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A perspective of randomness 
in a clinical test of olfactory 
performance
Jörn Lötsch 1,2*, Thomas Hummel 3 & Alfred Ultsch 4

Random walks describe stochastic processes characterized by a sequence of unpredictable changes 
in a random variable with no correlation to past changes. This report describes the random walk 
component of a clinical sensory test of olfactory performance. The precise definition of this stochastic 
process allows the establishment of precise diagnostic cut-offs for the identification of olfactory loss. 
Within the Sniffin`Sticks olfactory test battery, odor discrimination (D) and odor identification (I) 
are assessed by four- and three-alternative forced-choice designs, respectively. Meanwhile, the odor 
threshold (T) test integrates a three-alternative forced-choice paradigm within a staircase paradigm 
with seven turning points. We explored this paradigm through computer simulations and provided a 
formal description. The odor threshold assessment test consists of two sequential components, the 
first of which sets the starting point for the second. Both parts can be characterized as biased random 
walks with significantly different probabilities of moving to higher (11%) or lower (89%) values. The 
initial odor concentration step for the first phase of the test and the length of the subsequent random 
walk in the second phase significantly affect the probability of randomly achieving high test scores. 
Changing the odor concentration from where the starting point determination for the second test part 
begins has raised the current cut-off for anosmia, represented as T + D + I < 16, from the 87th quantile of 
random test scores to the 97th quantile. Analogous findings are likely applicable to other sensory tests 
that use the staircase paradigm characterized as random walk.

Clinical testing of olfactory function is most commonly performed in ENT or neurology departments where 
olfactory dysfunction is the symptom leading to consultation or an early sign of disease1. Severe acute respiratory 
syndrome coronavirus type 2 (SARS-CoV2) infections have recently increased interest in olfactory testing2,3. 
Many common olfactory tests consist of a single test or battery that assesses combinations of three different 
components of the sense of smell, namely (1) the perception of odors at low concentrations (odor threshold), (2) 
the nonverbal discrimination of different odors (odor discrimination), and (3) the ability to name or associate an 
odor (odor identification). Some other tests add olfactory memory or other important features (for an overview 
see e.g.4), but these will not be discussed further in this report. One of the established olfactory test batteries that 
assesses all three components mentioned above is the Sniffin’ Sticks test5,6. It is clinically well established and has 
an extensive record of use in the published biomedical literature. A search of the PubMed database at https://​
pubmed.​ncbi.​nlm.​nih.​gov/ on March 16, 2023 for “(Sniffin’ Sticks) OR (Sniff and Sticks) NOT(review[PT])” 
returned 1023 results. From the first mention in 1996 in6, the use of Sniffin` Sticks in publications per year has 
steadily increased to a recent maximum of 153 publications in 2022.

Like other olfactory tests, the Sniffin’ Sticks test assesses olfactory function by presenting odors in a forced 
choice paradigm. The subject must either correctly name an odor known to the examiner from a set of alterna-
tives, or discriminate an odor from also presented blanks. In either case, the test score is determined as the sum 
of the correct responses. The test result is then used to establish three olfactory diagnoses, i.e., lack of olfactory 
sensitivity, termed “anosmia”, reduced function, termed “hyposmia”, and normal function, termed “normosmia”. 
The boundaries defining these diagnoses were found by analyzing the distributions of sum scores in large cohorts 
of increasing size from n = 10367, with updates derived from testing n = 32828 to n = 9139 subjects9. The theo-
retical limit of anosmia is expected to be a defined confidence limit of results when olfactory test responses are 
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only guesses. This is straightforward for the four-alternative and three-alternative forced-choice tasks, where the 
probability of guessing the correct result is ¼ and 1/3, respectively, and the confidence limits are easily calculated 
from common probability equations. However, determining the theoretical limit for the odor threshold is not as 
straightforward because the three-alternative forced-choice task is embedded in a complex staircase design that 
defies the application of standard probability equations. Because of this difficulty, previous publications have not 
reported an odor threshold that marks the 90% change in a guessed score; the threshold is reported only from 
observed scores in individuals diagnosed as anosmic by other means7.

To overcome the empirical component of the diagnostic limits for anosmia, the present analyses approach the 
problem from the perspective of test results generated by a purely random process. A computational approach 
has been adopted that combines the analysis of the results of software-coded tests with the subsequent develop-
ment of a probabilistic description of the underlying stochastic process as a one-dimensional random walk.

Methods
Description of the clinical olfactory test algorithm
The Sniffin’ Sticks test uses felt-tip pens containing odors dissolved in odorless propylene glycol or just the 
solvent. The three subtests, designed to measure the three components of olfactory performance (T, D, I), each 
use 16 individual tests in different algorithms. While odor discrimination (D) and odor identification (I) are 
tested with four- and three-alternative forced-choice designs respectively, the odor threshold test (T) embeds a 
three-alternative forced-choice paradigm in a seven-alternative staircase paradigm. Possible ranges of subtest 
scores are [1, 16], [0, 16] and [0, 16] for odor threshold, discrimination and identification, respectively. The 
main outcome of the Sniffin’ Sticks test is the TDI sum score. Pathological olfactory function is indicated by 
a TDI ≤ 30.5, with the empirical cut-off between hyposmia and anosmia at TDI = 169. The latter is due to the 
finding in the first multicenter evaluation7 that patients diagnosed with anosmia never exceeded a certain TDI 
value, specifically TDI > 16.

