in the case of models five 
and six, where common RZZHD features were obtained (Table 2). In the last three models, i.e., models eight, 
nine, and ten, common YZZHA features were obtained. Models eight and nine differ in the orientation of the 
hydrophobic group (H), whereas model ten differs via the spatial orientation of the hydrogen bond acceptor 
group (A) (Table 2). The fact that these chemical features are present in all the active compounds demonstrates 
the significance of these features. Moreover, these features represent the interactions responsible for showing 
inhibition of the MTHFD2 enzyme.

Pharmacophore validation
The generated hypotheses were subjected to a series of validation processes, viz. primary validation test set 
method, external validation GH and EF studies. As discussed, the quality of the constructed models was evalu-
ated by parameters, viz. specificity, sensitivity, ROC and AUC values, EF, and GH scoring, yield of actives, and 
percentage of sensitivity. Once the pharmacophore models are developed, validation is crucial to evaluate their 
efficiency in predicting the actives and inactive during the VS process. In general, to conduct the validation study, 

Model Features Pictorial representation Difference in spatial orientation

07 ZZHHA ZZHHA

08 YZZHA

09 YZZHA

10 YZZHA

Table 2.   List of ten generated pharmacophore features along with the pictorial representation and difference 
in spatial orientation in similar feature models like models 2 and 3, models 5 and 6, and models 8, 9 and 10.
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two separate datasets of actives and inactive are generated, or a single dataset of inactive seeded with actives is 
prepared. In our case, there is a deficiency of the actives of allosteric sites of the MTHFD2 enzyme. Therefore, 
due to the deficiency of the allosteric site inhibitors, we collected all the active inhibitors of the substrate binding 
site of the MTHFD2 enzymes.

Primarily, the models were screened via the test set validation method. In the test set validation method, 
specificity defines the capacity of the model to screen out actives only during the validation process. Sensitivity 
determines the capacity of the model to discard the presumed inactive during the validation process. AUC-ROC 
defines the ability of the model to screen out actives before presumed inactive ligands. To conduct the test set 
validation method, 62 actives (active site bound) and 221 presumed inactive were collected as two different 
datasets. These inactives were retrieved from the Decoy Finder via a Molecular Descriptor-based parameter. 
The outcome of the test set method is shown in Supplementary Table S2. From the outcome, we can observe that 
all the models displayed higher specificity (> 0.99). This means that our models can predict the true negatives 
from the respective dataset. It is visible in the test set outcome that all models predict more than 219 molecules 
to be inactive out of 221 presumed inactive. However, in the case of specificity, the models displayed less ability 
to predict the active molecules. Most of the models screened a maximum of up to 20 compounds as actives out 
of a dataset of 62 actives. Thus, these models displayed sensitivity in the range of 0.08–0.32. In general, an ideal 
pharmacophore model displays a sensitivity and specificity value near to 1. However, in our case, our models 
were predicted to show lower sensitivity due to the lack of the actives of the allosteric binding site. Owing to the 
shortage of allosteric site-bonded inhibitors, the main objective of the validation process in the present work was 
to check the predictive ability of the model to exclude the actives (substrate-binding site) and presumed inactive 
ligands. Less value of sensitivity and false negative defines the sensitivity of our model. Interestingly, by looking 
at the scenario, we can predict that all the models have the predictive ability to differentiate the inactive. Lesser 
sensitivity is obtained because of the lack of allosteric site-binding inhibitors. In other words, we can say that 
our models can discard the presumed inactive ligands, even from a dataset made of active site-bonded inhibi-
tors of the MTHFD2 enzyme. Thus, higher specificity and lower sensitivity represent the high efficiency of the 
models in excluding the inactive ligands. Also, this can be related to the difference in the interacting chemical 
groups in the active and allosteric binding sites of the MTHFD2 enzyme. To further validate our test set outcome, 
we conducted primary studies using the same 62 actives (active site bound), but this time, we collected 3895 
diverse presumed inactive ligands. A similar trend of results was obtained from the outcome of the second test 
set method, as shown in Supplementary Table S2. The retrieved models displayed lower sensitivity and higher 
specificity defining the high efficiency of the models in excluding the inactive ligands. Based on the outcome, all 
the models were considered for the external validation process, i.e., GH and EF methods.

For conducting ligand mapping in secondary evaluation, we prepared a dataset of 796 molecules which con-
tain 15 actives and 781 presumed inactive. Similar to the outcome in the test set method, it was observed that in 
GH and EF methods, all the models displayed less yield and ratio of actives, which reveals the lower accuracy 
of the models in recalling actives from the mixed dataset (Supplementary Table S3). The probable reason for 
the lower accuracy is the deficiency of the actives of the allosteric site of the MTHFD2 protein. The effect of the 
lower percentage of yield and ratio can be easily seen in the EF and GH scores of the models. It is obvious that 
the models do not consider selected hits (15) as their actives which leads to lower accuracy and lower reliability 
(Supplementary Table S3). However, this behaviour was observed due to the selection of actives of the active 
site of the MTHFD2 protein. Based on the test set primary validation, EF, and GH scoring external validation, 
we selected all models for conducting the virtual screening process.

Common feature pharmacophore‑based virtual screening
As all the models were shortlisted for conducting the virtual screening process, we retrieved a total of 1221 
molecules (Supplementary Table S4). It is observed that model 1 screens out 195 candidates (18 COCONUT, 64 
DDD, 35 Specs, and 78 UNPD). Similarly, models 2 to 10 screen out 108 (13 COCONUT, 40 DDD, 18 Specs, and 
37 UNPD), 206 (19 COCONUT, 64 DDD, 25 Specs, and 90 UNPD), 32 (08 COCONUT, 03 DDD, 10 Specs, and 
11 UNPD), 73 (09 COCONUT, 07 DDD, 08 Specs, and 49 UNPD), 92 (10 COCONUT, 18 DDD, 11 Specs, and 
53 UNPD), 252 (132 COCONUT, 07 DDD, 60 Specs, and 53 UNPD), 95 (16 COCONUT, 22 DDD, 26 Specs, and 
31 UNPD), 94 (15 COCONUT, 23 DDD, 25 Specs, and 31 UNPD) and 74 (17 COCONUT, 17 DDD, 20 Specs, 
and 20 UNPD) natural product molecules. The compiled dataset of 1221 molecules was prepared using Prepare 
Ligand protocol of Discovery Studio v 4.030. As we were screening common datasets over ten different models, 
there is a probability of retrieving the same compounds. Therefore, the retrieved sets were prepared to discard 
the structural duplicates. After preparing the dataset, we retrieve 494 unique natural product compounds. This 
set of 494 molecules was utilised to conduct the molecular docking study.

