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A lightweight hybrid vision 
transformer network 
for radar‑based human activity 
recognition
Sha Huan 1,2, Zhaoyue Wang 1, Xiaoqiang Wang 3*, Limei Wu 1, Xiaoxuan Yang 1, 
Hongming Huang 1 & Gan E. Dai 4

Radar-based human activity recognition (HAR) offers a non-contact technique with privacy protection 
and lighting robustness for many advanced applications. Complex deep neural networks demonstrate 
significant performance advantages when classifying the radar micro-Doppler signals that have 
unique correspondences with human behavior. However, in embedded applications, the demand for 
lightweight and low latency poses challenges to the radar-based HAR network construction. In this 
paper, an efficient network based on a lightweight hybrid Vision Transformer (LH-ViT) is proposed 
to address the HAR accuracy and network lightweight simultaneously. This network combines the 
efficient convolution operations with the strength of the self-attention mechanism in ViT. Feature 
Pyramid architecture is applied for the multi-scale feature extraction for the micro-Doppler map. 
Feature enhancement is executed by the stacked Radar-ViT subsequently, in which the fold and unfold 
operations are added to lower the computational load of the attention mechanism. The convolution 
operator in the LH-ViT is replaced by the RES-SE block, an efficient structure that combines the 
residual learning framework with the Squeeze-and-Excitation network. Experiments based on two 
human activity datasets indicate our method’s advantages in terms of expressiveness and computing 
efficiency over traditional methods.

Human activity recognition (HAR) has huge potential for numerous applications, such as intelligent healthcare, 
smart homes, intelligent security, and autonomous driving. In recent years, HAR data sources have been cat-
egorized into two groups: visual-based HAR and non-visual sensor-based HAR1.Visual-based HAR2 analyzes 
human motion using video or photos acquired by optical cameras, whereas non-visual sensor-based HAR collects 
data using smart sensors3 such as gyroscopes, accelerometers, and radars. Millimeter-wave radar can adapt to 
different weather and lighting conditions with low power consumption and privacy protection. Considerable 
attention has been paid to HAR technology based on millimeter-wave radar4,5.

Time-varying kinematic information integrating human motion6 can be investigated by analyzing and pro-
cessing millimeter-wave radar echo signals, and activity recognition may be carried out utilizing the resulting 
kinematic information. Radar-based HAR is usually based on the micro-Doppler feature of target echoes. Micro-
Doppler features from the time-Doppler graph can highlight the self-vibration and rotation of the human’s torso 
and limbs. Based on the clear and unique correspondence between the micro-Doppler features and human 
behaviour, supervised learning methods are usually used for radar-based HAR. However, HAR methods with 
high accuracy and embeddable potential are facing challenges and it is worthwhile devoting much effort to this.

Traditional classification techniques such as multi-layer perceptron, principal component analysis (PCA), 
support vector machines (SVM)7 and linear discriminant analysis are used in some research. Manually extracted 
micro-Doppler characteristics are typically employed as classification inputs8–10. Prior knowledge and the intri-
cacy of the categorization task restrict the use of these characteristics. Deep learning has been steadily advanc-
ing in recent years, its excellent categorization performance has also garnered considerable attention. Radar-
based HAR research has gotten more intelligent due to the in-corporation of deep learning (DL) techniques. 
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Convolutional neural networks (CNN)11, re-current neural networks (RNN)12, transformers13, and hybrid 
networks14 are the four broad classifications of DL techniques. These methods use supervised learning to auto-
matically extract sample features, hence overcoming the limitations of conventional models for feature extraction. 
Using recursive neural networks, time-series models can extract temporal correlation characteristics between 
data sequences. Numerous studies have demonstrated that adding long short-term memory (LSTM)15 and Bi-
directional long short-term memory (BiLSTM)16 architectures to a network can effectively enhance HAR’s rec-
ognition performance. Furthermore, LSTM and BiLSTM was combined to achieve HAR17. Multi-layer BiLSTM18 
was used to classify human activities with an average accuracy of around 90%. However, the large number 
of parameters of the networks above will be a computational burden in embedded applications. Lightweight 
CNN19,20 was utilized to reduce the number of parameters and improve running performance substantially, but 
at the cost of missing some details, resulting in a decline in recognition accuracy.