The more detailed test algorithm is as follows. Odor identification and odor discrimination are tested using 
a multiple forced-choice design, i.e., the tested individual has to choose from a set of options. For odor dis-
crimination, three odors are presented, two of which are identical and one of which, the target, is different from 
the others. The task is to select the odor that smells different (three-alternative forced-choice design). For odor 
Identification, a single odor is presented along with a list of four odor names from which one must be selected 
(four-alternative forced choice design). In both tests, the sum of correct answers out of a total of d = 16 trials is 
the test result.

The odor threshold test is more complex. It is a three-alternative forced-choice design embedded in a staircase 
paradigm. An odor is presented at 16 concentrations, from a dilution of 4% and further diluted in a geometric 
series at a ratio of 1:2. In the Sniffin’ Sticks test addressed specifically in this report the odor is phenylethyl alco-
hol, which has a rose-like smell. For each dilution, a three-alternative forced-choice design is used in which the 
diluted odor (target) is presented together with two blanks at 3-s intervals. Which one is the target is randomly 
chosen by the investigator during the test. The test begins with the lowest concentration (T(0) = 16), where T 
denotes the threshold score step, i.e., the 16 dilutions of phenylethyl alcohol. After an incorrect response, the 
concentration is increased by 2 threshold levels (T(1) = 14) until the odor is correctly identified twice in a row at 
the same concentration. This is considered the starting point (Tstart = T(n)) of the test and is recorded as the first 
turning point (staircase paradigm for staring point, SPSP). The odor concentration is then reduced in steps of one 
threshold score value, i.e., to T(n) + 1, until the odor is no longer detected, i.e., until it is not correctly identified 
twice in a row. This is the 2nd turning point from which the odor concentration increases again. In this way, two 
correct identifications in a row or one incorrect identification trigger a reversal of the staircase to the next higher 
or lower concentration step, respectively. If the test reaches the limit of T = 1, the lowest available odor dilution, 
the failure to correctly detect the odor is noted as a turning point and the next odor concentration presented is 
again T = 1. Successfully detecting the odor at T = 1 twice in a row triggers another increase in odor dilutions to 
T = 2, and so on. Similarly, if the test reaches the limit of T = 16, the highest available odor dilution, success in 
correctly detecting the odor twice in a row is noted as a turning point and the next odor concentration presented 
is again T = 16. Failure to detect the odor twice in a row at T = 16 results in T = 15 being presented next, and so 
on. The test ends after seven turning points. In the standard version of the Sniffin` Sticks, the odor threshold is 
the average of the last four of seven staircase reversals or turning points (Staircase Paradigm for Threshold, SPT).

Software coding of the clinical olfactory test algorithm
To study the behavior of the olfactory tests, in particular the consequences of successive random decisions in 
the odor threshold test that underlie the up and down movements to higher or lower odorant dilution steps 
during the staircase part of this test, a computer simulation was chosen. Coding was done by one author (JL) in 
the Python language10 using Python version 3.8.15, available free of charge at https://​www.​python.​org (accessed 
19 January 2023). The main packages used for the simulations were the numerical Python package “numpy” 
(https://​numpy.​org11), “pandas” (https://​pandas.​pydata.​org12,13). To obtain as unbiased results as possible, the 
subsequent theoretical description of the olfactory test was independently coded by another author (AU) and in 
the matrix laboratory language using MATLAB (version 9.13.0.2049777 (R2022b) for Windows™, MathWorks, 
Natick, MS, USA).

Programming the odor discrimination and odor Identification tests was straightforward. The code for the 
odor discrimination test is shown as an example in Textbox 1 in the Supplementary Information; the odor iden-
tification test was programmed similarly, except that there are four alternatives to choose from instead of three. 
Programming the odor threshold assessment was more complex. Therefore, two different versions of Python 
code were written Textbox 2 in the Supplementary Information, based solely on the Sniffin` Stick manual with 
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occasional consultation with the clinical author (TH) for test details. Python variant 1 mimicked the up and down 
behavior of the staircase test, while Python variant 2 considered the test as a flat sequence of random choices.

To verify that the results of the coded olfactory test were consistent with real observations, a large data set 
from a previous publication14 was used to check whether the simulated data matched the real olfactory data. 
The dataset contained the results of the Sniffin’ Sticks test from 10,714 subjects who presented with the symp-
tom "loss of smell" at the Clinic for Smell and Taste, Dept. of ENT, TU Dresden, Germany. It originated from a 
retrospective cross-sectional study that adhered to the Declaration of Helsinki, and was approved by the Ethics 
Committee of the Medical Faculty of the Technical University of Dresden (number EK251112006). To avoid 
circular reasoning in the diagnosis of anosmia, the odor threshold was excluded and anosmia was determined 
from the odor discrimination and identification scores based on the empirical limits given in a publication that 
published the 90% percentiles of the random results for both tests, along with the advice to use the sum of both 
limits as the criterion, i.e., D + I < 1615.