Molecular docking and binding affinity calculations
All the screened unique natural compounds were docked in the allosteric binding site of the MTHFD2 protein. 
Prior to the molecular docking, we performed redocking calculations. For redocking, based on the resolution 
value (2.13 Å), we selected 7EHM PDB ID. The PDB 7EHM contain two co-crystallised inhibitors, i.e., J49 and 
J4C. The J49 is co-crystallised in the active binding site, and J4C is co-crystallised in the allosteric binding site of 
the protein chain (Supplementary Fig. S2). Redocking calculations were conducted on J4C, and it was observed 
that the redocked pose was generated with an RMSD value of 1.5 Å, and it displayed all the crucial interactions 
with the amino acids Glu141, and Arg142, as reported in the experimental pose (Supplementary Fig. S3). Thus, 
the presence of all crucial interactions, as reported in the experiment, validates our software. Thereafter, all the 
494 molecules were docked within the allosteric binding site of the protein, having crystallised J4C inhibitor. 
It was observed that, out of 494, 155 were not docked, and 339 natural product molecules were able to show 
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binding in the allosteric binding site of the MTHFD2 protein (Supplementary Table S5). These 339 molecules 
were further assessed by HYDE calculations. This calculation helps to check the inhibitor’s affinity within the 
protein cavity. HYDE assessment incorporates the factors like desolvation effects, hydrogen bonding, and the 
hydrophobic effect observed during the complex formation. The outcome showed that out of 339 molecules, 72 
displayed better binding efficiency (Supplementary Table S5). These 72 molecules were subjected to drug-likeness 
and pharmacokinetic studies.

Drug‑likeness and pharmacokinetic properties
Drug-likeness and ADMET studies were conducted on all 72 molecules with an aim to eliminate the molecules 
with undesirable physicochemical, pharmacokinetic and toxicity properties. Of 72 molecules, 63 displayed 
an acceptable range of drug-likeness properties (Lipinski’s rule of 5 and Veber’s rule). Further, their ADMET 
properties were studied. Out of 63 shortlisted candidates, only 20 molecules displayed an acceptable range of 
parameters, as shown in the Supplementary Table S6. The 2D interaction plots generated from the 20 shortlisted 
docked compounds were checked. Out of 20, only 7 displayed the interaction with the essential amino acids of 
the allosteric binding site (Supplementary Tables S6 and S7).

2D‑interaction analysis of the reference compound JC4 and shortlisted candidates
Figures 2 and 3 explain the interactions observed in the allosteric binding site of the MTHFD2 protein. On 
observing the docked poses of seven shortlisted candidates (Fig. 2), it is obvious that all the molecules occupied 
the allosteric binding domain of the protein.

As per the enzymatic studies reported in the literature, the hydrogen bond interaction with the glutamic acid 
(Glu141) and asparagine (Asn204) of the allosteric site of the enzyme plays a crucial role in causing the inhibition 
of the enzyme6. In the case of top scored candidate, ASI311667, the oxygen atom of 4-methylene morpholine 
moiety forms a hydrogen bond with the side chain of Asn204, also the –NH group of the same moiety forms 
a hydrogen bond interaction with the side chain of Glu141 (Fig. 3). The 2,4 dichloro-1-(2-methoxy-phenoxy-
methyl) benzene group of the top-scored candidate was observed to form hydrophobic contacts with the protein 
chain and act as a hydrophobic head group. The remaining part of the molecule, N-methylhexanamine, form 
interaction via the –NH group with the side chain of Leu133 (Fig. 3).

The formation of three crucial interactions with Asn204, Glu141, and Leu133, along with other important 
hydrophobic interactions, like, Tyr84, Leu133, Pro134, Glu141, Phe157, Thr176, Asn204, Val205 and Ile276, 
indicate the formation of stable binding of the ligand with the enzyme; thus, it may have the capability to inhibit 
the functioning of the MTHFD2 enzyme6. Likewise, the molecule, UNPD224655, displayed hydrogen bond 
interaction with the side chain of Glu141 amino acid via 2-methoxy-phenol moiety, the side chain of Asn204 via 
2,3-dihydro furan-3-yl-methanol group, and with the side chain of Ile276 via phenyl acrylaldehyde moiety of the 
natural product. Along with these crucial hydrogen bonds, the molecule also forms hydrophobic interaction with 
Leu133, Phe157, Val205, and Ile276. The acrylaldehyde and 2-methoxy phenol moieties form the hydrophobic 
head group as it fits inside the hydrophobic cavity of the enzyme (Fig. 3). The third molecule, UNPD230014, 

Figure 2.   Pictorial representation of 3D-coordinates of docked poses (light grey), along with reference-JC4 
(light blue) and active site-bound inhibitor-J49 (brown) in the MTHFD2 protein.
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forms hydrogen bonding through acrylaldehyde moiety with the side chain of Ile276 residue. The rest of the 
interactions with amino acids Glu141 and Asn204 were formed with the –OH and –O–CH3 groups of the 2-meth-
oxy phenol group. Similar to UNPD224655, here, the hydrophobic head group was formed by acrylaldehyde 
and 2-methoxy phenol group. Hydrophobic interactions were reported with Leu133, Phe157, Thr176, Asn204, 
Val205, and Val274 (Fig. 3). In the case of the natural product, UNPD224603, four hydrogen bond interactions 
were reported with Glu141, Asn204, Val274, and Ile276 amino acids. The –OH group of (3-methoxy phenyl) 

Figure 3.   Pictorial representation of 2D-interaction plots of seven shortlisted docked natural products in the 
allosteric site of MTHFD2 protein.
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prop-2-en-1-ol form two interactions with Val274 and Ile276, and the –OH group of 2,3-dihydrofuran-3-yl-
methanol moiety form an interaction with the side chain of Asn204. Also, it forms a hydrophobic head group 
and forms interactions with Leu133, Phe157, Asn204, Val205, and Ile276. The –OH group of 2-methoxy phenol 
forms hydrogen bonding with Glu141 amino acid. The fifth molecule, UNPD151821, also forms four hydrogen 
bonds with Gln132, Leu133, Glu141, and Asn204. The compound forms the hydrophobic interactions with 
Ala80, Tyr84, Leu133, Asn204, Val205, and Ile276 amino acids. The -O and -H atoms of the -OH moiety of 
5-hydroxy-pyrrole-2-carbaldehyde form two hydrogen bond interactions with the side chain of Gln132 and 
Leu133, respectively. The remaining two interactions with the side chain of Asn204 and Glu141 were formed by 
-OCH3 and -OH moieties of 2-methoxy-phenol, respectively (Fig. 3). The sixth natural product, UNPD101160, 
displayed hydrogen bond interaction with the side chain of Glu141, Arg142, and Asn204 via the 2-methyl-
tetrahydro furan-2-yl-methanol moiety of the compound. The remaining moiety of the compound form hydro-
phobic contacts with the Tyr84, Leu133, Glu141, Arg142, Phe157, Thr176, Asn204, Val205, and Ile276 amino 
acids. The seventh candidate, UNPD202303, forms hydrogen bonding interactions with Glu141, Arg142, and 
Asn204 residues. The 2,4-dimethyldec-2-en-1-ol form hydrophobic contacts with amino acids Leu133, Glu141, 
Phe157, and Asn204. On observing the 2D interaction plots (Fig. 3) of all seven docked candidates, common 
interactions with Glu141 and Asn204 amino acids were reported. Thus, from molecular docking calculations, 
we can predict that the shortlisted candidates showed crucial interactions with the allosteric site amino acids. 
Hence, they may be able to inhibit the activity of the MTHFD2 enzyme. Further, these docked complexes were 
subjected to molecular dynamics simulation and free energy calculations studies to check the binding stability 
and binding affinity within the biological environment.