By combining the strengths of the constituent networks, hybrid networks such as CNN-LSTM21 can outper-
form single networks. The spatiotemporal features of the input data can be completely exploited by this hybrid 
structure and improve recognition precision. Inspired by the attention process, researchers have combined 
attention modules with neural networks for various purposes22,23. Typically, attention modules are not utilized 
alone, they are incorporated into various neural networks to increase network performance. Attention methods 
were added into residual networks, convolutional auto-encoders and LSTM. Networks with attention mecha-
nisms achieve faster convergence and greater recognition accuracy. Attention typically avoids the problem of 
disappearing gradients because it provides direct links between all data time steps. In contrast to convolutional 
neural networks, which must preserve spatial locality in the input data, self-attention mechanisms can process 
data at any place in the input sequence. This increases the generalizability of the network while processing radar 
images of various sizes, shapes, and orientations.

The Transformer network drops the usual neural network calculation method in favour of self-attention 
methods for network calculation. The vision transformer (ViT)24 has performed extraordinarily well in the 
field of vision because of its usage of attention mechanisms. However, the majority of ViT networks include a 
large number of parameters and are challenging to implement in embedded applications. In recent years, some 
lightweight ViT25–27 structures were proposed to reduce the number of parameters while maintaining precision. 
However, more in-depth work on the lightweight of ViT is worth looking forward to.

Considering the embedded application background of radar-based HAR, some work has attempted to solve 
the efficiency and performance issues28,29, but new networks need to be developed to improve the recognition 
performance on the lightweight structures more effectively. To achieve high-accuracy HAR, this paper devel-
oped a lightweight hybrid Vision Transformer (LH-ViT) network. The network uses the residual structure joint 
Squeeze-and-Excitation (SE) module (RES-SE) block to form a feature pyramid for HAR feature extraction at 
different scales. The following stacked RadarViT networks are designed to enhance useful features through self-
attention. The radar data in different bands verify that LH-ViT can achieve efficient HAR at different Doppler 
scales. Moreover, the LH-ViT employs depthwise separable convolution and lightweight attention models, which 
greatly reduce the parameter count compared to conventional ViT while maintaining the same level of accuracy.

The contributions of our research are summarized as follows:

(1)	 We developed a novel lightweight hybrid Vision Transformer (LH-ViT) in this paper. LH-ViT combines 
a feature extraction network with a pyramid structure and a feature enhancement network consisting of 
stacked Radar-ViT components. The primary innovation of LH-ViT lies in its ability to enhance the repre-
sentational power of radar-based HAR effectively by incorporating spatial attention into the micro-Doppler 
feature hierarchy. We conducted an in-depth investigation to optimize the structure of this proposed net-
work. Furthermore, we conducted a comprehensive comparison of LH-ViT with several state-of-the-art 
HAR networks, using both our self-established dataset and a publicly available dataset”.

(2)	 An efficient RES-SE block is designed to replace the traditional convolution operator. Operating within 
a residual learning framework, the RES-SE module employs depthwise separable convolutions to extract 
micro-Doppler features with reduced computational overhead. The lightweight SE module is inserted in 
the RES-SE block, which adaptively adjusts feature channel weights for enhanced representation accuracy.

(3)	 Radar-ViT is developed as a lightweight design of ViT, which enables embedded applications of trans-
former-based models. Radar-ViT simplifies the traditional class token module to a point-wise convolution. 
Additionally, we introduce fold and unfold operations to reduce the computational demands of the multi-
head attention block, prioritizing essential micro-Doppler features. Stacked Radar-ViTs excel at capturing 
global features on the micro-Doppler map, resulting in superior HAR performance.

The remainder of the paper is organized as follows. Section “Radar-based HAR with LH-ViT”  introduces 
the structure and key modules of the proposed LH-ViT network. Section “Experimental results” provides the 
experimental findings of two datasets to validate the proposed algorithm’s superiority. Finally, Section “Conclu-
sion” presents the conclusions.