Investigation of random results of the clinical olfactory test algorithm
Simulations were run with 100,000 replicates unless stated otherwise. The distributions of the random results of 
the soft-coded olfactory test were analyzed using transformations along Tukey’s ladder of powers16,17. In addi-
tion, the significance of specific test algorithm details to random results were analyzed, in particular the starting 
point and the choice of turning points to be averaged for the final threshold score. Statistical analyses of the 
results were done in the Python or in the R language18. For the latter, the R software package19, version 4.2.2 for 
Linux, which is available from the Comprehensive R Archive Network (CRAN) at https://​CRAN.R-​proje​ct.​org/.

Results
First, the olfactory test was mirrored by a software implementation that produced purely random results on a 
large scale (e.g., 100,000 simulations), on which the behavior of the test could be studied before the observations 
were translated into a theoretical probabilistic solution.

Analyses of results of the soft‑coded olfactory test on random choices
Correct operation of the software coded olfactory test algorithm for odor threshold assessment
The two Python implementations of the software-encoded test algorithm for the determination of odor thresholds 
produced practically identical results, as indicated by a quasi-linear QQ plot along the line of identity (Fig. 1). 
The agreement was also found in the details of the starting points of the olfactory tests and the turning points 
reached during the run through the test algorithm (Fig. 2). The simulations also agreed with observations of 
odor thresholds in 4510 subjects who were classified as having an olfactory diagnosis of anosmia based on their 
odor discrimination and identification scores of D + I < 16.

Distributions of soft‑coded olfactory tests on random choices
Distributions of odor threshold, discrimination and identification were analyzed with 105 simulations. The 
resulting Box-Cox transformation with values of λ ≈ 1 indicated no transformation for the simulated scores 
of odor discrimination and identification. In contrast, a Box-Cox λ = − 1.14 for the transformation of the odor 
thresholds suggested a reciprocal transformation according to the closest points on Tukey’s ladder of powers. 
Interestingly, when the reciprocal transformation of odor thresholds was performed, the distribution was clearly 
not unimodal (Fig. 3). A mode at 1/T = 1 was accompanied by a second mode at lower values of 1/T ≈ 1/5. The 
rejection of unimodality was supported by a highly significant dip test21 (dip = 0.086275, p < 10–293) using the 
Python “diptest” package available at https://​pypi.​org/​proje​ct/​dipte​st/.

Olfactory test score limits for the diagnosis of anosmia based on random choices
Current recommendations for the Sniffin’ Sticks test use the empirically established criterion of a TDI ≤ 16 as 
an olfactory diagnosis of anosmia, i.e., a non-functioning sense of smell. The percentiles obtained in 100,000 
random results indicate that this cutoff corresponds to the 87th percentile of TDI scores obtained as the sum of 
randomly generated test results for odor threshold, odor discrimination, and odor identification. In the original 
test algorithm, the 90th percentile of simulated TDI scores corresponds to TDI = 17 (Fig. 4).

Significance of specific details of the odor threshold test to random olfactory test results
Starting point of the odor threshold test.  The starting point according to the actual test protocol is determined 
from T = 16 in steps of T = 2, i.e., 16, 14, …, 2, 1. The final TDI score was correlated with the starting point of 
the odor threshold testing at a value of Spearman’s ρ = − 1 (Fig. 5). The higher the starting point, the more the 
distribution of final TDI scores was flattened and shifted to the right. That means that the test design involves 
a chance that a value close to TDI = 16, i.e., the cut-off for anosmia, can be obtained even without any ability to 
smell just because the test started at T = 16. This called for readjusting the start point, leading to a proposal for a 
modified test design presented at the end of the “Results” section.

Choice of the number of turning points to be averaged for the odor threshold score.  In an experiment with 10 
turning points, there are 210–1 = 1023 possible combinations of turning points from which the final odor thresh-
old value can be averaged. The 1024th permutation would be zero turning points. An overview of the quantiles of 
odor thresholds associated with the use of different turning points for averaging to the final score (Fig. 6) showed 
that later turning points produced lower random scores, whereas the use of early turning points carried the risk 
of a high random T score. The current procedure, according to the test instructions, to use the 4th—7th turning 

https://CRAN.R-project.org/
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point is in the middle of the extremes and would be slightly improved if only the last two turning points were 
used for averaging instead of the last four. Details of the relationship between the choice of turning point and the 
thresholds when the test was answered randomly showed that the higher the position of the turning points used, 
either defined as the first, last or average position of the turning points, the lower the 90th and 95th quantiles of 
the randomly generated thresholds were (Fig. 7). The position range of thresholds used, or their total number 
had less influence.