Out of these seven natural compounds, ASI311667 was found to be available from Aurora building block 
7. UNPD224655, i.e. (−)Balanophonin could be sourced from the tonka bean plant69,70. UNPD224603, i.e. 
(+)-Dehydrodiconiferyl alcohol can be extracted from the palm trees and is available from the A2B Chem 
product list71,72. Total synthesis of UNPD151821, i.e. Magnolamide obtained from Magnolia coco, has been 
reported by Ying Dong et al.73 and Tsz-Ying Yuen et al.74. The antioxidant activity of magnolamide has been 
discussed by Wen-Fei Chiou et al.75. Any specific information about the source, availability and biological effect 
was not obtained for compounds UNPD230014, UNPD101160, and UNPD202303 post a thorough search of 
the SciFinder database.

Molecular dynamics simulations
The top docked compounds, ASI311667, UNPD224655, UNPD230014, UNPD224603, UNPD151821, 
UNPD101160, and UNPD202303 along with crystallographic ligand J4C and apo-protein MTHFD2 (without 
allosteric site binded inhibitor) was subjected to MD simulations for studying the protein dynamics and vali-
dating docking results. The MTHFD2 protein in complex with J4C, ASI311667, UNPD224655, UNPD230014, 
UNPD224603, UNPD151821, UNPD101160, and UNPD202303 henceforth will be referred to as MTHFD2_J4C, 
MTHFD2_D1, MTHFD2_D2, MTHFD2_D3, MTHFD2_D4, MTHFD2_D5, MTHFD2_D6, and MTHFD2_D7 
respectively.

Molecular dynamics (MD) simulation of MTHFD2 and MTHFD2 docked complexes
MD simulations showing the interaction and stability of compound-protein complexes were performed to inves-
tigate the stability, dynamics, and conformational changes of the docked complexes of MTHFD2 and MTHFD2 
with reference inhibitors J4C. In protein simulations, an optimal timeframe balances the observation of critical 
conformational changes and interactions without excessive computational burden. Striking this equilibrium 
prevents overlooking significant dynamics while avoiding impractical computational demands. Convergence 
is crucial to ensure that the system has adequately sampled the energy landscape of the conformational space 
and that the observed behaviours are statistically meaningful. The convergence was confirmed by the stability 
as observed in RMSD plots. The timescale of 300 ns also ensured to extract frames from a stable 200 ns plateau 
region for binding free energy calculations. In this study, we examined RMSD, RMSF, Rgyr, H-bonds, and Free 
energy landscape (FEL) plots for all MD simulation systems. The binding free energy of all complexes was 
computed for the final stable 200 ns trajectory. The mean and variance for key metrics such as RMSD, RMSF, 
and H-bond analyses were calculated across all frames within a single long trajectory of 300 ns. This thorough 
methodology provides significant statistical insights specific to each trajectory.

Stability of MTHFD2 protein and MTHFD2 docked complexes
The root mean square deviation (RMSD) values for the protein Cα backbone of MTHFD2 and MTHFD2 docked 
complexes were computed for the duration of the 300 ns. This was done in order to assess the stability and 
dynamics of MTHFD2 in the presence of compounds, as well as to gain molecular insights into the binding 
interactions of compounds. The RMSD is a measure of the structural variation in C backbones from their initial 
location to their final position during the course of the simulation trajectory. For the simulation system to be 
stable, lower RMSD values should be obtained. The RMSD graphs plotted for the docked compounds complexed 
with MTHFD2 protein are shown in Fig. 4.

The mean RMSD values for apo-MTHFD2, MTHFD2_J4C, MTHFD2_D1, MTHFD2_D2, MTHFD2_
D3, MTHFD2_D4, MTHFD2_D5, MTHFD2_D6, and MTHFD2_D7 were 0.38 ± 0.05 nm, 0.29 ± 0.02 nm, 
0.29 ± 0.03 nm, 0.25 ± 0.03 nm, 0.35 ± 0.05 nm, 0.27 ± 0.03 nm, 0.29 ± 0.02 nm, 0.23 ± 0.03 nm, and 0.27 ± 0.03 nm 
respectively. The RMSD value of the apo-MTHFD2 protein was comparatively higher than MTHFD2 docked 
complexes. All the compounds docked in MTHFD2 have RMSD values lesser or equivalent to MTHFD2 in com-
plex with reference crystallographic ligand J4C except MTHFD2_D3. In particular, the compounds MTHFD2_
D1, MTHFD2_D2, MTHFD2_D4, MTHFD2_D6, and MTHFD2_D7 showed lesser RMSD values compared to 
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the reference ligand. This implies that during the calculations, the compounds MTHFD2_D1, MTHFD2_D2, 
MTHFD2_D4, MTHFD2_D6, and MTHFD2_D7 persisted to be stable in complex with MTHFD2 protein.

The root mean squared fluctuations (RMSF) plots were generated for 300 ns to analyse the residue-wise fluc-
tuations. For comparison of flexible residues of protein with respect to docked complexes, the RMSF values for 
various docked compounds were overlaid on the apo-MTHFD2 (Fig. 5). The mean RMSF values for MTHFD2, 
MTHFD2_J4C, MTHFD2_D1, MTHFD2_D2, MTHFD2_D3, MTHFD2_D4, MTHFD2_D5, MTHFD2_D6, 
and MTHFD2_D7 were 0.124 ± 0.07 nm, 0.093 ± 0.05 nm, 0.081 ± 0.06 nm, 0.109 ± 0.08 nm, 0.113 ± 0.11 nm, 
0.097 ± 0.06 nm, 0.088 ± 0.05 nm, 0.091 ± 0.05 nm, and 0.107 ± 0.08 nm respectively. Similar to RMSD, the RMSF 
values for the apo-MTHFD2 are higher when compared to all the docked complexes, indicating lesser residue 
level fluctuations in the docked complex. Previous literature and crystal structures of MTHFD2 have revealed 
the conformational changes in three loops βe–αE (199–206), αD2ʹ–αD3ʹ (167–175), and αEʹ–βfʹ (214–227) of 
protein on binding with the inhibitors at the allosteric site6,76. It was evident from the RMSF analysis, as shown 
in Fig. 5 that the αEʹ–βfʹ loop (residue 214–227) was the most flexible with the highest deviations. A similar 
trend was also observed for the region with residues 275–290. Over the entire course of 300 ns simulations, we 
compared the RMSF values of the three loops for MTHFD2 docked complexes with the reference ligand J4C 
and apo-protein. The RMSF computed allowed us to identify the residues among the three loops of MTHFD2 
that displayed the highest fluctuations during the simulations (Fig. 6).