Radar‑based HAR with LH‑ViT
Figure 1 shows the framework of radar-based HAR with LH-ViT in this section. The millimeter wave radar 
collects the echo from the moving human body and outputs multi-channel intermediate frequency signals after 
dechirp processing. The multi-channel intermediate frequency signals are first preprocessed with 2D FFT. 2D FFT 
processing compresses the signal energy at the corresponding position on the range-angle plane. A phase average 
cancellation method29 is then utilized for the static clutter suppression, which will preserve the micro-Doppler 
signal components. Two-dimension constant false alarm rate (2D-CFAR) is applied to detect the target against 
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the noise background. After the target bin is locked, the target bins on the range-angle plane from each frame 
are combined into a slow-time vector. This vector is transformed by the short-time Fourier transform (STFT) 
to generate MDM that reflects the target’s motion in the time-frequency domain. The normalized MDM is fed 
into the subsequent LH-ViT network for high-efficiency HAR. The LH-ViT is composed of a feature extraction 
network, a feature enhancement network, and a classification module. Maximum pooling and linear layers are 
used in the classification module to output the prediction results. The specific implementation of the first two 
networks will be introduced in the following subsections.

Feature extraction network
A pyramid structure is adopted in the feature extraction network, as shown in Fig. 2. The feature pyramid can 
capture the multi-scale micro-Doppler feature on the MDM. Especially when the Doppler range is relatively 
large and the micro-Doppler expressions are compressed, the network can still learn the activity features from 
the MDM accurately and effectively. In terms of a specific implementation, each layer of the pyramid uses a pair 
of RES-SE modules to achieve efficient feature extraction. In each layer, the first RES-SE module is used for the 
micro-Doppler feature extraction at the current scale, and the second RES-SE module realizes upsampling by 
adjusting the stride value.

The RES-SE module applies a residual network structure to achieve feature fusion at different levels. Two 
branches are added, performing 1 × 1 convolution joint BN operation, and only BN operation respectively. The 
backbone of RES-SE uses 1 × 1 convolution for dimension expansion and then uses 3 × 3 Depthwise separable 
convolution (DSC)30 for first-level feature extraction. DSC is an effective approach for the lightweight design of 
standard convolution operations. DSC improves on the standard convolution by decomposing it into depthwise 
convolution and point convolution. As a representative of a lightweight network, DSC can achieve feature extrac-
tion with lower parameter amounts and computational costs. Subsequently, an SE Block31 based on a light-weight 
channel attention mechanism is used to process the output of DSC, as shown in Fig. 3.

The output of DSC is the local spatial correlation obtained by the 2D spatial kernel. The channel dependencies 
are implicitly embedded in each channel of the DSC output, entangled with the spatial features. The SE block 
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Figure 1.   The framework of radar-based HAR with LH-ViT.

Figure 2.   Feature extraction network structure diagram.
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achieves inter-channel attention in a lightweight structure by explicitly modeling the channel dependencies, 
thereby enhancing the feature sensitivity in the channel dimension.

First, the squeeze module uses global average pooling to arrogate each 2D channel into a channel descriptor.

xdsc is denoted as the DSC output with H ×W spatial dimension. As the channel descriptor, Xsq is a statistical 
parameter, which represents the aggregated feature of the current channel. All the Xsq are processed through a 
bottleneck structure consisting of two fully connected layers and a sigmoid activation in the excitation module. 
This bottleneck structure can capture the inter-channel dependencies flexibly. A channel dimensional adjusting 
rate of 4 is adopted in this work. After the excitation module obtains the weights of the different channels wsq 
according to their importance, a weighting process is performed on the corresponding channels. The SE Block 
achieves channel adjustment with fewer parameters through refined model design, emphasizing the channels 
with more separable information, and suppressing channels less useful.

After the channel attention processing in the SE block, the backbone features are projected through a 1 × 1 
convolution and combined with the two branch results to obtain a more effective high-dimensional expression 
of micro-Doppler behaviour features.

Each 1 × 1 convolution and DSC operation are followed by a Batch normalization (BN) layer and a non-
linear activation function ReLU. The BN layer implements normalization by calculating the mean and variance 
of the input. A Hardswish activation function is used to process the output of the SE block. The nonlinearity of 
the Hardswish is defined as

It has been verified that it performs better in the deeper network. The Hardswish can reduce the filter number 
under the same precision.