Translation of the observed test behavior into a theoretical probabilistic solution
In the theoretical description of the olfactory test, the straight-forward tests of odor discrimination and odor 
identification were described using standard probabilistic equations, while the focus was on describing the odor 
threshold test. This required capturing the two parts of the test, determining the starting point for the subsequent 
part of the test, and then obtaining the subsequent turning points. The result should be olfactory scores consist-
ent with the simulations above, including the importance of the starting point for the second part of the test 
procedure, the choice of turning points for averaging to the threshold score, and the explanation of the bimodal 
distribution of TDI scores generated when the olfactory test was performed with random choices.

Description of the odor identification and discrimination tests as probability function of the forced choice test design
Here, a standard equation applies. The probabilities of the random results, when the tests of odor discrimi-
nation or of identification are completely guessed, are given as a binomial probability distribution with 
P =

n!
k!∗(n−k)! ∗ p

k ∗
(

1− p
)n−k where n is the number of trials of n = 16 odors/pairs, k is the number of correct 

test responses, and p is the probability of a correctly guessed response, with p = 0.3 in the odor discrimination 
test and p = 0.25 in the odor identification test, according to the three- or four-alternative forced-choice designs 
of the discrimination and identification tests, respectively.

Figure 1.   Bar plot of odor thresholds obtained with the software-encoded odor threshold test algorithm 
implemented in two different Python code variants (A) (100,000 simulations) and comparison with observed 
odor thresholds of 4510 patients (B). The red dashed horizontal lines mark the uniform distribution expected 
if each threshold had been chosen with equal probability. The QQ plots of one simulation variant against the 
other (C) and of variant 1 against the real observations (D) show perfect to satisfactory agreement. The figure 
was created using Python version 3.8.15 for Linux (https://​www.​python.​org), with the seaborn statistical data 
visualization package (https://​seabo​rn.​pydata.​org20).

https://www.python.org
https://seaborn.pydata.org
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Description of the odor threshold test as a random walk
The starting point of the odor threshold test, according to the current test protocol, is determined from T = 16 in 
steps of T = 2, i.e., 16, 14, …, 2, 1. The much less common alternative is a starting point at T = 15 with subsequent 
steps of T = − 2, which was not considered further due to its infrequent use. The odor concentration step correctly 
detected on the first two consecutive times is the starting point Tstart of the test. If this is not the case after eight 
trials, the subject has reached a value of Tstart = 1 on the staircase. In fact, guessing with this algorithm usually 
leads to Tstart = 1, which was the intended behavior during test development. However, the empirical probability 
of a higher starting point decreases from 16 to 2 (Fig. 8). Starting points with Tstart = 16 occur in (1/3)2 = 11% of 
the randomly generated test results. The starting point is also taken as the first turning point of the odor threshold 
test, according to the test design. Once the starting point is determined, odor thresholds are assessed using a 

Figure 2.   Bar plot of start points (A and C) and turning points (B and D) in the with the software-encoded 
odor threshold test algorithm implemented in two different Python code variants (upper and lower panels, 
respectively) (100,000 simulations). The red dashed horizontal lines mark the uniform distribution expected 
if each threshold had occurred with equal probability. The figure was created using Python version 3.8.15 for 
Linux (https://​www.​python.​org), with the seaborn statistical data visualization package (https://​seabo​rn.​pydata.​
org20).

https://www.python.org
https://seaborn.pydata.org
https://seaborn.pydata.org
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staircase paradigm with steps up and down to higher or lower odorant concentrations. For a purely random out-
come of an odor threshold test (random guessing), both processes can be described as random walks as follows.

The determination of the turning points, including the starting point, when the responses to the odor thresh-
old test tasks are only random choices, is given by a random walk with probability p for decreasing the concentra-
tion of the next test step and q = 1−p as the probability for increasing the concentration of the next test. Assum-
ing independence of successive olfactory trials, which is reasonable if the subject cannot smell at all, p can be 
calculated as the probability of randomly guessing 1 out of 3 (= 1/3) on two successive trials, p = (1/3)2 = 11.11%. 
For this type of so-called biased random walk, theoretical results exist and can be used23–25.

Let t = 0,…,N (time) be the length of the Biased Random Walk (BRW) i.e., the number of sniff tests with a 
guessed result. The time t = 0 is the start time of the BRW, which starts at Tstart. For the staircase paradigm to 
determine the starting points (SPSP), the step width is Sw = 2 and the initial starting point is Tstart = 16 at t = 0. 

Figure 3.   Distribution of results from 100,000 simulations of odor thresholds (A), odor discrimination (B) and 
odor identification (C). In addition, panel (D) shows the probability density of the transformed odor thresholds 
according to the results of the tests along Tukey’s ladder of powers. The figure was created using Python version 
3.8.15 for Linux (https://​www.​python.​org), with the seaborn statistical data visualization package (https://​seabo​
rn.​pydata.​org20).

