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Molecular markers of type II 
alveolar epithelial cells in acute 
lung injury by bioinformatics 
analysis
Xiaoting Yang , Jing Wang  & Wei Liu *

In this study, we aimed to identify molecular markers associated with type II alveolar epithelial cell 
injury in acute lung injury (ALI) models using bioinformatics methods. The objective was to provide 
new insights for the diagnosis and treatment of ALI/ARDS. We downloaded RNA SEQ datasets 
(GSE109913, GSE179418, and GSE119123) from the Gene Expression Omnibus (GEO) and used R 
language package to screen differentially expressed genes (DEGs). DEGs were annotated using Gene 
Ontology (GO), and their pathways were analyzed using Kyoto Encyclopedia of Genes and Genomes 
(KEGG). DEGs were imported into the STRING database and analyzed using Cytoscape software to 
determine the protein network of DEGs and calculate the top 10 nodes for the hub genes. Finally, 
potential therapeutic drugs for the hub genes were predicted using the DGIdb database. We identified 
78 DEGs, including 70 up-regulated genes and 8 down-regulated genes. GO analysis revealed that 
the DEGs were mainly involved in biological processes such as granulocyte migration, response to 
bacterial-derived molecules, and cytokine-mediated signaling pathways. Additionally, they had 
cytokine activity, chemokine activity, and receptor ligand activity, and functioned in related receptor 
binding, CXCR chemokine receptor binding, G protein-coupled receptor binding, and other molecular 
functions. KEGG analysis indicated that the DEGs were mainly involved in TNF signaling pathway, 
IL-17 signaling pathway, NF-κB signal pathway, chemokine signal pathway, cytokine-cytokine 
receptor interaction signal pathway, and others. We identified eight hub genes, including IRF7, IFIT1, 
IFIT3, PSMB8, PSMB9, BST2, OASL2, and ZBP1, which were all up-regulated genes. We identified 
several hub genes of type II alveolar epithelial cells in ALI mouse models using bioinformatics analysis. 
These results provide new targets for understanding and treating of ALI.

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common causes of respiratory 
failure in critically ill patients, and their pathogenesis is not fully  understood1. The pathological manifestations 
of ALI/ARDS are characterized by damage to pulmonary capillary endothelial cells and alveolar epithelial cells. 
This damage leads to an excessive production of inflammatory factors within lung tissue, resulting in respiratory 
distress, refractory hypoxemia, and non-cardiogenic pulmonary  edema2. Regarding the pathogenesis of ALI/
ARDS, the most widely discussed factors include the overactivation of the inflammatory response, increased per-
meability of both alveolar epithelium and vascular endothelium, as well as a decrease in the clearance of alveolar 
fluid in affected patients. However, further details and insights into this condition are still under  investigation3. 
Despite progress in improving their diagnosis and treatment, the mortality rate of ALI/ARDS remains high, 
ranging from 30 to 40%4.

The alveolar epithelium, comprising both type II alveolar epithelial cells (ATII) and type I alveolar epithelial 
cells (ATI), governs fluid and ion transport, serving a pivotal function in preserving lung homeostasis. Addition-
ally, these cells engage in fusion with the endothelial cells of capillaries, collectively forming a barrier crucial 
for lung  ventilation5. However, various factors can induce damage to the epithelial cells during the early stage of 
ALI/ARDS, leading to disruption of the barrier  function6. ATII cells play a pivotal role primarily in overseeing 
the proliferation and differentiation of ATI cells and in the recovery of lung epithelial function. However, they 
also possess the capacity to activate alveolar macrophages, which can exacerbate lung damage. Throughout this 
process, ATII cells can attract circulating immune cells, leading to the release of various mediators aimed at 
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eliminating  pathogens7. Consequently, the repair of damaged alveolar epithelial cells, especially the prolifera-
tion and differentiation of ATII cells, holds significant importance for the prognosis of ALI/ARDS8. Despite the 
identification of several biomarkers that can predict the severity of damage to alveolar epithelial cells and vas-
cular endothelial cells in ARDS patients, these markers lack uniformity and  specificity9. Hence, it is imperative 
to investigate related molecular markers specific to ATII cells in order to enhance our understanding of ARDS 
and explore novel therapeutic options.