Feature enhancement network
The feature extraction network focuses on the local micro-Doppler feature extraction at different scales. The 
feature enhancement network can eliminate background noise interference effectively32 and highlight the micro-
Doppler features related to human behavior based on multi-scale feature extraction. In this paper, cross-stacked 
Radar-ViT and RES-SE modules are applied to achieve global feature enhancement. In the combination structure, 
the RES-SE module learns the local representation of the micro-Doppler features with spatial inductive bias. The 
Radar-ViT processes the global information encoding of the HAR. This hybrid structure enables us to design a 
shallow and narrow lightweight network.

Considering the RES-SE modules at both ends, Radar-ViT further simplifies the local representation and 
fusion modules of MobileVit, as shown in Fig. 4. Two 1 × 1 convolutions are designed around the stacked global 
representation modules for the channel adjustment, to keep the consistent scales of the input and output.

Assuming that the size of the feature map is H ×W , the feature map of each channel is divided into non-
overlapping cells of size P , with the total number of HW/P . The unfold operation after the point-wise convolu-
tion downsamples each feature map to form P non-overlapping flatten patches. The position information within 
each cell is retained between the P flatten patches, and the spatial relationship between the cells, that is, the 
global micro-Doppler features is preserved in each flatten patch. Therefore, although the subsequent multi-head 
attention modules act on the downsampled flat patch, the overall effective receptive field is H ×W . Multi-head 
attention is the key module in ViT, which is a combination of multiple self-attention blocks. The input is linearly 
mapped through learnable matrixes into three variables with the same dimension, namely query Q , key K  , and 
value V  . The normalized similarity between Q and K  is used as the weight of V  . The self-attention model adopts 
the short-cut structure from the residual network, which can effectively prevent the degradation problem. The 
feature outputs from different attention heads are combined by a Concat. Multiple heads enable the network to 
capture abundant feature information from different representation subspaces.

(1)xsq =
1

H ×W

H
∑

i=1

W
∑

j=1

xdsc(i, j).

(2)xse = wsqxdsc

(3)hardswith[x] =
xReLU6(x + 3)

6
.

Figure 3.   Schematic of the Squeeze-Excitation (SE) block.
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Radar-ViT obtains a global representation of the micro-Doppler feature within each flatten patch separately 
by L stacked normalization modules and multi-head attention modules. The global micro-Doppler feature can 
restore its scale through the fold operation. After a point-wise convolution, the fold output is combined with 
the Radar-ViT’s input via concatenation operation. The shortcut branch provides another direct path, allowing 
faster information propagation. It can accelerate the training process, speed up model convergence, and enhance 
recognition accuracy. These concatenated features are fused in the subsequent RES-SE modules.

Experimental results
Experiment dataset
Two datasets were used to validate the superiority of the LH-ViT. The public dataset is collected by a C-band 
radar33. The radar’s working bandwidth is 400 MHz. The chirp period is 1 ms. This dataset contains radar ech-
oes of 6 human activities. Among them, 5 human activities were collected with a duration of 5 s, namely sitting 
in a chair, standing up, bending to pick up an object, drinking from a cup or glass, and falling. The collection 
time of the walking activity is 10 s. Due to the lack of data corresponding to the falling activity, the experiment 
only uses the other five human activity data in this paper. The sketch images, MDMs, and quantities of different 
human activities in the public datasets are listed in Table 1. The experiments on the public dataset are measured 
at 656 × 656.

The self-established dataset developed by Guangzhou University is collected by a millimeter wave (mmWave) 
radar working at 79 GHz. The mmWave Radar’s working bandwidth is 3.68 GHz. The chirp period is 392 μ s . The 
experiment was carried out in a laboratory. The radar platform was 1.5 m in height. The self-established dataset 
contains the radar echo data of 5 human activities. They are walking, running, standing up after squatting down, 
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Figure 4.   Radar-ViT diagram based on multi-head attention mechanism.

Table 1.   The public dataset collected by a C-band radar.

Label (0) (1) (2) (3) (4) (5)

Sketch map

Activity Walking back and forth Sitting in a chair Standing up Bending to pick up an 
object

Drinking from a cup 
of glass Falling

MDM

Quantity 312 312 311 311 310 198
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bending, and turning respectively. The self-established dataset collects the human activities of 10 participants, 
including 7 males and 3 females. To increase the within-class diversity of this dataset, the participants varied in 
age, height, and weight. Radar data were recorded according to their respective behavior habits, with no special 
behavior constraints attached. To expand the data amount, data augmentation was applied additionally only to 
the self-established dataset. The sketch images, MDMs, and quantities of different human activities in the public 
datasets are listed in Table 2. The experiments on the self-established dataset are measured at 224 × 224.