Figure 4.   Quantiles of random results from the software-encoded olfactory test in the original test version with 
odor threshold test start point at Tstart = 8 instead of Tstart = 16. The black vertical and horizontal lines indicate the 
87th quantile, which is in the original version the accepted limit for anosmia according to the empirical limits 
given in the actual olfactory test instructions (100,000 simulations). The yellow and blue lines indicate the 90th 
and 95th quantiles, respectively, for the random results of the soft-coded olfactory test. All combinations of the 
three subtests, odor threshold, discrimination and identification, T, D and I, respectively, are shown in panels 
(A–G). The figure has been created using the R software package (version 4.2.2 for Linux; https://​CRAN.R-​proje​
ct.​org/ (R Development Core Team19)) and the library “ggplot2” (https://​cran.r-​proje​ct.​org/​packa​ge=​ggplo​t2 
(Wickham22)).

https://www.python.org
https://seaborn.pydata.org
https://seaborn.pydata.org
https://CRAN.R-project.org/
https://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
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Figure 5.   Dependency of the final TDI test score when all responses were guessed from the starting point of 
the odor threshold test (25,000 simulations). (A) Correlation of the 90th quantiles of the TDI with the starting 
point used to determine the odor threshold. The lines indicate linear splines with breakpoints determined from 
goodness-of-fit analysis using analysis of variance of the fitted models. (B) Probability density plotted using a 
kernel smoothing function with default settings in the ‘geom_smooth’ method of the R library “ggplot2” (https://​
cran.r-​proje​ct.​org/​packa​ge=​ggplo​t222). The lines are colored in darker or lighter blue with increasing starting 
value of the odor threshold test. The figure was created using the software package R (version 4.2.2 for Linux; 
https://​CRAN.R-​proje​ct.​org/19).

Figure 6.   Bar plot of the 90th and 95th quantiles of odor thresholds obtained in a random test scenario by 
averaging 1–10 turning points (100,000 simulations). The split view shows the turning points associated with the 
lowest (green shaded area, arbitrarily restricted to T < 4) and highest (red common area, arbitrarily restricted to 
T > 13) quantile values. Also shown are the 4th—7th turning points used for threshold calculation according to 
the olfactory test instructions (red framed bares), and in addition if in that standard scenario, only the last two 
turning points were averaged (black framed bars) The figure was created using the software package R (version 
4.2.2 for Linux; https://​CRAN.R-​proje​ct.​org/19) and the R library “ggplot2” (https://​cran.r-​proje​ct.​org/​packa​ge=​
ggplo​t222).

https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggplot2
https://CRAN.R-project.org/
https://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggplot2
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Figure 7.   Tunning points when the responses in the olfactory threshold test are guessed. Box plots of the 90th 
and 95th quantiles of randomly generated odor thresholds, depending on the position of the turning points in 
a sequence of [1,…,10] turning points, or on the number of turning points used for averaging to the final score. 
The first and last turning points indicate the beginning and end of the position range of the turning points used. 
The mean value refers to the average position in the sequence of turning points. The boxes are constructed from 
the minimum, quartiles, median (solid line within the box) and maximum values. The whiskers add 1.5 times 
the inter-quartile range (IQR) to the 75th percentile or subtract 1.5 times the IQR from the 25th percentile. The 
figure was created using the software package R (version 4.2.2 for Linux; https://​CRAN.R-​proje​ct.​org/19) and the 
R library “ggplot2” (https://​cran.r-​proje​ct.​org/​packa​ge=​ggplo​t222).

Figure 8.   Description of the olfactory test as a random walk: (A) Distributions of the evolving mean threshold 
and the 99.7% limit of expectations. The red dashed lines indicate the boundaries of the random walt at T = 1 
and T = 16. (B) Expected distribution of odor thresholds integrated over all distributions shown in panel A. 
The figure has been created using the R software package (version 4.2.2 for Linux; https://​CRAN.R-​proje​ct.​
org/ (R Development Core Team19)) and the library “ggplot2” (https://​cran.r-​proje​ct.​org/​packa​ge=​ggplo​t2 
(Wickham22)).

https://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
https://CRAN.R-project.org/
https://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
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The evolution of mean expectation and the 99.7% range in this algorithm shown in Fig. 8. For the staircase 
paradigm at threshold T, Tstart is the result of the start point finding (SPSP) and Sw = 1. The distribution of the 
threshold pdf(t) reached at t can generally be calculated as a Gaussian pdf(t) = N(M,V) = N(M(t),V(t)), with 
mean M(t) = 2pt− swt + Tstart and variance V(t) = pqt.

The integral over all starting point searches for 100,000 trials yields the distribution shown in Fig. 3B and 
D, respectively for the staircase paradigm for starting points in Fig. 9. With this distribution of Tstart, random 
walk theory yields the distributions of the evolving mean threshold and the 97% limit and as an integral over all 
distributions, both shown in Fig. 8. This confirms the existence of a second mode (region of high density) at T 
≈ 5, which was found empirically (Fig. 3D). The MATLAB implementation of the theoretical description of the 
odor threshold test is shown in (Textbox 3 in the Supplementary Information).

