
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19132  | https://doi.org/10.1038/s41598-023-45115-1

www.nature.com/scientificreports

Deep‑learning‑based 
natural‑language‑processing 
models to identify cardiovascular 
disease hospitalisations of patients 
with diabetes from routine visits’ 
text
Alessandro Guazzo 1, Enrico Longato 1, Gian Paolo Fadini 2, Mario Luca Morieri 2, 
Giovanni Sparacino 1 & Barbara Di Camillo 1,3*

Writing notes is the most widespread method to report clinical events. Therefore, most of the 
information about the disease history of a patient remains locked behind free‑form text. Natural 
language processing (NLP) provides a solution to automatically transform free‑form text into 
structured data. In the present work, electronic healthcare records data of patients with diabetes 
were used to develop deep‑learning based NLP models to automatically identify, within free‑form 
text describing routine visits, the occurrence of hospitalisations related to cardiovascular disease 
(CVDs), an outcome of diabetes. Four possible time windows of increasing level of expected difficulty 
were considered: infinite, 24 months, 12 months, and 6 months. Model performance was evaluated 
by means of the area under the precision recall curve, as well as precision, recall, and F1‑score after 
thresholding. Results showed that the proposed NLP approach was successful for both the infinite 
and 24‑month windows, while, as expected, performance deteriorated with shorter time windows. 
Possible clinical applications of tools based on the proposed NLP approach include the retrospective 
filling of medical records with respect to a patient’s CVD history for epidemiological and research 
purposes as well as for clinical decision making.

Diabetes is a chronic disease characterised by elevated blood glucose levels. According to data collected in 2017, 
6.28% of the world population had  diabetes1 and by 2030 its global prevalence is projected to increase to 10.1%2. 
Diabetic complications, among which cardiovascular diseases (CVDs) are the most  relevant3, are estimated to 
contribute to one in nine deaths among adults aged 20–79 years, making it the ninth leading cause of  death4. 
In order to delay, mitigate, or avoid diabetes-related complications, patients need to be tightly monitored by 
general practitioners or endocrinologists through periodic routine  visits5. This longitudinal (from a data-flow 
perspective) nature of diabetes care leads to the need of describing the course of the disease over time, usually 
via a very large and long-lasting stream of heterogeneous data, typically handled by digital systems, such as 
electronic health records (EHR).

However, as for many other clinical situations, most of the information about patient history in EHR systems 
is locked behind free-form  text6 as writing down notes remains the most expressive method to record clinical 
 events7. As a consequence, unstructured clinical notes dominate over structured  data8,9 and, in order to obtain 
datasets that can be processed by automatic algorithms, relevant information must typically be extracted via 
manual review by experts, thus leading to scalability and cost  issues10.

To automatically transform the free-form text of routine visits into structured clinical data that can be fur-
ther re-used and re-purposed11, natural language processing (NLP) models have been proposed. To mention a 
couple of examples, Sterling et al.12 used neural network regression models to predict emergency-department 
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patient-disposition from triage notes. These algorithms were proved to be able to convert the free-form text of 
a triage note written by receptionist nurses into a specific patient-disposition outcome. In another article, Guan 
et al.13 compared machine learning (ML) and deep learning (DL) algorithms to identify genomic-related treat-
ment changes reported in routine-visit progress notes of cancer patients. In the diabetes field, previous research 
mainly focused on the identification of the disease  itself14 as well as some of its complications such as foot  ulcer15, 
vision  loss16, and hypoglycaemia  occurrence17. However, to the best of our knowledge, the use of EHR data and 
NLP for CVD detection has not yet been thoroughly studied.