Both datasets were divided into 80% for training and 20% for testing at random. MATLAB is applied for the 
radar signal processing of MDM. PyTorch 11.3 is used to build a DL model. The adaptive moment estimation 
(Adam) optimizer is utilized for network training. The learning rate is set to 0.0001. A dropout with a probability 
of 0.5 is applied after each pyramid layer. All the experiments in this paper are based on a hardware platform 
with an Intel i9 16-core CPU and one NVIDIA 3090 24G GPU.

Network structure discussion
The LH-ViT network proposed in this work consists of a multi-layer pyramid and alternate stacked Radar-ViT 
and RES-SE models. The recognition performance and efficiency of the LH-ViT are closely related to the num-
ber of the pyramid layer, the alternate stacked Radar-ViT and RES-SE models. A trade is essential between the 
feature representation and the computational efficiency of the LH-ViT. The feature representative capability can 
be enhanced along with the deepening of the network for the raised nonlinear expression ability. Deep networks 
are capable of fitting more complex features. However, performance saturation, optimization difficulties, and 
shallow learning decline also occur as the network deepens. The test results on the network structure in this 
section are all based on the self-built dataset.

First, the optimal massive structure is determined by different combinations of the pyramid layers, the Radar-
ViT, and the RES-SE stacking number. L in each Radar-ViT is fixed as 2. The HAR average accuracy, the parameter 
quantity, the floating point operations (FLOPs), and the inference time are used as the indicators of the network 
performance.

Based on the self-established dataset, Table 3 discusses the optimal structure of the proposed LH-ViT network. 
This table also includes the ablation experiment. For concise structure representation, i − j − k is used to indicate 
that the feature extraction part of the network structure contains i level pyramids, and the feature enhancement 
part contains j Radar-ViT and k auxiliary RES-SE modules. In general, the accuracy of the LH-ViT increased 
along with the deepening of the network structure. But when the number of pyramid layers rises to more than 4 
layers, the deeper structure contributes little to the network performance. Taking the LH-ViT(4-2-1) as an exam-
ple, it is the smallest structure with an accuracy greater than 99%. This structure achieves 99.7% HAR accuracy 
with a parameter amount of 769.32 K. When the pyramid layers number rises up to 5 with the rest of the structure 
unchanged, the parameter amount increases by 176.576 K, but the recognition accuracy rate decreases by 0.2%.

In terms of network efficiency, as the network structure deepens, the inference time shows a trend from 
decline to rise. It shows that a reasonable combination of network modules can not only make the network more 
powerful but also more efficient. Specifically, compare the LH-ViT(4-0-0) and LH-ViT(4-1-1). LH-ViT(4-1-1) 
adds 1 Radar-ViT and 1 auxiliary RES-SE on the four-layer pyramid in LH-ViT(4-0-0). Both network parameters 
and FLOPs are doubled in LH-ViT(4-1-1). LH-ViT(4-1-1) has higher accuracy and less interference time. A 
similar pattern can also be found in the comparison of LH-ViT(3-0-0) and LH-ViT(3-1-1). It shows that Radar-
ViT can help the feature pyramid to make better use of the GPU, making it more efficient to implement a single 
MDM inference and thus faster.

Finally, the LH-ViT(4-2-1) network, marked in bold in Table 3, is used as a reference structure for subsequent 
comparison and discussion. The results of the LH-ViT(0-2-1) and LH-ViT(4-0-0) network in Table 3 can be 
regarded as ablation experiments. It shows the network performance that only includes the feature extractor or 
the feature enhancement part. The HAR accuracy of the LH-ViT(0-2-1) network without the feature pyramid is 
only 91.7% and requires 24.29 ms inference time. This shows that Radar-ViT based on the multi-head attention 
needs MDM feature pre-extraction. Insufficient feature extraction can greatly degrade its performance. Radar-
ViT enables important feature attention among pre-extracted rich features. The importance of the attention 
mechanism has been generally accepted, which also accounts for the performance improvement in the inference 
efficiency and accuracy of the LH-ViT(4-2-1) network relative to the LH-ViT(4-0-0) network. The results show 

Table 2.   The self-established dataset collected by a mmWave radar.