The deviation of most residues in the αD2ʹ–αD3ʹ loop (167–175) was almost equivalent for apo-MTHFD2 
protein and MTHFD2 with the allosterically docked compounds. The βe–αE loop (199–206) showed higher 
deviation for apo-MTHFD2 protein in comparison to the docked complexes of MTHFD2 protein. The third 
αEʹ–βfʹ loop (214–227) display the highest deviation in the apo-MTHFD2 protein compared to the docked com-
plexes of MTHFD2 except for the MTHFD2_D3 compound. The MTHFD2_D3 showed the highest deviation 
amongst all the residues of the loop. The representative structures from all the trajectories were also superposed 
to compare and visualize the displacement of all three loops in the presence of docked complexes at the allosteric 
site (Supplementary Fig. S4). As observed in the earlier reports, a similar conformational change in αEʹ–βfʹ loop 
was observed in the average structures of all the simulations, leading to its displacement away from the allosteric 
site of MTHFD276. Overall, the RMSD and RMSF analyses revealed that the docked complexes at the allosteric 
site exhibited similar or lower fluctuations, thus, elucidating lower variability at the residue level. Furthermore, all 
300 ns simulations were submitted to the Radius of Gyration (RoG) calculations. The RoG compares the shape of 
the protein at each trajectory to the experimentally attainable hydrodynamic radius. Figure 7 depicts the average 
RoG values of protein C backbones for all compounds and the reference ligand with MTHFD2.

The mean RoG values for MTHFD2, MTHFD2_J4C, MTHFD2_D1, MTHFD2_D2, MTHFD2_D3, 
MTHFD2_D4, MTHFD2_D5, MTHFD2_D6, and MTHFD2_D7 were 1.929 ± 0.019 nm, 1.946 ± 0.009 nm, 
1.960 ± 0.009 nm, 1.966 ± 0.011 nm, 1.989 ± 0.012 nm, 1.962 ± 0.011 nm, 1.958 ± 0.010 nm, 1.970 ± 0.009 nm, 
and 1.958 ± 0.010 nm respectively. The RoG values of all the docked systems were similar, thus, demonstrating 
that the overall structure of the docked complexes with MTHFD2 protein is consistent. However, compared to 
the apo-MTHFD2, all docked complexes exhibited marginally higher RoG values, indicating a minor increase 

Figure 4.   Molecular dynamics analysis of MTHFD2 and MTHFD2 in complexes with docked compounds, 
computing the RMSD deviation (nm) vs function of time (300 ns) of the protein Cα backbone atoms. The 
colour representation is MTHFD2 (black), MTHFD2_J4C (red), MTHFD2_D1 (cyan), MTHFD2_D2 (green), 
MTHFD2_D3 (blue), MTHFD2_D4 (yellow), MTHFD2_D5 (brown), MTHFD2_D6 (grey), and MTHFD2_D7 
(purple).
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in the protein hydrodynamic radius in the presence of the docked compounds (Fig. 7). We also calculated the 
surface accessible solvent area (SASA) component over the full trajectory for all systems. The SASA calculations 
access the surface area of protein that is accessible to the solvent. The SASA values were significantly similar 
to the apo-MTHFD2, MTHFD2_J4C, and MTHFD2 docked complexes (data not shown). Overall, the RMSD, 
RMSF, Rgyr, and SASA analyses revealed that the docked compounds displayed higher stability and stable 
dynamic pattern when compared to the apo-MTHFD2 protein and MTHFD2 complexed experimentally known 
inhibitor/ligand (J4C).

Molecular interactions of MTHFD2 with identified compounds from docking
H-bond formation indicates specificity and molecular interactions between the protein and inhibitors in the com-
plexes. Figure 8 depicts the calculated mean values for H-bonds formed between MTHFD2 protein and docked 

Figure 5.   Molecular dynamics analysis of MTHFD2 and MTHFD2 in complexes with docked compounds, 
computing the RMSF deviation (nm) vs function of time (300 ns) of the protein Cα backbone atoms for each 
residue. The colour representation is MTHFD2 (black), MTHFD2_J4C (red), MTHFD2_D1 (cyan), MTHFD2_
D2 (green), MTHFD2_D3 (blue), MTHFD2_D4 (yellow), MTHFD2_D5 (brown), MTHFD2_D6 (grey), and 
MTHFD2_D7 (purple).

Figure 6.   The bar plot depicting the RMSF values (nm) of the protein Cα backbone atoms computed for 300 ns 
for three flexible loops βe-αE, αD2ʹ-αD3ʹ and αEʹ-βfʹ.
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compounds. The average H-bond values for MTHFD2_J4C, MTHFD2_D1, MTHFD2_D2, MTHFD2_D3, 
MTHFD2_D4, MTHFD2_D5, MTHFD2_D6, and MTHFD2_D7, were 1.687 ± 1.10, 0.763 ± 0.42, 0.297 ± 0.486, 
0.686 ± 0.73, 0.091 ± 0.29, 0.013 ± 0.35, 0.258 ± 0.46, and 0.599 ± 0.56 respectively. We also have computed the 
average H-bond values for the J49 ligand (active site ligand) bound in all the trajectories of MTHFD2 in complex 
with seven docked compounds to assess the interaction of the J49 with the protein with respect to the presence 
of the compounds at the allosteric site. The average H-bond values for J49 in different complexes MTHFD2_J4C, 
MTHFD2_D1, MTHFD2_D2, MTHFD2_D3, MTHFD2_D4, MTHFD2_D5, MTHFD2_D6, and MTHFD2_D7 
were 1.687 ± 1.10, 2.586 ± 1.38, 1.633 ± 1.07, 1.429 ± 1.06, 2.014 ± 1.26, 1.784 ± 1.23, 1.361 ± 1.10, and 1.792 ± 1.21 
respectively (Fig. 9). The average number of H-bonds with different inhibitors was lesser than the crystallographic 
reference ligand. On the other hand, the average no. of H-bonds of J49 (active site ligand) in MTHFD2_D1, 
MTHFD2_D4, MTHFD2_D5, and MTHFD2_D7 inhibitor complexes were higher than the complex with only 
J4C ligand in MTHFD2. The intra-H-bonds in MTHFD2_J4C and docked-MTHFD2 protein were also com-
puted. The average intra-H-bonds for MTHFD2_J4C was 64.60 ± 14.10, while for the respective inhibitors, the 
average H-bonds ranged from 58 to 68 (data not shown).