Bioinformatics is an interdisciplinary field that combines computer science, information technology, novel 
mathematical algorithms, and statistical methods. It specializes in the analysis of biological experimental data, 
uncovering the hidden biological significance within the data. Moreover, it aims to develop novel data analysis 
tools for the acquisition and management of diverse  information10. In comparison to other frequently used sta-
tistical methods, bioinformatics is known for its comprehensive and efficient approach. Recent advancements in 
gene sequencing at the mRNA level have opened up new avenues for investigating the mechanisms and treatment 
of diseases. The combination of chip technology and bioinformatics analysis further enables the exploration of 
diseases at the genetic level. While this method has been extensively employed for screening tumor targets at 
the genome level, there has been a limited number of bioinformatics studies focused on ALI/ARDS. Through 
these bioinformatics investigations, previous researchers have identified a multitude of genes associated with 
ALI/ARDS, with many of them being linked to inflammatory  mechanisms11,12. Additionally, other studies have 
highlighted the significance of the body’s immune response in relation to the prognosis of ALI/ARDS13,14. In this 
study, we employed bioinformatics analysis to explore the pivotal genes and molecular markers linked to ATII 
injury in various ALI models. We retrieved the necessary dataset from GEO, conducted data sorting and analysis 
using the R language, and identified the shared Differentially Expressed Genes (DEGs) in different ALI models. 
By subjecting these DEGs to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analyses, our aim was to uncover common patterns in gene expression. This approach enables us to potentially 
identify novel strategies for improving patient outcomes in the context of ARDS.

Materials and methods
Data sources
The Gene Expression Omnibus (GEO) is a gene expression database established by the National Center for 
Biotechnology Information (NCBI) in 2000. This database contains gene expression data submitted by research 
institutions worldwide, including gene chip and high-throughput sequencing data. We utilized GEO to retrieve 
the data needed for our study. We used “ATII”, “acute lung injury” and “ATII and acute lung injury”as key words 
to retrieve data sets. The screening criteria for selecting data were as follows: (1) model: acute lung injury mouse 
models, (2) data type: high-throughput sequencing and single-cell sequencing, (3) cell type: ATII cells, and (4) 
sample size: each dataset includes at least three samples in both the control and experimental groups. By setting 
these conditions, we aimed to obtain high-quality and relevant data for our study. The data set is screened again 
based on processing time.

Research method
Identify differentially expressed genes (DEGs)
R language is a statistical programming language known for its capabilities in statistical computation, data min-
ing, and data visualization. RStudio provides a supportive environment for executing code, creating visualiza-
tions, and more. In our study, we employed the R software to preprocess the data, which encompassed batch 
correction and standardization tasks accomplished through the use of the DESeq2 software package.To identify 
the differentially expressed genes (DEGs), we utilized the limma software package and removed overlapping 
genes from the datasets to obtain a final list of DEGs. The screening criteria for differential expression were set 
at an adjusted p-value < 0.05 and an absolute value of logarithmic fold change (|LogFC|) >  115. These criteria 
ensured that only significant and biologically relevant genes were included in subsequent enrichment and protein 
network analyses.

Enrichment analysis of DEGs
To gain insights into the biological functions and pathways associated with the differentially expressed genes 
(DEGs), we performed Gene Ontology (GO) enrichment analysis (biological process, cellular component, and 
molecular function) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis using the clus-
terProfiler package in R software. We used the “ggplot2” package to generate graphical representations of the 
analysis results. The primary parameters were configured as follows: an enrichment significance threshold of 
(p-value) < 0.05 and a corrected p-value (q-value) < 0.05. Using these criteria, we were able to identify significantly 
enriched components within the analysis module.

Protein–protein interaction (PPI) network and identification of hub genes
To construct a protein–protein interaction (PPI) network for the differentially expressed genes (DEGs), we used 
the Search Tool for the Retrieval of Interacting Genes (STRING) database (http:// string- db. org/). We uploaded 
the list of Differentially Expressed Genes (DEGs) into the STRING database, specifying the species as “Mouse,” 
and set the significance threshold at 0.4. Subsequently, the interaction network diagram of DEGs was automati-
cally generated by the database. We then exported the node file for visualization using Cytoscape  software16.

The CytoHubba plug-in and the MCODE plug-in are widely employed analytical tools within the software. In 
our analysis, we opted for the degree scoring algorithm in CytoHubba, as it is the most commonly used algorithm 
for identifying key genes. We set the criteria to select the top 10 key genes based on the degree ranking. Addition-
ally, the MCODE plug-in was utilized to detect the most densely interacting module within the Protein–Protein 
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Interaction (PPI) network. This was accomplished by calculating scores for each node. These identified core 
subnetworks, and the intersection between them, were identified as the hub  genes17.