Comparison of theoretical expectations and empirical observations using the odor threshold test
Finally, to verify whether the theoretical model correctly describes the olfactory threshold test, the previously 
independent analyses, i.e., the empirical analyses of the soft-coded odor threshold test and the coding of the theo-
retical description of the underlying stochastic process, were compared. This first confirmed that odor thresholds 
generated by a pure random process in the olfactory test are bimodally distributed (Fig. 9). The second mode 
appears approximately at T = 5, which corresponds to the empirical observation in the software-encoded odor 
threshold test (compare Fig. 3). Second, the starting points with a maximum frequency at T = 1, but also with a 
decreasing frequency from T = 16 to T = 2 followed exactly the expectation from the description of the starting 
point determination as a random walk (Fig. 9). Therefore, it can be assumed that the theoretical description of 
the odor test, particularly the odor threshold subtest, correctly captures the true test.

Proposed test modification to reduce the likelihood of high random scores
Simulations and their theoretical translation have pointed to a crucial part of the test where improvements can be 
made to make it less likely that an anosmic person will pass the test with the result of being able to smell, although 
this was generated only by a rare series of correct guesses. That is, the strongest association of accidentally high 
TDI values is with the initial starting points of the threshold tests. The design of starting with the highest dilution 
of Tstart = 16 was chosen in the original test to avoid premature adaptation and habituation of the subject, which 
was feared when starting with the highest concentration. However, based on the current assessments, it appears 
that a few individuals may be misclassified as “non-anosmic” in retrospect, despite their complete inability to 
perceive odors. The established cut-off for anosmia, set at a score of TDI = 16, corresponds to the 87th percentile 
of random results, marginally deviating from the originally intended 90th percentile that was based on empirical 
assessments in clinically likely anosmic individuals15.

Having the theoretical basis, the 90th percentile can be obtained at TDI = 17, allowing retrospective adjust-
ments. To improve the test and minimize the likelihood of erroneous rejections of the anosmia diagnosis due to 
guessed test responses, two different alternatives are available. First, adjusting the anosmia cut-off to TDI = 17 

Figure 9.   Staircase paradigm for finding the starting point of the odor threshold test: (A) Mean expectation 
of starting points and 99.7% range. (B) Comparisons of starting points computed using the random walk 
implementation of the test with starting points observed in 100,000 simulations using the two Python code 
variants of the software implementation of the odor threshold test (compare Fig. 3. The figure has been created 
using the R software package (version 4.2.2 for Linux; https://​CRAN.R-​proje​ct.​org/ (R Development Core 
Team19)) and the library “ggplot2” (https://​cran.r-​proje​ct.​org/​packa​ge=​ggplo​t2 (Wickham22)).

https://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
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is a viable option. Second, maintaining the existing cut-off at TDI = 16 used in all Sniffin’ Sticks test battery 
publications so far, but refining the test procedure to ensure that anosmia diagnoses do not fall below the 90th 
percentile of random results in the test score is another viable approach. For the latter option, an immediately 
obvious conclusion from the observed test behavior would have been to start the test at Tstart = 1 in the future. This 
would minimize the likelihood of obtaining a high test score by chance, consistent with the findings presented 
above. However, Tstart = 1 was not chosen for two main reasons. First, starting the test at the highest odorant 
concentration would expose individuals with a normal sense of smell to frequent exposure to strong olfactory 
stimuli. This increased exposure could lead to adaptation and habituation processes that could potentially bias 
the test results. Second, the goal was to keep the test application as short as possible. Starting at Tstart = 1 would 
mean that a significant portion of the initial test phase would be wasted, as individuals with a normal sense of 
smell would easily discriminate the true odorant from the blanks until the dilution approached their actual 
olfactory threshold. The choice of a new starting point therefore required a compromise between minimizing 
adaptation/habituation effects, reducing overall test duration, and avoiding the unintended consequence of a 
higher starting point artificially increasing the chances of achieving a better test score regardless of an individual’s 
actual sense of smell.

Linear splines were used to examine the relationship between the Threshold Discrimination Identification 
(TDI) values, which mark the 90th percentile of the final test score obtained by guessing, and the starting points. 
This analysis revealed a two segmented association, supported by significant goodness-of-fit tests for 1–4 linear 
spline segments (Fig. 5A). A notable inflection point in the slopes of the 90th percentile regression lines, which 
defines the normal test values according to the original test design, was observed at approximately T = 8. From this 
point on, the dependence of the final TDI values on the starting point of the threshold test decreases (Fig. 5A). 
This particular point, which is centrally located within the range of starting points, also proved to be an intui-
tive choice. It struck a balance between minimizing the likelihood of random high scores (Fig. 5B), reducing 
adaptation/habituation effects, and keeping the test duration reasonably short.

Based on this reasoning, Tstart = 8 instead of Tstart = 16 is proposed, with no further changes in the test algorithm 
from the original version. The start point search is only performed in the direction to T = 1. If T = 8 is detected 
twice in a row, the following staircase part of the test starts immediately. Corresponding simulations showed 
that with the proposed modification, n = 4107 (4.1%) instances were above the limit of anosmia at TDI = 16 by 
accident. TDI = 16 now represents the 97th percentile of random results. Expressed in terms of test performance 
to detect anosmic subjects, the modification would increase the accuracy from 80.1 to 95%. The availability of 
a theoretical background and the ability to fully simulate the outcomes of the olfactory test when run with ran-
dom choices only allows cut-off limits for anosmia to be calculated for each possible combination of the three 
olfactory subtests. The corresponding values for all combinations of the T, D and I subtests are shown in Fig. 10 
for the modified test algorithm.