Figure 7.   Molecular dynamics analysis of MTHFD2 and MTHFD2 in complexes with docked compounds, 
computing the RoG deviation (nm) vs function of time (300 ns) of the protein Cα backbone atoms for each 
residue. The colour representation is MTHFD2 (black), MTHFD2_J4C (red), MTHFD2_D1 (cyan), MTHFD2_
D2 (green), MTHFD2_D3 (blue), MTHFD2_D4 (yellow), MTHFD2_D5 (brown), MTHFD2_D6 (grey), and 
MTHFD2_D7 (purple).

Figure 8.   Computation of H-bond formation between MTHFD2 and docked compounds for 300 ns duration. 
The colour representation is MTHFD2_J4C (black), MTHFD2_D1 (purple), MTHFD2_D2 (red), MTHFD2_D3 
(green), MTHFD2_D4 (blue), MTHFD2_D5 (yellow), MTHFD2_D6 (brown), and MTHFD2_D7 (grey).
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Binding free energy estimation and energy decomposition of MTHFD2 and MTHFD2 docked 
complexes with inhibitors
The MD trajectories of MTHFD2_J4C, MTHFD2_D1, MTHFD2_D2, MTHFD2_D3, MTHFD2_D4, MTHFD2_
D5, MTHFD2_D6, and MTHFD2_D7 were used for computing binding free energies. The MM/PBSA method 
is commonly used to estimate the binding free energies, which estimate the non-bonded interaction energies. 
Using the MM-PBSA method, the binding free energy (ΔG) between the MTHFD2 protein and the selected 
docked compounds was calculated for the last 200 ns of stable trajectories. For accurate binding free energy 
calculations, thorough conformational sampling should be done, but the MM/PBSA relies on a single trajectory 
that might lead to incomplete energy landscape exploration. Therefore, according to the stable convergence of the 
simulation outcome, we extracted the last trajectories from the last 200 ns. From the MD simulations outcome, 
1000 frames from the last 200 ns of trajectories were considered for the computation. The estimated values of 
ΔG (kJ mol−1) calculated for all MD simulations involving MTHFD2_J4C and docked MTHFD2 complexes are 
shown in Fig. 10. All the compounds showed better binding free energy values than the MTHFD2_J4C except 
the MTHFD2_D1. The best one was found to be MTHFD2_D6, followed by MTHFD2_D4, MTHFD2_D2, 
MTHFD2_D3, MTHFD2_D5, and MTHFD2_D7. We also computed the binding energy for J49 (active site 
inhibitor) with protein MTHFD2 in the presence of the docked inhibitors (Fig. 10).

Figure 9.   Computation of H-bonds formation between MTHFD2 and reference ligand J4C in all docked 
complexes for 300 ns. The colour representation is MTHFD2_J4C (black), MTHFD2_D1 (purple), MTHFD2_
D2 (red), MTHFD2_D3 (green), MTHFD2_D4 (blue), MTHFD2_D5 (yellow), MTHFD2_D6 (brown), and 
MTHFD2_D7 (grey).

Figure 10.   MM-PBSA Calculation of binding free energy. The total binding free energy for all the MTHFD2 
docked complexes was calculated for the last 200 ns stable trajectory for 1000 frames. The binding free energy 
for docked complexes is black, while the binding free energy for reference ligand J4C is grey in each docked 
complex.
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In most docked complexes, the binding energy for J49 decreases except for MTHFD2_D3, which was slightly 
equivalent to the only MTHFD2_J4C complex. The decrease in the reference ligand J4C binding energy in the 
presence of the docked inhibitors suggests the role of inhibitors in the allosteric site. The identified inhibitors 
may interfere with and decrease the binding affinity of the J4C to the MTHFD2. The experimental results may 
identify more information on the effect of docked compounds.

PCA and FEL analysis of MTHFD2 and MTHFD2 docked complexes
Principal Component Analysis (PCA) examined the conformational space and transitions in the apo and docked 
complex structures. The PCA reduces the complexity of the simulated trajectories by isolating C atom collective 
motion while retaining the majority of the variation. It computes the covariance matrix of positional fluctua-
tions for backbone atoms, which is used to understand the dynamics and coherent motions of MTHFD2 in the 
absence/presence of compounds. Figure 11 depicts the trajectory of two primary principal components, PC1 
and PC2, for apo-MTHFD2, MTHFD2_J4C, and MTHFD2 docked complexes. The FEL is plotted to better 
comprehend the protein’s conformational change during the simulation. The FEL 3D graphs were plotted against 
two primary components, i.e., RMSD and Rgyr (Fig. 12). Each protein–ligand combination had a unique FEL 
pattern. Based on the energy, the dark blue color spots represent minimal energy and highly favoured protein 
conformations, whereas the yellow color spots represent undesirable conformations (Fig. 12).

The system MTHFD2_J4C, MTHFD2_D3, MTHFD2_D4, and MTHFD2_D5 had a very similar pattern 
of FEL with one broad peak in the funnel. On the other hand, apo-MTHFD2, MTHFD2_D1, MTHFD2_D3, 
MTHFD2_D6, and MTHFD2_D7 had multiple peaks in the funnel. The PCA and FEL analysis profoundly 

Figure 11.   Principle component analysis (PCA) of MTHFD2 and MTHFD2 docked complexes for 300 ns 
showing 2D scatter plot projecting the motion of the protein in phase space for the two principal components, 
PC1 and PC3. The panel is represented as MTHFD2 (a), MTHFD2_J4C (b), MTHFD2_D1 (c), MTHFD2_D2 
(d), MTHFD2_D3 (e), MTHFD2_D4 (f), MTHFD2_D5 (g), MTHFD2_D6 (h), and MTHFD2_D7.
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concluded that the MTHFD2 had a very distinct behaviour with different ligands and multi-conformational 
structures found in the entire simulations. This ascertains that the docked protein-ligands compounds had a role 
in displaying stable protein conformational structures and overall dynamics. The identified compounds must 
play a role in protein distinct patterns and dynamics when compared to the apo-protein.