Identify drug candidates
DGIdb database is a valuable resource for predicting potential drugs for identified hub genes. By integrating 
drug-gene interaction data, it allows users to search for potential drugs that can target specific genes of  interest18. 
The database provides information on FDA-approved drugs, experimental drugs, and investigational drugs, as 
well as their indications, target genes, and drug-gene interaction  types19. Users can search for drugs based on 
gene symbols or drug names, and filter the results based on various criteria such as drug type, drug status, and 
interaction type. The database also provides links to other resources such as PubMed and ClinicalTrials.gov for 
further information on drugs and their clinical applications.

Results
Acquisition of data sets
According to the 2012 Berlin definition of ARDS, respiratory dysfunction must occur within one week of a known 
 insult20. Therefore, we selected mouse models of ALI from datasets with time points within 72 h. Ultimately, we 
identified three gene chip datasets from the GEO database platform: GSE109913, which contains three samples 
of lung injury caused by lipopolysaccharide infection and control samples; GSE179418, which contains three 
samples of lung injury caused by Escherichia coli infection; and GSE119123, which contains five samples of 
lung injury caused by influenza virus. Each dataset includes an equal number of control samples. The detailed 
informationis illustrated in Table 1.

Differentially expressed genes of ATII in 3 datasets
The R programming language package was utilized to analyze the aforementioned single cell RNA sequencing 
(RNA-seq) datasets. Using Venn diagrams, a total of 82 genes were identified, with 70 being up-regulated and 
8 being down-regulated (Fig. 1A–C). Among them, four genes exhibited disparate expression patterns across 
different datasets and were thus excluded. Ultimately, 78 genes were identified as differentially expressed genes 
(DEGs) and were selected for further investigation.

Go enrichment and KEGG pathway enrichment analysis of DEGs
The Go analysis was performed on the biological processes (BP), cellular components (CC), and molecular func-
tions (MF) of the DEGs. The results revealed that the CC of these DEGs were primarily composed of host cell 
components, proteinome core complexes, and endopeptidase complexes, etc. The BP were significantly enriched 
in granulocyte migration, response to bacterial-derived molecules, cytokine-mediated signaling pathways, and 
others. These DEGs were also found to have cytokine activity, chemokine activity, and receptor ligand activity, 
and they can participate in related receptor binding, CXCR chemokine receptor binding, and G protein-coupled 
receptor binding, among others. Additionally, KEGG analysis indicated that the DEGs were mainly involved in 
TNF signaling pathway, IL-17 signaling pathway, NF-κB signaling pathway, chemokine signaling pathway, and 
cytokine receptor interaction signaling pathway (as shown in Figs. 2 and 3). The present study suggests that these 

Table 1.  Dataset base information.

Model Molding method Processing time (h)

Sample

Treat Control

GSE109913 Lipopolysaccharide Endotracheal instillation 24 3 3

GSE179418 Escherichiacos Endotracheal instillation 24 3 3

GSE119123 virus Endotracheal instillation 72 5 5

Figure 1.  Expression of differential genes in GSE109913, GSE179418 and GSE119123. (A) All differentially 
expressed genes; (B) up-regulated genes; (C) down-regulated genes.
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pathways play a crucial role in the development of human ALI/ARDS. The NF-κB signaling pathway is intricately 
involved in various processes, including inflammatory responses, immune responses, apoptosis regulation, and 
stress responses. In the context of acute lung injury inflammation, NF-κB serves as a key transcription factor that, 
upon activation, promotes the expression of relevant inflammatory mediators. Additionally, it has the capacity 
to regulate the expression of genes associated with  ALI21. Recent literature highlights the cytokine storm as a 
pivotal factor in inducing ARDS, with IL-17, TNF-α, and IL-6 being extensively  discussed22. IL-17 plays a role 
in recruiting neutrophils, stimulating the release of various inflammatory cytokines, and amplifying the inflam-
matory response. Reducing the expression of TNF-α can benefit patients dealing with the disease. Chemokines 
also play a critical role in these processes, as they are produced by neutrophils and macrophages, and contribute 
to cell aggregation while maintaining local inflammation homeostasis. Considering these pathways, blocking 
the activity of relevant factors may be a viable approach for the treatment of ALI/ARDS.

Protein–protein interaction (PPI) network and identification of hub genes
Through the use of the STRING database and Cytoscape software, we identified the top 10 genes with the highest 
degree and the subnetwork with the highest MCODE score. The intersection of these results yielded eight hub 
genes: IFIT1, IFIT3, IRF7, PSMB8, PSMB9, BST2, OASL2, and ZBP1 (Table 2). These genes were identified as 
critical players in the PPI network and could potentially serve as therapeutic targets for ARDS. The visualization 
of this subnetwork is shown in Fig. 4.

Identify drug candidates
Through the use of the DGIdb online database, we were able to identify drugs that are potentially relevant for the 
genes PSMB8 and PSMB9. However, we were unable to find any relevant drugs for the other hub genes. Table 3 
displays the results of the drug prediction analysis for PSMB8 and PSMB9.