In the present study DL-based NLP models were developed to automatically identify CVD hospitalisations 
from the unstructured free-form text of patients’ routine visits. To search a previous hospitalisation starting from 
a given visit, four possible time windows corresponding to as many clinically relevant scenarios are considered. 
In the first scenario, hospitalisations are searched back in time to be associated with a visit without any time 
constraint (i.e., the hospitalisation may have occurred at any time before the considered visit). This situation 
might be of interest when one wants to retrospectively fill patients’ medical records with respect to CVD history 
using the NLP model instead of assigning personnel to read all free-form text for each patient individually. In 
the second scenario, hospitalisations are searched in a 24 months’ time window back in time starting from the 
date of the visit. Such a time window may be useful for the conduction of retrospective population  studies18. 
In addition, knowing the recent CVD status enables physicians taking correct decision with regards, e.g. to 
medications for the management of diabetes or to pursue strict secondary preventive  strategies19. The third 
scenario is identical to the second one but is expected to be much more challenging because a previous CVD 
hospitalisation should fall within 12 months before the visit. Finally, the fourth scenario is even more extreme 
as it considers only hospitalisation occurred within 6 months before the visit’s date. Using this last time window 
would be necessary, for instance, if one wanted to create time-to-event datasets to be later used to develop pre-
dictive models of CVD  hospitalisations20. These scenarios are ordered by their expected complexity. Specifically, 
with longer time windows more hospitalisations can be found and, as a result, data become more populated and 
descriptive. Instead, as the time window narrows, less hospitalisations can be associated with the visits, resulting 
in a loss of information due to time-windowing and temporal resolution constraints imposed by the consequent 
domain of application. Taking this into consideration, NLP algorithms may work better in some scenarios than 
others and the main aim of this study is to understand which are the clinical settings of interest in which NLP 
approaches can be reliably used to extract structured information from unstructured medical notes. Moreover, 
the discrimination performance of models proposed for each scenario is assessed after implementing two dif-
ferent thresholding schemes (one innovative that allows for a certain degree of classification uncertainty) in two 
alternative settings: a natural by-visit setting, where each visit is considered independently of all the others, and a 
by-patient setting, where visits are aggregated with the aim of distinguishing between patients with and without 
a previous history of CVD hospitalisations.

Materials and methods
Data
The database used in this study was a typical EHR-type database collected at the Diabetic Outpatient Clinic of 
the University Hospital of Padova (Italy). This database contained, among other information, the free-form text 
of the 197,411 routine visits undergone by 16,876 patients from 1984 to 2018. The data concerning visit’s free-
form text were enriched by a subset of the hospital discharge registry of the Veneto Region, an administrative 
claims database, limited to the data of 16,292 patients with diabetes who were treated at the University Hospital 
of Padova from 2011 to 2018. The study was conducted in accordance with the principles of the Declaration of 
Helsinki. In compliance with national regulations on retrospective studies using routinely accumulated data 
(Italian Medicines Agency, “Agenzia Italiana del Farmaco”, determination 20/03/2008), the study protocol was 
approved by the ethical committee of the University Hospital of Padova (prot. 75856 dated 18/12/2019) and a 
protocol-specific consent was waived. All patients had provided informed consent to the re-use of medical data 
for research purposes as a prerequisite for entering the databases.

As part of the data enrichment process, the two datasets were harmonised according to the following criteria.

– The observation period spanned from January 1st, 2011, to September 30th, 2018, i.e., the overlapping time 
frame between the two datasets.

– Only Italian citizens, registered as healthcare beneficiaries in the Veneto Region were considered for the 
analysis, to avoid false negative outcomes involving patients from neighbouring regions who visited the 
University Hospital of Padova only for routine check-ups, but whose other healthcare needs were met in 
their region of origin.

– For similar reasons, visits were considered only if they happened during the patients’ healthcare eligibility 
periods within the Veneto Region.

– Finally, to avoid sporadic entries, only patients with at least one visit per year in three different years were 
included in the analysis.