Conclusions
The MTHFD2 enzyme is identified as one of the new and attractive anticancer drug targets. As per recent studies, 
MTHFD2 has an allosteric binding site that coexists with the substrate analogue. It is reported that binding of 
the inhibitors in the allosteric site leads to disruption in the enzyme mechanism. Also, allosteric site inhibition 
is gaining importance owing to the increase in the selectivity of the inhibitors and reduction in the emergence of 
drug resistance. Given this importance, our work presents the sheer use of various computational techniques for 
identifying and validating hit molecules. The reported crystallized complexes of allosterically bound MTHFD2 
enzymes were selected. The selected protein complexes were superimposed to generate a single coordinate file 
which was further subjected to pharmacophore modeling. Validation of pharmacophores was performed to check 
the specificity of the models. To conduct the virtual screening (VS) process, a dataset of 2,36,561 molecules of 
various natural product (NP) databases was selected and prepared. After screening, we retrieved 494 unique 
candidates, which were further subjected to molecular docking and HYDE assessment. The shortlisted candidates 
were prepared as per Lipinski’s rule of five and Veber’s rule. From docking and HYDE assessment, we obtained 
72 molecules, which were further shortlisted to 63 based on the drug-likeness studies. On conducting ADMET 
studies, only 20 molecules were selected. Out of 20, only seven were selected based on the presence of interaction 

Figure 12.   Free energy landscape (FEL) of MTHFD2 and MTHFD2 docked complexes for 300 ns MDS. The 
panel is represented as MTHFD2 (a), MTHFD2_J4C (b), MTHFD2_D1 (c), MTHFD2_D2 (d), MTHFD2_D3 
(e), MTHFD2_D4 (f), MTHFD2_D5 (g), MTHFD2_D6 (h), and MTHFD2_D7 (i).
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with important amino acids, i.e., glutamic acid (Glu141) and asparagine (Asn204). These seven candidates were 
subjected to molecular dynamics simulations. In simulations, we examined RMSD, RMSF, Rgyr, and H-bonds 
plots for all the docked systems, along with reference and apo-protein. From the outcome of RMSD and RMSF 
analysis, we observed that all the docked complexes displayed stable behaviour in comparison to the selected 
reference and apo-protein. Also, from protein RMSF analysis, we studied the protein conformational changes 
in three loops βe–αE (199–206), αD2ʹ–αD3ʹ (167–175), and αEʹ–βfʹ (214–227) on binding with the inhibitors at 
the allosteric site. The deviation of the residues in the range of 167–175 was almost equivalent for apo-MTHFD2 
protein and docked MTHFD2 complexes. The amino acids from 199 to 206 showed lesser deviation in docked 
complexes when compared with the apo-MTHFD2 protein. The third αEʹ–βfʹ loop (214–227) display the highest 
deviation in the apo-MTHFD2 protein than the docked complexes of MTHFD2 except for the MTHFD2_D3 
compound. Also, as per the earlier reports, a similar conformational change in the αEʹ–βfʹ loop was observed in 
the average superimposed structures of all the simulations, leading to its displacement away from the allosteric 
site of MTHFD2. From RoG analysis, marginal higher fluctuations were observed in docked complexes represent-
ing the increase in the protein hydrodynamic radius in the presence of the docked compounds. Hydrogen bond 
analysis was performed to check the average interactions formed in the docked complexes (allosteric site) and 
J49 (active site inhibitor) and intra-H-bonding. The average number of H bonding was different in all the docked 
complexes, and the average number of intra-H-bonds was 58–68 displaying the presence of bonding during the 
simulations. From binding free energy calculations, we observed that all the complexes except (MTHFD2_D1) 
showed higher binding energy. Also, in the case of calculation of the binding energy of J49 (active site inhibitor), 
it was observed that the presence of docked complexes causes a decrease in the energy suggesting the role of 
inhibitors in the allosteric site of the protein. The PCA and FEL analysis revealed that the MTHFD2 enzyme had 
a distinct behaviour with different ligands and multi-conformational structures found in the simulations. Also, 
the docked complexes play an essential role in protein conformational change and overall dynamics, a behav-
iour of stable protein–ligand complexes. Overall, based on the outcome of the results in the current study, these 
complexes can contribute to the development of potential drug-like natural products that have the capability of 
inhibiting the MTHFD2 enzyme. The synthesis of these compounds is under process, and after synthesis, they 
will be evaluated for their anticancer activities.

Data availability
The datasets used and/or analysed in the current study are available from the corresponding author upon rea-
sonable request.

Received: 20 June 2023; Accepted: 17 October 2023

References
	 1.	 Chhikara, B. S. & Parang, K. Global Cancer Statistics 2022: The trends projection analysis. Chem. Biol. Lett. 10, 451–451 (2023).
	 2.	 WHO. Cancer. Available online: https://​www.​who.​int/​news-​room/​fact-​sheets/​detail/​cancer.
	 3.	 Coulson, A., Levy, A. & Gossell-Williams, M. Monoclonal antibodies in cancer therapy: Mechanisms, successes and limitations. 

West Indian Med. J. 63, 650 (2014).
	 4.	 Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer 

treatment. Int. J. Oncol. 54, 407–419 (2019).
	 5.	 Schirrmacher, V. Quo vadis Cancer Therapy?: Fascinating Discoveries of the Last 60 Years. (LAP Lambert Academic Publishing, 

2017).
	 6.	 Lee, L.-C. et al. Xanthine derivatives reveal an allosteric binding site in methylenetetrahydrofolate dehydrogenase 2 (MTHFD2). 

J. Med. Chem. 64, 11288–11301 (2021).
	 7.	 Zhu, Z. & Leung, G. K. K. More than a metabolic enzyme: MTHFD2 as a novel target for anticancer therapy?. Front. Oncol. 10, 

658 (2020).
	 8.	 Nilsson, R. et al. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. 

Nat. Commun. 5, 1–10 (2014).
	 9.	 Ju, H.-Q. et al. Modulation of redox homeostasis by inhibition of MTHFD2 in colorectal cancer: mechanisms and therapeutic 

implications. JNCI: J. Natl. Cancer Inst. 111, 584–596 (2019).
	10.	 Ducker, G. S. et al. Reversal of cytosolic one-carbon flux compensates for loss of the mitochondrial folate pathway. Cell Metab. 23, 

1140–1153 (2016).
	11.	 Allaire, M., Li, Y., MacKenzie, R. E. & Cygler, M. The 3-D structure of a folate-dependent dehydrogenase/cyclohydrolase bifunc-

tional enzyme at 1.5 Å resolution. Structure 6, 173–182 (1998).
	12.	 Christensen, K. E. & MacKenzie, R. E. Mitochondrial methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclo-

hydrolase, and formyltetrahydrofolate synthetases. Vitamins Hormones 79, 393–410 (2008).
	13.	 Zhao, L. N. & Kaldis, P. The catalytic mechanism of the mitochondrial methylenetetrahydrofolate dehydrogenase/cyclohydrolase 

(MTHFD2). PLOS Comput. Biol. 18, e1010140 (2022).
	14.	 Shang, M. et al. The folate cycle enzyme MTHFD2 induces cancer immune evasion through PD-L1 up-regulation. Nat. Commun. 

12, 1940 (2021).
	15.	 Fu, C. et al. The natural product carolacton inhibits folate-dependent C1 metabolism by targeting FolD/MTHFD. Nat. Commun. 