Label (0) (1) (2) (3) (4)

Sketch map

Activity Walking Running Standing up after squatting down Bending Turning

MDM

Quantity 990 990 990 990 990
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that the performance of the hybrid network including feature pyramid and Radar-ViT outperforms that of a single 
network. Compared with LH-ViT(0-2-1)and LH-ViT(4-0-0), the LH-ViT(4-2-1) has improved the accuracy by 
8% and 5.1% respectively, and the inference time has been shortened by 22.43 ms and 0.97 ms respectively. It 
means the LH-ViT(4-2-1) network can achieve more accurate and efficient HAR from MDM.

Table 4 compares the network performance with different L in the Radar-ViT module. Experimental results 
show that increasing the transformer repetitions does not improve the network performance significantly. Con-
versely, a bigger L leads to an increase in the parameters and FLOPs, which is not conducive to a lightweight 
design. At the same time, the inference time also increases. Therefore, a setting of L = 2 is adopted in the refer-
ence LH-ViT(4-2-1) network.

Table 5 compares the network performance with different convolutional structures. The RES-SE module 
in the LH-ViT(4-2-1) network is replaced by conventional convolution11, transposed convolution34, dilated 
convolution35, and group convolution36 respectively. The network using the RES-SE module achieves the highest 
measured parameters and FLOPs, but at the same time, it also has the shortest inference time and highest HAR 
accuracy. Compared with the best-performing group convolution in the comparison module, the recognition 
accuracy of the structure using the RES-SE module is improved by 0.9%, and the inference time is shortened by 
1.33 ms. It illustrates the superiority of the LH-ViT network based on the RES-SE module for micro-Doppler 
feature extraction.

In the comparison of four different attention mechanisms in Table 6, the SE module demonstrates the highest 
accuracy and the shortest inference time in the micro-Doppler feature extraction.

Table 3.   Discussion of the LH-ViT network structure based on the self-established dataset. Significant values 
are in bold.

Pyramid layer Radar-ViT number RE-SES number Parameters FLOPs Inference time Accuracy

0 2 1 124.464 K 1.56 G 24.29 ms 91.7%

1 1 1 274.888 K 0.87 G 6.86 ms 93.9%

2 1 1 288.092 K 0.92 G 4.07 ms 95.7%

3 0 0 101.200 K 0.34 G 3.82 ms 93.2%

3 1 1 344.948 K 1.09 G 3.75 ms 97.9%

3 2 1 299.224 K 0.96 G 5.06 ms 97.5%

3 2 2 361.464 K 1.15 G 6.05 ms 98.2%

4 0 0 146.488 K 0.48 G 2.83 ms 94.6%

4 0 1 173.638 K 0.56 G 2.95 ms 98.5%

4 1 1 379.912 K 1.19 G 1.58 ms 98.7%

4 2 1 769.320 K 2.41 G 1.86 ms 99.7%

4 2 2 901.656 K 2.81 G 2.02 ms 99.8%

5 1 1 920.808 K 2.87 G 7.02 ms 99.5%

5 2 1 945.896 K 2.95 G 7.87 ms 99.5%

6 1 1 1.041 M 3.23 G 7.57 ms 99.6%

Table 4.   Comparison of parameters for different numbers of transformers based on the self-established 
dataset.

L Parameters FLOPs Inference time Accuracy

2 769.320 K 2.41 G 1.86 ms 99.7%

4 943.976 K 2.95 G 4.45 ms 99.8%

6 1.118 M 3.49 G 5.04 ms 99.9%

Table 5.   Performance comparison of different convolution structures based on the self-established dataset.

Convolution structure Parameters FLOPs Inference time Accuracy

Conventional convolution11 783.684 K 2.33 G 3.30 ms 95.7%

Transposed convolution34 783.437 K 2.33 G 3.27 ms 98.1%

Dilated convolution35 783.354 K 2.34 G 3.32 ms 97.8%

Group convolution36 743.960 K 2.12 G 3.19 ms 98.8%

RES-SE module 769.320 K 2.41 G 1.86 ms 99.7%
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To better comprehend the role of the attention mechanism in the HAR task based on the radar signals, Fig. 5 
depicts the feature region in MDM that the last layer of the attention mechanism focuses on. Heatmaps high-
light the regions considered crucial for HAR by the LH-ViT network, facilitating the visual display. The first row 
displays five grayscale MDM images with activity labels. The second row displays the matching heatmaps for the 
grayscale MDM image. The red regions on the heatmap indicate the regions that the network prioritizes. The 
majority of red patches in the attention heatmap are dispersed near endpoints and the Doppler center, reflecting 
changes in micro-Doppler distributions. It aligns with the Doppler distribution characteristics that can reflect 
human activities in MDM.