After the harmonisation step, visits and hospitalisations related to CVDs were linked to form input-label 
pairs. Hospitalisations for CVDs and their discharge dates were identified using ICD-9-CM diagnosis  codes21 
from 390 to 459, or ICD-9-CM intervention codes denoting revascularisation procedures (00.61–66, 36.03, 
36.06–07, 36.10–19, 00.55, 39.50, 39.52, 38.48, 39.71, 39.90). For each subject and each visit recorded in the 
database of the diabetes outpatient clinic, the existence of a CVD hospitalisation discharge was searched back 
in time using the regional hospitalisation discharge registry. This process was repeated four times by consider-
ing four different time windows associated to as many clinically relevant applications (see the “Introduction” 
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section for more details on each time window and its associated application). As a result, four distinct datasets 
were obtained from this linking process, each one characterised by a different length of the time window used 
to search for a hospitalisation back in time. Specifically, hospitalisations were first searched with an infinite time 
window ending on the visit’s date. All visits with a prior CVD hospitalisation were labelled with a 1, regardless 
of time distance. Then, CVD hospitalisation discharges were searched within an increasingly narrow window 
(24, 12, or 6 months) before the date of the visit. If a hospitalisation was found, the visit was labelled with a “1”, 
meaning that a hospitalisation preceded the visit by, at most, the window’s time width; otherwise, the visit was 
labelled with a “0”, i.e., there was no record of a prior hospitalisation within the given window. Initial visits with 
incomplete windows (i.e., such that the subject was not observed for the entire 24-, 12-, or 6-month duration 
prior to the visit), were removed.

To offer an alternative perspective to the natural by-visit scenario described above, for performance evalu-
ation only, by-patient versions of the four datasets were also produced by aggregating the ground truth on a 
patient-by-patient basis. In practice, patients were assigned a positive label (1) if at least one of their visits was 
labelled with a “1”, and a negative label (0) otherwise. This process led to a simpler, but nonetheless interesting, 
perspective characterised by a loss of temporal resolution (any hospitalisation in the patient’s history works), 
but decreased chance of false negatives (at least one meaningful visit is enough) relative to the by-visit setting. 
Hence, whereas the by-visit setting considered each visit independently, to use all the available information for 
model training, in the by-patient setting, the task was only to distinguish between patients with and without 
previous history of CVD hospitalisations within the appropriate time window, a problem of great interest for 
clinicians who may want to identify patients with a past CVD hospitalisation easily and automatically instead 
of reading each visit’s text.

For each of the four considered time windows (infinite, 24, 12, and 6 months) the corresponding independent 
dataset was divided in three subsets: a training set (~ 80% of the total sample size), a validation set (10%), and a 
test set (10%). To avoid information leakage, all the visits belonging to the same patient were part of the same sub-
set. The by-patient versions of the dataset comprised the same patients as their respective by-visit counterparts.

The four independent datasets were then pre-processed according to the following steps, typically used in 
 NLP22,23.

– Deletion of Italian stop words (e.g., definite and indefinite articles, prepositions).
– Word stemming (inflected words are substituted by their common root).
– Deletion of the 1% least frequent words.
– Exclusion of visits consisting of less than 3 words.

Table 1 shows some relevant characteristics of the 4 versions of the dataset and their subsets (training, valida-
tion, and test) obtained after the harmonisation, linking, and pre-processing steps.

Model architecture and hyperparameters optimisation
In this study, bidirectional long short-term memory (LSTM) neural  networks24 were preferred to other DL 
architectures or more traditional ML methods based on bag-of-words or paragraph vectors as their performance 

Table 1.  Dataset characteristics. Dataset characteristics: number of patients included in each data subset, 
total number of visits, and number of positive visits. Details of the 4 versions of the dataset are reported 
independently while also considering the training/validation/test subset splits. Frequencies of positive visits are 
reported within round brackets in the last column.

Time window Subset N. patients N. visits N. positive visits

Infinite

Training 5056 55,765 1940 (3.5%)

Validation 632 7346 252 (3.4%)

Test 632 6760 231 (3.4%)

Total 6320 69,871 2423 (3.5%)

24 months

Training 5073 58,450 1935 (3.3%)

Validation 634 7119 229 (3.2%)

Test 635 7119 231 (3.2%)

Total 6342 72,688 2395 (3.3%)

12 months

Training 5100 60,686 1836 (3.0%)

Validation 638 7712 239 (3.1%)

Test 638 7433 230 (3.1%)

Total 6376 75,831 2305 (3.0%)

6 months

Training 5123 62,554 1632 (2.6%)

Validation 641 7740 205 (2.6%)