8, 1529 (2017).
	16.	 Mainolfi, N. et al. (Google Patents, 2022).
	17.	 Kawai, J. et al. Structure-based design and synthesis of an isozyme-selective MTHFD2 inhibitor with a tricyclic coumarin scaffold. 

ACS Med. Chem. Lett. 10, 893–898 (2019).
	18.	 Kawai, J. et al. Discovery of a potent, selective, and orally available MTHFD2 inhibitor (DS18561882) with in vivo antitumor 

activity. J. Med. Chem. 62, 10204–10220 (2019).
	19.	 Nussinov, R. & Tsai, C.-J. Allostery in disease and in drug discovery. Cell 153, 293–305 (2013).
	20.	 Zhang, J. & Nussinov, R. Protein allostery in drug discovery. (Springer, 2019).
	21.	 Cheng, X. & Jiang, H. Allostery in drug development. Protein Allostery Drug Discov. 1–23 (2019).
	22.	 Solanki, P., Rana, N., Jha, P. C. & Manhas, A. A comprehensive analysis of the role of molecular docking in the development of 

anticancer agents against the cell cycle CDK enzyme. Biocell 47 (2023).

https://www.who.int/news-room/fact-sheets/detail/cancer


21

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18090  | https://doi.org/10.1038/s41598-023-45175-3

www.nature.com/scientificreports/

	23.	 Manhas, A., Kediya, S. & Jha, P. C. Pharmacophore modeling approach in drug discovery against the tropical infectious disease 
malaria. Front. Comput. Chem. 6(6), 132–192 (2022).

	24.	 Demain, A. L. & Vaishnav, P. Natural products for cancer chemotherapy. Microbial Biotechnol. 4, 687–699 (2011).
	25.	 Basu, S. et al. Bioactive phytocompounds against specific target proteins of Borrelia recurrentis responsible for louse-borne relaps-

ing fever: Genomics and structural bioinformatics evidence. Med. Vet. Entomol. 37, 213–218 (2023).
	26.	 Ashok, G. & Ramaiah, S. FN1 and cancer‐associated fibroblasts markers influence immune microenvironment in clear cell renal 

cell carcinoma. J. Gene Med. e3556 (2023).
	27.	 Berman, H. M. et al. The protein data bank. Nucleic Acids Res. 28, 235–242 (2000).
	28.	 Manhas, A., Lone, M. Y. & Jha, P. C. In search of the representative pharmacophore hypotheses of the enzymatic proteome of 

Plasmodium falciparum: A multicomplex-based approach. Mol. Divers. 23, 453–470 (2019).
	29.	 Jejurikar, B. L. & Rohane, S. H. Drug designing in discovery studio. Asian J. Res. Chem 14, 135–138 (2021).
	30.	 DiscoveryStudio-4.0. Discovery Studio 4.0 is a product of Accelrys Inc. San Diego, CA, USA.
	31.	 Giordano, D., Biancaniello, C., Argenio, M. A. & Facchiano, A. Drug design by pharmacophore and virtual screening approach. 

Pharmaceuticals 15, 646 (2022).
	32.	 Cereto-Massagué, A. et al. DecoyFinder: An easy-to-use python GUI application for building target-specific decoy sets. 28, 

1661–1662 (2012).
	33.	 Gaulton, A. et al. The ChEMBL database in 2017(45), D945–D954 (2017).
	34.	 Brooks, B. R. et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. 4, 187–217 (1983).
	35.	 Atanasov, A. G., Zotchev, S. B., Dirsch, V. M. & Supuran, C. T. Natural products in drug discovery: Advances and opportunities. 

Nat. Rev. Drug Discov. 20, 200–216 (2021).
	36.	 Shaik, B. B., Katari, N. K. & Jonnalagadda, S. B. Role of natural products in developing novel anticancer agents: A perspective. 

Chem. Biodivers. 19, e202200535 (2022).
	37.	 Molinari, G. Natural products in drug discovery: present status and perspectives. Pharmaceut. Biotechnol. 13–27 (2009).
	38.	 Khazir, J., Riley, D. L., Pilcher, L. A., De-Maayer, P. & Mir, B. A. Anticancer agents from diverse natural sources. Nat. Prod. Com-

mun. 9, 1934578X1400901130 (2014).
	39.	 SpecsDatabase. Compound management services and research compounds for the life science industry. Accessed 16 Oct 2019. 

https://​www.​specs.​net/​index.​php (2019).
	40.	 Sorokina, M., Merseburger, P., Rajan, K., Yirik, M. A. & Steinbeck, C. COCONUT online: Collection of open natural products 

database. J. Cheminf. 13, 1–13 (2021).
	41.	 Gu, J. et al. Use of natural products as chemical library for drug discovery and network pharmacology. 8, e62839 (2013).
	42.	 Lagunin, A., Filimonov, D. & Poroikov, V. Multi-targeted natural products evaluation based on biological activity prediction with 

PASS. Curr. Pharmaceut. Des. 16, 1703–1717 (2010).
	43.	 Kramer, B., Rarey, M. & Lengauer, T. CASP2 experiences with docking flexible ligands using FlexX. Proteins Struct. Funct. Bioinf. 

29, 221–225 (1997).
	44.	 Rarey, M., Kramer, B., Lengauer, T. & Klebe, G. A fast flexible docking method using an incremental construction algorithm. J. 

Mol. Biol. 261, 470–489 (1996).
	45.	 Böhm, H.-J. The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex 

of known three-dimensional structure. J. Comput. Aided Mol. Des. 8, 243–256 (1994).
	46.	 Bietz, S., Urbaczek, S., Schulz, B. & Rarey, M. Protoss: A holistic approach to predict tautomers and protonation states in protein-

ligand complexes. J. Cheminf. 6, 1–12 (2014).
	47.	 Reulecke, I., Lange, G., Albrecht, J., Klein, R. & Rarey, M. Towards an integrated description of hydrogen bonding and dehydration: 

Decreasing false positives in virtual screening with the HYDE scoring function. ChemMedChem Chem. Enabling Drug Discov. 3, 
885–897 (2008).

	48.	 Stierand, K. & Rarey, M. Drawing the PDB: Protein-ligand complexes in two dimensions. ACS Med. Chem. Lett. 1, 540–545 (2010).
	49.	 Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and 

permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997).
	50.	 Veber, D. F. et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623 

(2002).
	51.	 Tan, D. S. Current progress in natural product-like libraries for discovery screening. Combin. Chem. High Throughput Screen. 7, 

631–643 (2004).
	52.	 Chaudhari, A. et al. In-Silico analysis reveals lower transcription efficiency of C241T variant of SARS-CoV-2 with host replication 

factors MADP1 and hnRNP-1. Inf. Med. Unlocked 25, 100670 (2021).
	53.	 Patel, D., Athar, M. & Jha, P. C. Exploring ruthenium-based organometallic inhibitors against plasmodium falciparum calcium 

dependent kinase 2 (PfCDPK2): A combined ensemble docking, QM/MM Molecular Dynamics Study. ChemistrySelect 6, 8189–
8199 (2021).