Discussion
Random walks are a common phenomenon that occur in many areas, such as molecular motion, the growth of 
bacterial colonies, the movements of microorganisms26–29. One-dimensional random walks are also a standard 
approach to analyzing stock price movements30–32. An early description of random walks goes back more than 
100 years33, and several modifications and specifications have been added, from which the current description 
of the olfactory test could be derived. The present clinical test for assessing odor thresholds can be described 
as one-dimensional biased random walks (BRW) with highly unbalanced probabilities for upward (11%) and 
downward (89%) movements. The walk is complicated by the nesting of two components, the first consisting of 
the determination of the starting point for the next walk, which consists of the determination of the subsequent 
turning points for threshold calculation. The first component is unidirectional, i.e., the movement can only go 
in the direction of lower values. The second part of the test is an up and down movement.

The formal solution and the empirical soft-coded experiments consistently pointed to the starting point as a 
critical determinant of the subsequent turning points that ultimately determine the outcome of the odor threshold 
test. This is consistent with the inclusion of the starting point in an early formalization of random walks33 as 
Xn = x0 +

n
∑

j=1

Zj , where (Xn), n ∈ N0 describes the stochastic process leading to the actual position in the walk 

after j steps from the start point x0 In the present formalization (see “Results” section), the main determinants 
of the final results in terms of threshold score obtained by random choices are (1) the starting point, Tstart, (2) 
the length of the walk, t, and the probabilities in the bias component.

Starting from a high position involves a non-negligible chance of staying in high positions, even if the abil-
ity to smell is lacking, i.e., the ability that which would drive an upward movement of the test results indicating 
that lower odorant concentrations can still be smelled. According to the rules of the test, the probability of a 
downward movement is still quite high (11%). On the other hand, if the starting position is low, it is very difficult 
to reach a high position by chance. Thus, according to the actual test instructions, starting at T = 16 includes a 
non-negligible chance of remaining without olfactory function at higher odor dilutions in the subsequent test, 
which applies to all published and unpublished applications of the Sniffin’ Sticks test to date. As a result, the 
actual boundary of anosmia at TDI < 16 marks the 87th percentile. This behavior can be corrected by starting at 
T = 8, which is a result of the present analyses and raises the cutoff of anosmia at T < 16 to the 97th percentile of 
randomly generated TDI scores. Finally, the starting point alone, without the subsequent biased random walk, 
proved to be an inadequate approach to preventing guessed high TDI scores. If only the first part of the random 
walk, used to determine the starting point, was repeated 10 times and the average of these starting points was 
used as the threshold, the 90th percentile of the TDI scores would increase to TDI >  = 20.
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The formal solution and the empirical soft-coded experiments also emphasized that the length of the random 
walk, denoted as time t in the formula given in the “Results” section of this report, is an important factor in 
the actual position in the staircase, which over time has a greater chance of being among the lower scores due 
to the unbalanced probabilities. In the current experiments, it appears that the use of later turning points for 
averaging to the final odor threshold shifts the 90th percentile to lower values, i.e., produces the desired reduc-
tion in the probability of high test scores achieved by mere guessing at the test. However, a clinical trial that is 
performed on a patient cannot be continued for an indefinite period of time. In fact, the focus of olfactory test 
development over the past two decades has been on reducing test burden rather than increasing specificity to 
detect true loss of olfactory function, triggering proposals of so-called “short” olfactory tests34–39. Therefore, 
shifting the relevant turning points was considered second only to shifting the starting point in the present pro-
posal to reduce the likelihood of false rejections of the diagnosis of anosmia due to chance results. Nevertheless, 
the present experiments indicate that attempts to shorten the olfactory threshold test by using earlier turning 
points39 should be undertaken with great caution. Given the importance of short test times in clinical practice, 
the change in probabilities of the bias component of the random walk was not further analyzed. Extending the 
forced-choice design beyond the current 3-alternative variant would certainly increase testing time and could 
at best be a rescue measure if other means fail, which, as discussed above, was not the case.

A proposed test adjustment involves shifting the initial starting point for rough threshold determination in 
the first phase of the testing paradigm from Tstart = 16 to Tstart = 8. This change is intended to reduce the likeli-
hood of obtaining falsely high threshold test scores, particularly evident in individuals with complete anosmia, 
as substantiated throughout this report, while keeping the original published cut-off, as an alternative preferred 
to moving the cut-off which would imply comprehensive publication of new normative values for the Sniffin’ 
Sticks test battery. For individuals with a true olfactory acuity greater than T = 8, i.e., normosmic individuals, 
this adjustment will cause an immediate change in the direction of testing toward values greater than T = 8 from 
the outset. Subsequently, the second phase of the test, using the up-and-down staircase paradigm, will proceed 
as in the original version. It is important to note that we can’t simulate the consequences of this adjustment 
precisely because we don’t have valid estimates of the probability at which normosmic or hyposmic individuals 
will correctly identify odorant dilutions just at the level of their individual odor thresholds. The present simula-
tions are based on the assumption of completely absent olfactory function and purely random responses in the 
threshold test. Randomly correct responses in subjects with preserved olfactory function, as experienced in the 
original test, will still occur, albeit partially mitigated by the repeated testing implemented by the seven staircase 
reversals implemented in the original test for this very reason. Moreover, with preserved olfactory function, most 
of the test range will not fall under random responses but the individuals are giving correct responses based on 