Figure 2.  Gene ontology (GO) analysis (BP, CC, and MF) of DEGs. (A) Barplot, the abscissa is the number 
of enriched genes; (B) Bubble, the abscissa GeneRatio represents the proportion of enriched genes to the total 
number of genes.

Figure 3.  The KEGG enrichment analysis of DEGs. (A) Barplot, the abscissa is the number of enriched genes; 
(B) Bubble, the abscissa GeneRatio represents the proportion of enriched genes to the total number of genes.
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Discussion and conclusions
In recent years, significant progress has been made in the research of ALI/ARDS, including epidemiology, 
pathogenesis, and pathophysiology. Studies on optimizing mechanical ventilation modes and fluid management 
have also brought benefits to clinical treatment. However, specific and effective therapeutic drugs for ALI/ARDS 
have not yet been  identified23. With the rapid development of modern biotechnology, bioinformatics has gained 
more attention as researchers explore therapeutic options for ALI/ARDS at the molecular and cellular  levels24. 

Table 2.  Hub genes. Note: logFC (fold change, the ratio of expression between the control group and the 
experimental group); P value (corrected p value); FDR (error rate, i.e. false positive).

(A) Expression of Hub genes in GSE109913

Id LogFC P value FDR

IFIT1 3.317081 2.1004e−15 9.7116e−14

IFIT3 3.331381 3.5990e−26 7.1959e−24

IRF7 3.575651 2.0854e−19 1.4693e−17

PSMB8 2.534904 5.6402e−14 2.1846e−12

PSMB9 1.936220 8.3409e−08 1.3502e−06

BST2 2.314502 4.1583e−14 1.6363e−12

OASL2 2.408518 2.4545e−07 3.6388e−06

ZBP1 4.438428 1.6038e−23 2.1973e−21

(B) Expression of Hub genes in GSE179418

Id LogFC P value FDR

IFIT1 1.120373 3.6228e−04 2.8116e−02

IFIT3 3.331381 9.9001e−05 1.4799e−02

IRF7 1.081377 9.9504e−05 1.4799e−02

PSMB8 1.340419 1.5478e−04 1.8019e−02

PSMB9 1.130255 8.3502e−05 1.3713e−02

BST2 1.635273 1.6969e−04 1.9038e−02

OASL2 1.480023 3.3362e−05 3.5552e−03

ZBP1 1.468907 3.5112e−05 9.7851e−03

(C) Expression of Hub genes in GSE119123

Id LogFC P value FDR

IFIT1 7.032258 6.2011e−62 2.1986e−58

IFIT3 6.415893 9.4179e−23 1.3465e−20

IRF7 7.348316 1.6653e−66 1.4761e−62

PSMB8 4.314184 5.1521e−28 1.1004e−25

PSMB9 3.822982 2.5269e−27 5.1490e−25

BST2 6.119503 1.0126e−45 7.8050e−43

OASL2 5.447088 9.7924e−46 7.8050e−43

ZBP1 7.150398 1.1486e−53 1.6969e−50

Figure 4.  Protein–protein interaction (PPI). (A) Top 10 genes with the highest interaction degrees in 
PPInetwork analysis; (B) Cluster 1; (C) Hub genes.
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Numerous studies have shown that multiple pathogenic factors induce gene alterations during ALI/ARDS25. In 
this study, 78 co-expressed DEGs were screened from three ATII single-cell RNA sequencing datasets of ALI 
mouse models induced by three different pathogens. Finally, eight hub genes, including IRF7, IFIT1, IFIT3, 
PSMB8, PSMB9, BST2, OASL2, and ZBP1, were identified using bioinformatics methods. These hub genes are 
closely related to ATII injury during ALI, as indicated by protein network analysis.