	54.	 Patel, D., Athar, M. & Jha, P. Computational investigation of binding of chloroquinone and hydroxychloroquinone against PLPro 
of SARS-CoV-2. J. Biomol. Struct. Dyn. 40, 3071–3081 (2022).

	55.	 Lindahl, E., Abraham, M., Hess, B. & Van der Spoel, D. (Version, 2020).
	56.	 Vanommeslaeghe, K. et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM 

all-atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010).
	57.	 Vanommeslaeghe, K., Raman, E. P. & MacKerell, A. D. Jr. Automation of the CHARMM General Force Field (CGenFF) II: assign-

ment of bonded parameters and partial atomic charges. J. Chem. Inf. Model. 52, 3155–3168 (2012).
	58.	 Berendsen, H. J., Postma, J. V., Van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external 

bath. J. Chem. Phys. 81, 3684–3690 (1984).
	59.	 Parrinello, M. & Rahman, A. Crystal structure and pair potentials: A molecular-dynamics study. Phys. Rev. Lett. 45, 1196 (1980).
	60.	 Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. J. Chem. Phys. 

98, 10089–10092 (1993).
	61.	 Hess, B., Bekker, H., Berendsen, H. J. & Fraaije, J. G. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 

18, 1463–1472 (1997).
	62.	 Qu, M. Molecular Modeling and Molecular Dynamics Simulation Studies on the Selective Binding Mechanism of MTHFD2 

Inhibitors. Comput. Mol. Biosci. 12, 1–11 (2022).
	63.	 Maiello, F. et al. Crystal structure of Thermus thermophilus methylenetetrahydrofolate dehydrogenase and determinants of ther-

mostability. PloS One 15, e0232959 (2020).
	64.	 Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).
	65.	 Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 

(2004).
	66.	 Manhas, A., Patel, D., Lone, M. Y. & Jha, P. C. Identification of natural compound inhibitors against PfDXR: A hybrid structure-

based molecular modeling approach and molecular dynamics simulation studies. J. Cell. Biochem. 120, 14531–14543 (2019).
	67.	 Sharma, A. et al. Identification of natural inhibitors against prime targets of SARS-CoV-2 using molecular docking, molecular 

dynamics simulation and MM-PBSA approaches. J. Biomol. Struct. Dyn. 40, 3296–3311 (2022).
	68.	 Kumari, R. & Kumar, R. C. Open source drug discovery and A. Lynn. J. Chem. Inf. Model 54, 10.1021 (2014).

https://www.specs.net/index.php


22

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18090  | https://doi.org/10.1038/s41598-023-45175-3

www.nature.com/scientificreports/

	69.	 Lee, D.-Y. et al. Lignans from the fruits of Cornus kousa Burg. and their cytotoxic effects on human cancer cell lines. Arch. Pharm. 
Res. 30, 402–407 (2007).

	70.	 Yuen, M. S., Xue, F., Mak, T. C. & Wong, H. N. On the absolute structure of optically active neolignans containing a dihydrobenzo 
[b] furan skeleton. Tetrahedron 54, 12429–12444 (1998).

	71.	 Bolzacchini, E. et al. Enantioselective synthesis of a benzofuranic neolignan by oxidative coupling. Tetrahedron Lett. 39, 3291–3294 
(1998).

	72.	 Orlandi, M., Rindone, B., Molteni, G., Rummakko, P. & Brunow, G. Asymmetric biomimetic oxidations of phenols: the mechanism 
of the diastereo-and enantioselective synthesis of dehydrodiconiferyl ferulate (DDF) and dehydrodiconiferyl alcohol (DDA). 
Tetrahedron 57, 371–378 (2001).

	73.	 Dong, Y. & Le Quesne, P. W. Total synthesis of magnolamide. Heterocycles Int. J. Rev. Commun. Heterocyclic Chem. 56, 221–225 
(2002).

	74.	 Yuen, T. Y. et al. A maillard approach to 2-formylpyrroles: Synthesis of magnolamide, lobechine and funebral. Eur. J. Org. Chem. 
2014, 1431–1437 (2014).

	75.	 Chiou, W.-F. et al. Total synthesis and antioxidative activity of magnolamide from Magnolia coco. Heterocycles-Sendai Inst. Het-
erocyclic Chem. 65, 1215–1220 (2005).

	76.	 Jha, V. & Eriksson, L. A. Binding modes of xanthine-derived selective allosteric site inhibitors of MTHFD2. Chem. Open 12, 
e202300052 (2023).

Acknowledgements
The corresponding author would like to acknowledge ORSP-Pandit Deendayal Energy University (R&D/SRP-
2022-005), Gujarat Biotechnology University, and Central University of Gujarat for providing computational 
facilities and infrastructure to conduct the current work.

Author contributions
A.M. conceived the idea and designed the work, A.M. and D.P. performed the calculations and wrote the manu-
script, M.P. performed the free energy calculations, N.R. prepared all the figures and tables in the manuscript 
and supplementary file, and A.M., and N.M. reviewed the manuscript, P.C.J. provided lab access for performing 
calculations.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​45175-3.

Correspondence and requests for materials should be addressed to A.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-45175-3
https://doi.org/10.1038/s41598-023-45175-3
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Targeting allosteric binding site in methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) to identify natural product inhibitors via structure-based computational approach
	Methodology
	Collection of the allosteric-bound protein complexes
	Common feature pharmacophore generation
	Validation of pharmacophore models

	Database preparation and virtual screening
	Allosteric site-based molecular docking and binding affinity calculations
	Drug-likeness and pharmacokinetic properties
	Molecular dynamics (MD) simulation of MTHFD2 and MTHFD2 docked complexes
	Computation of binding free energy using MMPBSA

	Results and discussion
	Common feature pharmacophore generation
	Pharmacophore validation

	Common feature pharmacophore-based virtual screening
	Molecular docking and binding affinity calculations
	Drug-likeness and pharmacokinetic properties
	2D-interaction analysis of the reference compound JC4 and shortlisted candidates
	Molecular dynamics simulations
	Molecular dynamics (MD) simulation of MTHFD2 and MTHFD2 docked complexes
	Stability of MTHFD2 protein and MTHFD2 docked complexes
	Molecular interactions of MTHFD2 with identified compounds from docking

	Binding free energy estimation and energy decomposition of MTHFD2 and MTHFD2 docked complexes with inhibitors
	PCA and FEL analysis of MTHFD2 and MTHFD2 docked complexes

	Conclusions

	References
	Acknowledgements