Test 640 7568 198 (2.6%)

Total 6404 77,862 2035 (2.6%)



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19132  | https://doi.org/10.1038/s41598-023-45115-1

www.nature.com/scientificreports/

proved to be superior in similar NLP  applications13. More complex architectures, such as BERT, were not con-
sidered in the present study as they have been proved to work very well with English text, but it is unclear that 
they retain the same level of flexibility and performance when dealing with the Italian  language25. The network 
was developed to identify the occurrence of a CVD hospitalisation prior to each visit. Its architecture, shown in 
Fig. 1, was a cascade of an embedding  layer26, a bidirectional LSTM layer with tanh (output) and sigmoid (recur-
rent) activation  functions27, and a subnetwork of dense layers with ReLU activations ending in a single output 
neuron with sigmoid activation (hospitalisation vs. no hospitalisation prior to the visit).

The hyper-parameters that were considered for the optimisation step were: the dimension of the embedding 
layer (32, 64, 128, or 256), the dimension of the LSTM layer (16, 32, 64, or 128), the non-recurrent dropout rate 
of the LSTM layer (0, 0.15, or 0.3), the number of dense layers (2 to 6) and dimension of the first and largest 
one (16, 32, 64, or 128; with each following layer in the subnetwork being half as large as the one immediately 
preceding it), and the dropout rate of dense layers (no dropout, or 0.1 for all dense layers).

Hyperparameter optimisation was performed on the training set via fivefold cross  validation28 and a random 
search  approach29 considering 200 combinations. The best combination of hyperparameters was selected as the 
one that led to the minimum average binary cross-entropy loss across the fivefold. Adam was used as optimisa-
tion algorithm for network  training30, and the initial learning rate was set to 5× 10−5 with a decay rate equal 
to the initial learning rate divided by the maximum number of epochs (200). An early stopping criterion was 
considered to avoid overfitting while reducing training time: the training process was stopped after 20 consecu-
tive epochs with no  improvement31.

After this first optimisation step, the model with optimal hyperparameters was re-trained on the whole 
training set. The re-training process was repeated 100 times starting from different, randomised initialisations, 
and the best performing model according to the binary cross-entropy loss on the validation set was selected as 
the final model.

The output of the model, to be compared to the binary ground truth denoting presence or absence of CVD 
hospitalisation prior to each visit, was a scalar, continuous quantity between 0 and 1. To further obtain an 
operating point for the model, i.e., to turn it from a ranker into a proper classifier, readily useable for CVD iden-
tification, two thresholding schemes were implemented. The first one consisted in setting a single probability 
threshold ( th ) to distinguish between the positive (1, if predicted probability p ≥ th ) and negative (0, if p < th ) 
model predictions; the second one in finding two thresholds, a low ( thlow ) and high ( thhigh ) one, to distinguish 
between positive (1, if p ≥ thhigh ), negative (0, if p ≤ thlow ), and uncertain (− 1, if thlow < p < thhigh ) predictions.

Thresholds were optimised via the F1-score as it well balances precision and recall, equally relevant metrics 
whose individual optimisation would lead to a perfect value (1) for one metric and a poor value (< 0.2) for the 
other. For the single-threshold scenario, the optimal threshold was selected by computing the F1-score using each 
unique probability value predicted for visits in the validation set as a cut-off and choosing the one that led to the 
maximum F1-score. For the double threshold scenario, 4 different target uncertainty levels were set, namely: 5%, 
10%, 15%, and 20%. For each level of uncertainty, the corresponding two optimal thresholds were identified on 
the validation set among 500,000 possible combinations. The best threshold combination was chosen as the one 
that led to the highest F1-score while excluding a fraction of patients as close as possible to the target uncertainty 
level, thus minimising the following cost function Jth:

where F1th is the F1-score, Uth is the uncertainty level, and U ∈ (0.05, 0.1, 0.15, 0.2) is the target uncertainty level. 
Intuitively, setting a level of uncertainty corresponds to ignoring model predictions for the uncertain subset of 

(1)Jth = |F1th − 1| + |Uth − U |,

Figure 1.  Network architecture characterised by the input layer followed by an embedding layer and a 
bidirectional LSTM layer. The network ends with a subnetwork of dense layers progressively halving in size 
before converging into a single output node. The optimal layer dimensions obtained from the hyperparameters 
optimisation step are reported in Table 2 for all considered time windows.
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visits, so that they can, e.g., be evaluated manually after the application of the model (which may be preferable 
to trusting predictions that are known to be unreliable).