A literature review shows that IRF7, IFIT1, IFIT3, BST2, and OASL2 are related to the immune response of the 
body. During lung injury, these genes are induced by interferon and participate in the IRF3–IFNAR–STAT1–IFIT1 
signal pathway of pulmonary epithelial cells. They work together to regulate the activation of inflammatory cells 
and induce the death of infected  cells26. The expression of IRF7 is increased by viral infection, tumor necrosis 
factor-α (TNF-α), and the inflammatory cytokine IL-1β. IRF7 also induces plasmacytoid dendritic cells and 
monocytes to produce the inflammatory cytokine IL-6, which participates in the occurrence and development of 
ALI/ARDS27. Proteomic studies of bronchoalveolar lavage fluid and ATII cells in ALI mouse models confirmed 
the important role of  IRF726. Excessive activation of IRF7 promotes the development of ALI/ARDS caused by 
Influenza A Avirus (IAV), and reducing IRF7 activity at local infection sites may be a new method to treat ALI/
ARDS in  IAV28. Studies have shown that IFN-induced protein with tetrapeptide repeats 3 (IFIT3) protects against 
lung injury caused by viral  infection29,30. IFIT1 and IFIT3 induced by interferon can be used as relevant marker 
proteins of M1 polarization of pulmonary macrophages, and a useful marker of potential inflammatory  diseases31. 
Bone marrow stromal cell antigen 2 (BST2) activates the NF-κB signal pathway, promoting the production of 
proinflammatory factors such as TNF-α, IL-1β, and IL-632. As a member of the 2′-5′ oligoadenylate synthetase 
(OAS) family, OASL2 encodes an important antiviral protein and promotes the cleavage of viruses or infected 
 cells33. At present, the role of OASL2 in ALI/ARDS has not been reported. Our results show that the expression 
of OASL2 is increased in different ALI models, suggesting that OASL2 may be a potential target worth further 
exploration in ALI/ARDS.

Proteasome subunit beta type-8 (PSMB8) and Proteasome subunit beta type-9 (PSMB9) are mainly expressed 
in monocytes and T lymphocytes, encoding proteasome β subunit. They are responsible for the degradation of 
proteasome after ubiquitination, promoting abnormal proliferation and anti-apoptosis of cancer  cells34. The 
expression of PSMB8 and PSMB9 is significantly down-regulated in  tumors35, but in inflammatory diseases, 
PSMB8 is highly expressed. By recognizing and degrading pathway repressor proteins in the NF-κB pathway, 
PSMB8 can promote the release of inflammatory  mediators36. Selective inhibitors of PSMB8 can block and reduce 
the inflammatory  reaction37. In the study of IAV-induced lung epithelial cell injury, researchers found that PSMB8 
gene was up-regulated and inhibition of PSMB8 reduced the replication of influenza virus and attenuated lung 
epithelial  injury38. Similarly, when analyzing the lung tissue and single-cell transcriptome results of patients 
with COVID19 infection, the results also showed that the expression of PSMB8 and PSMB9 was increased and 
related to the polarization of pulmonary  macrophages39. Our results, together with others, indicate that PSMB8 
and PSMB9 may play an important role in ALI/ARDS, providing a new target for treatment.

Z-DNA binding protein 1 (ZBP1), mostly expressed in CD8 + T lymphocytes, plays an important role in 
immune  defense40. Previous reports revealed that ZBP1 could regulate the activation of the Nod-like receptor 
with pyrin domain-containing 3 inflammasome (NLRP3) through the RIPK3-caspase-8 axis, and promote the 
secretion of IL-1β and interleukin-18 (IL-18). Moreover, it could stimulate the apoptosis of necrotic cells at the 
infection site through  pyroptosis41. Additionally, in an IAV-induced lung injury model of mice, ZBP1 could 
activate the NF-κB signaling and promote pro-inflammatory cytokines, resulting in the formation of neutrophil 
extracellular  traps42. Our results showed that ZBP1 was highly expressed in three different ALI models, suggesting 
a prominent role in ALI/ARDS. However, the particular role and mechanism of ZBP1 still need further study.

Analyzing the final hub genes, we found that they all play an important role in regulating the immune sys-
tem, which provides new ideas for the treatment of ALI/ARDS. Through online drug prediction, we obtained 
drugs primarily targeting genes PSMB8 and PSMB9, which are proteasome inhibitors mainly used in tumors 
and immune-related  diseases43. An experiment demonstrated that bortezomib could improve lung function in 
an acute pancreatitis model of mice and reduce other  complications44. Studies of other drugs are mainly used 
for tumor diseases such as hematological  malignancies45,  glioblastoma46, etc. Currently, there are no relevant 
reports on ALI/ARDS, so further research is needed in this field.

In summary, using bioinformatics methods, we screened and analyzed the common characteristics of dif-
ferentially expressed genes of ATII in ALI/ARDS caused by different pathogens. The results of this study provide 
a basis for further exploring the pathogenesis, prognosis evaluation, and new drug targets of ALI/ARDS. The 
predicted related drugs need to be further investigated in animal experiments and clinical studies.

Table 3.  Drug candidates combined with hub genes.

Drug names Genes

Bortezomib PSMB8, PSMB9

Carfilzomib PSMB8, PSMB9

Ixazomib Citrate PSMB8, PSMB9

Marizomib PSMB8, PSMB9

Oprozomib PSMB8, PSMB9
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