LH‑ViT versus state‑of‑the‑art and literature networks
Table 7 used the state-of-the-art DL networks and the literature networks which have been applied to solve the 
HAR problem based on radar signals for comparative discussion. The accuracy of these networks was tested on 
both datasets. The public dataset has a larger input data size and less data volume. Due to the different Doppler 
scales, the MDMs in the public dataset have lower micro-Doppler features significance. This all increases the 
difficulty of achieving accurate HAR on the public dataset.

The HAR accuracy of SVM and HMM is relatively low. ShuffleNet41 and EfficientNet42 are convolutional 
neural networks. Among them, Shufflenet has fewer parameters, but lower accuracy. The parameter amount 
of Efficientnet has reached about 4M, and its accuracy rate is high. The inference time of both networks above 
is within 1.5 ms. LSTM15 and GRU​43 are sequential networks of RNN variants, in which GRU has a higher 
accuracy rate. The main problem with this type of network is the parameter quantity and interference efficiency 
introduced by the network complexity. DeiT24, CrossViT44 and MobileViT26 are three lightweight ViT network 
examples with good performance. DeiT has a smaller number of parameters, Flops, and shorter inference time. 
The accuracy of DeiT is higher on the self-established dataset, but lower on the public dataset. MobileViT has 
better performance but longer inference time.

Stack3-LSTM18 and LSTM-BiLSTM17 realize HAR in the form of a hybrid network considering the timing 
correlation characteristics of radar human motion signals. Both networks achieved over 95% HAR accuracy on 
the self-established dataset. However, similar to LSTM and GRU, such networks’ accuracy comes at the expense 
of a huge number of network parameters and time overhead, and both networks’ performance shows a sharp 

Table 6.   Performance comparison of different attention module in RES-SE based on the self-established 
dataset.

Attention modul Parameters FLOPs Inference time Accuracy

CA37 766.296 K 2.39 G 3.03 ms 99.1%

CBAM38 769.472 K 2.41 G 2.03 ms 99.5%

ECA39 740.318 K 2.32 G 1.72 ms 99.3%

SE 769.320 K 2.41 G 1.86 ms 99.7%

Figure 5.   Grayscale images of the five actions along with their heatmaps, (a) grayscale image of walking. 
(b) grayscale image of running. (c) grayscale image of standing up after squatting down. (d) grayscale image 
of bending. (e) grayscale image of turning. (f) heatmap of walking. (g) heatmap of running. (h) heatmap of 
standing up after squatting down. (i) heatmap of bending. (j) heatmap of turning.
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decrease in the public dataset. Mobile-RadarNet20 has the smallest FLOPs, but its accuracy is not competitive 
among the networks in Table 7. CLA25 has the fewest parameters and the fastest inference time, and its accuracy 
is also at a good level in both datasets. Although Slice-VIT45 makes ViT better adaptable in solving radar-based 
HAR through slice preprocessing, the complexity and efficiency of this network are still key issues to be solved.

The LH-ViT proposed serves as a lightweight hybrid network of convolution and ViT. The highest accuracy 
is achieved on both datasets. Moreover, the amount of parameters is the smallest among the ViT-type networks, 
and the inference time is also at a relatively fast level. The above results illustrate the excellent performance of 
the LH-ViT network as well as its good adaptability and robustness.

The confusion matrix illustrates the specific recognition results of four lightweight network models using 297 
images for each activity, as shown in Fig. 6. LH-ViT only had four images misrecognized in the turning category 
for bending. Unlike vision-based HAR, radar-based HAR is achieved through the time-dependent variation 
in the micro-Doppler components introduced by limb movements, so the frequency characteristics of human 
movements determine the degree of different activity similarity. Human activities which exhibit similar features 
in the Doppler domain along slow time will lead to recognition errors. Despite this, the performance of LH-ViT 
is the best among the four networks.