Four different neural networks and their thresholds were optimised independently, once for each considered 
time window (infinite, 24, 12, and 6 months).

Performance evaluation
When dealing with high imbalance between the positive and negative classes (only ~ 4% of visits were positive, 
as per Table 1) one may try to produce balanced versions of the data or use specific weighted cost functions to 
train the models. However, these approaches proved to be unsuccessful in improving models developed within 
this study. Therefore, the discrimination performance of the model was evaluated on the by-visit test set via four 
complementary metrics that provide a broad evaluation of discrimination while allowing the identification of 
data imbalance-related issues. Specifically, the considered metrics were the area under the precision-recall curve 
(AUPRC)32 for the continuous output of the network; and precision, recall, and F1-score after thresholding. In 
the by-patient setting, the AUPRC was not considered as predicted labels were assigned by aggregating by-visit 
outputs after thresholding with an OR operation.

When uncertainty was considered, visits deemed to be uncertain by the models were excluded from perfor-
mance metrics computation both in the by-visit and in the by-patient setting. However, in the by-patient setting, 
the exclusion of uncertain visits rarely resulted in the exclusion of patients as, for the majority of them, visits 
classified as uncertain were only a minor portion of all their visits.

Results
Pre‑processing and hyperparameters optimisation results
Figure 2 shows the word clouds obtained from the original dataset (left), the words removed from the pre-
processing steps (middle), and the final version of the dataset (right) to visualise how the processed dataset was 
obtained by word stemming, removing Italian stop words and least frequent words from the original corpus.

Table 2 shows the optimal hyper-parameters of the network architectures for the four different scenarios. 
Interestingly, the architecture found for the 12-month case was also optimal for the 24-month one. When con-
sidering a 6-month window, the optimal architectures had bigger mbedding layers (embedding dimension: 
256 vs. 64) but fewer (dense layers number: 5 vs. 4 vs. 2) and maller (dense layer max dimension: 128 vs. 64 vs. 
16) dense layers. The optimal LSTM dropout rate was lower for the 12- and 24-month window (0.15 vs. 0.3 in 
all other cases) and never equal to 0. The optimal LSTM layer dimension was 128 (effectively 256 as the LSTM 
layer is bidirectional) for all considered windows. Finally, the optimal dropout rate of dense layers was 0 for all 
versions of the dataset, suggesting that the regularisation effect was already covered by the implementation of 
an early stopping criterion.

Classification results: by‑visit setting
Figure 3 shows the performance metrics obtained in the by-visit setting, where every visit was considered inde-
pendently of the others. Each panel of Fig. 3 shows, F1-score, precision, and recall reported considering different 

Figure 2.  Word clouds of the original dataset (left), removed words (middle), and processed dataset (right). The 
removed words are Italian stop words and 1% least frequent words. Words in the processed dataset are stemmed.

Table 2.  Optimal hyperparameters at different time windows. Optimal hyperparameters obtained by 
minimising the cross validation binary cross-entropy loss.

Time window Embedding dimension LSTM dimension LSTM dropout Dense layers number Dense layers dimension
Dense layers 
dropout

Infinite 64 128 0.3 5 128 0

24 months 64 128 0.15 4 64 0

12 months 64 128 0.15 4 64 0

6 months 256 128 0.3 2 16 0
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levels of uncertainty. The red bar refers to the single threshold scheme (0% uncertainty) meanwhile blue, green, 
violet, and orange bars relate to the double threshold scheme with target uncertainty levels 5%, 10%, 15%, and 
20% respectively.