Figure 10.   Quantiles of random results from the software-encoded olfactory test in the proposed odor 
threshold test modification with beginning the finding of the test’s start point at Tstart = 8 instead of Tstart = 16. 
The black vertical and horizontal lines indicate the 96th quantile, which is in this version the accepted limit for 
anosmia according to the empirical limits given in the actual olfactory test instructions (100,000 simulations). 
The yellow and blue lines indicate the 90th and 95th quantiles, respectively, for the random results of the soft-
coded olfactory test. All combinations of the three subtests, odor threshold, discrimination and identification, 
T, D and I, respectively, are shown in panels (A–G). The figure has been created using the R software package 
(version 4.2.2 for Linux; https://​CRAN.R-​proje​ct.​org/ (R Development Core Team19)) and the library “ggplot2” 
(https://​cran.r-​proje​ct.​org/​packa​ge=​ggplo​t2 (Wickham22)).

https://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
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olfactory perception. As such, we anticipate that this adjustment will have minimal impact on the test results 
for non-anosmic subjects. The authors do not foresee that the test modification will have a large effect on the 
ratings given by normosmic individuals. However, it is important to note that anosmia often becomes a focal 
point in medico-legal cases, particularly those involving claims for compensation following accidents that result 
in loss of olfactory function. In such cases, it is important to minimize the likelihood of erroneously rejecting a 
diagnosis of anosmia. Nevertheless, a full comparison between the original test design and the modified version 
may be explored in a future empirical study, which can also address which of the alternative amendments of 
the test, shifting the anosmia cut-off to TDI = 17 or shifting the start point to Tstart = 8 to prefer. However, this is 
beyond the scope of the present evaluation, which focuses primarily on the theoretical framework of staircase 
odor threshold assessment.

The odor threshold subtest of the Sniffin’ Sticks clinical olfactory test battery is not an isolated design in 
which random walks have been adapted. Sensory testing with random walks is rather common without the 
processes being named. In a recent report on changes in point pressure sensitivity as an early sign of Parkinson’s 
disease, the authors specifically described the test design as a “state-of-the-art forced-choice staircase threshold 
test paradigm”40. Similarly, the determination of pain thresholds to mechanical or electrical noxious stimuli in 
a human experimental study was performed using a forced staircase paradigm similar to the olfactory test ana-
lyzed here41. Another example is the determination of cuff pain tolerance using a staircase paradigm42. The use 
of staircase paradigms for sensory testing extends to visual or acoustic stimuli for which the detection threshold 
in chicken has been determined using a staircase paradigm43. These are all random walks, although this type 
of process is barely mentioned by name in the sensory research context. Interestingly, a search for “(“staircase 
paradigm”) AND (“random walk”)” returned an empty hit list suggesting that the connection between two made 
in the present report is original.

Conclusions
In the present analyses, the conceptual basis of the popular staircase paradigm on which several sensory tests, 
including the present one, are based has been reconceived as a random walk. This makes it possible to assess 
results obtained by guessing and to set precise limits of anosmia, which were previously based on empirical find-
ings. Regarding randomness in a clinical olfactory performance test, one of its three components, the olfactory 
threshold test, was found to be a combination of random walks of a special type. To prevent the test from being 
too easy to pass with a high score, two consecutive trials with a choice of one out of three must be achieved. Sta-
tistically, this results in asymmetric probabilities of (1/3)2 = 11% to achieve a higher score and 89% to achieve the 
next lower score. For pure guessing, the odor threshold test results in two successive biased random walk trials. 
In the present analyses of this process, empirical and formal approaches were applied independently and partly 
successively, partly in parallel. The concordant results provided mutual support for their correct implementation. 
This led to the proposal of a modification of the olfactory threshold test, which consists in shifting the starting 
point to the middle range of scores in order to reduce the risk of erroneously rejecting the diagnosis of anosmia 
based on purely guessed high scores in the odor threshold test. The availability of a theoretical background of 
random results in all three subtests of the Sniffin` Sticks test now makes it possible to establish precise cut-off 
values for the diagnosis of anosmia, i.e., the absence of olfactory function, that capture the test results possible by 
random selection at defined confidence limits. In addition, recognizing the staircase paradigm used in a variety 
of sensory and similar tests as a random walk provides a basis for estimating possible unexpected consequences 
of test modifications.

Data availability
The main parts of the Python and MATLAB code written to perform the present experiments and formal imple-
mentations are available as a part of this report (Tables 1—3).
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