Subject-independent split can reflect the individual differences sensitivity and the generalization performance 
of the proposed network. The public dataset contains 20 people’s radar data of activities, of which 16 individu-
als are used for training and 4 for testing. For the self-established dataset, 8 people’s data are used for training 
and 2 for testing. Tables 8 and 9 show the results of the subject-independent split experiment under different 
datasets respectively. The accuracy of LH-ViT(4-2-1) is only reduced by 0.4% and 0.2% respectively in the public 
dataset and the self- established dataset. These results are better than the MobileViT in both individual activity 
accuracy and comprehensive accuracy. It shows that the LH-ViT network proposed in this paper can well adapt 
to the individual differences and achieve high performance radar-based HAR through accurate Micro-Doppler 
feature extraction.

Conclusion
This paper developed a lightweight hybrid Vision Transformer network for HAR based on radar’s micro-Doppler 
features. After preprocessing, the network can obtain the recognition accuracy of 99.7% in the self-established 
dataset and 92.1% in the public dataset respectively. We investigated the performance of the proposed network 
under various architectures and obtained the optimal structure. The optimal structure was compared with other 
widely used networks as well as HAR networks in the literature and showed performance advantages. The 
proposed network satisfies the accuracy and real-time requirements for HAR and is promising for embedded 
applications. This work is only used for single-action recognition, and the collection scenario is relatively ideal. In 
the future, we plan to improve and expand the number and type of data sets, develop the radar signal processing 
algorithms, and optimize the deep learning network structure to improve radar-based HAR performance in the 
face of complex and continuous human activities.

Table 7.   Comparison of state-of-the-art networks. Significant values are in bold.

Networks Parameters FLOPs Inference time Accuracy of the public dataset
Accuracy of the self-established 
dataset

SVM7 657.41 K 193.5 M 0.56 ms 59.1% 71.7%

HMM40 732.5 K 274.6 G 0.72 ms 60.7% 75.4%

ShuffleNet41 346.917 K 426.3 M 1.38 ms 88.6% 95.5%

EfficientNet42 4.01 M 398 M 1.48 ms 88.4% 98.8%

LSTM15 11.6 M 7.88 G 38.48 ms 60.3% 75.3%

GRU​43 8.76 M 5.91 G 36.43 ms 63.9% 96.9%

DeiT24 5.679 M 1.08 G 1.40 ms 83.9% 98.7%

CrossViT44 6.649 M 1.29 G 1.90 ms 87.5% 87.8%

MobileViT26 1.27 M 1.44G 15.17 ms 91.3% 98.9%

LSTM-BiLSTM17 282.285 K 10.6 G 32.30 ms 76.1% 96.3%

Stack3-LSTM18 3.08 M 446.47 M 5.17 ms 72.3% 95.4%

Mobile-RadarNet20 241.1 K 3.11 M 2.61 ms 85.7% 95.6%

CLA25 97.57 K 12.57 M 0.38 ms 89.1% 97.1%

Slice-VIT45 85 M 16.86 G 38.47 ms 86.4% 99.1%

LH-ViT(4-2-1) 769.32 K 2.41 G 1.58 ms 92.1% 99.7%
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Figure 6.   Comparison of confusion matrices in different networks, (a) ShuffleNet. (b) GRU. (c) DeiT. (d) 
LH-ViT(4-2-1).

Table 8.   Subject-independent split experiment based on the public dataset. Significant values are in bold.

Networks

Accuracy

Label (0) Label (1) Label (2) Label (3) Label (4) Label (5) ALL

MobileViT 91.5% 91.3% 91.4% 91.5% 91.5% 90.2% 90.9%

LH-ViT(4-2-1) 92.4% 92.5% 92.5% 92.4% 92.2% 91.1% 91.7%

Table 9.   Subject-independent split experiment based on the self-established dataset. Significant values are in 
bold.

Networks

Accuracy

Label (0) Label (1) Label (2) Label (3) Label (4) ALL

MobileViT 98.4% 98.5% 98.4% 98.5% 98.7% 98.6%

LH-ViT(4-2-1) 99.4% 99.6% 99.4% 99.5% 99.6% 99.5%
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