The best results were obtained when using an infinite time window (Fig. 3, top-left panel). With a single 
threshold (0% uncertainty) results were good (F1-score = 0.803) and, with two thresholds, it was possible to 
achieve very good results even with a low uncertainty level (F1-score = 0.888 with 5% uncertainty). Excellent 
results could be obtained by further increasing the uncertainty level (F1-score = 0.938 with 20% uncertainty). 
AUPRC was best in this scenario as well (0.842).

With a 24-month time window (Fig. 3, top-right panel), and a single threshold (0% uncertainty) precision 
was good (0.893), but recall was low (0.654). With two thresholds it was possible to achieve very good results 
even with a low uncertainty level (F1-score = 0.847 with 5% uncertainty). Excellent results could be obtained by 
further increasing the uncertainty level (F1-score = 0.920 with 20% uncertainty). In this scenario AUPRC was 
also acceptable (0.791).

Results worsened when considering shorter time windows. With a 12-month window (Fig. 3, bottom-left 
panel) and a single threshold (0% uncertainty) results were not acceptable (F1-score = 0.634); however, the 
double threshold scheme led to acceptable results with a moderate uncertainty level (F1-score = 0.759 with 10% 
uncertainty). AUPRC was not satisfactory in this scenario (0.660).

Finally, with a 6-month window (Fig. 3, bottom-right panel) and a single threshold (0% uncertainty), results 
were again not acceptable (F1-score = 0.499). Using a double threshold approach in this scenario was not suf-
ficient to obtain acceptable results as the maximum F1-score was only 0.645 despite the exclusion of 20% of visits 
classified as uncertain. The AUPRC was not acceptable either (0.413).

Figure 3.  By-visit performance evaluation metrics computed on the test set for the 4 considered time windows. 
The number of visits that characterises each dataset is reported next to each window name in each panel title. 
Bars are color-coded according to the percentage of visits in the test set classified as uncertain when using two 
thresholds.
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The unsatisfactory results obtained in the 12- and 6-month scenarios were mainly due to the high number 
of false positives. This was expected, as the likelihood of encountering a visit that mentions CVD but finding 
no corresponding hospitalisation increases as the window gets narrower, mainly owing to the relatively high 
proportion of patients who schedule routine visits at > 1-year intervals.

Classification results: by‑patient setting
Figure 4 shows the performance metrics considered in the by-patient setting, where visits were grouped accord-
ing to the patients they belonged to. For each window width, performance metrics were evaluated on the test 
sets: infinite (Fig. 4, top-left panel), 24 months (top-right panel), 12 months (bottom-left panel), and 6 months 
(bottom-right panel). Each panel of Fig. 3 shows F1-score, precision, and recall reported considering different 
levels of uncertainty. The red bar refers to the single threshold scheme (0% uncertainty) meanwhile blue, green, 
violet, and orange bars relate to the double threshold scheme with target uncertainty levels 5%, 10%, 15%, and 
20% set at the visit level. AUPRC was not considered in the by-patient setting as explained in “Performance 
evaluation” section.

The best results were obtained when considering an infinite time window (Fig. 4, top-left panel). With a 
single threshold (0% uncertainty) results were good (F1-score = 0.879) and by considering a double threshold 
approach it was possible to achieve very good results even with a low uncertainty level (F1-score = 0.927 with 
5% uncertainty). Excellent results could be obtained by further increasing the uncertainty level (F1-score = 0.958 
with 20% uncertainty).

With a 24-month window (Fig. 4, top-right panel), and a single threshold (0% uncertainty) results were still 
good (F1-score = 0.826) and by considering two thresholds it was possible to achieve very good results even with 

Figure 4.  By-patient performance evaluation metrics computed on the test set for the 4 considered time 
windows. The number of patients that characterises each dataset is reported in each panel title. Bars are color-
coded according to the percentage of visits in the test set classified as uncertain when using two thresholds.
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a low uncertainty level (F1-score = 0.885 with 5% uncertainty). Excellent results could be obtained by further 
increasing the uncertainty level (F1-score = 0.942 with 20% uncertainty).

With a 12-month window (Fig. 4, bottom-left panel) and a single threshold (0% uncertainty) results were not 
acceptable as precision was good (0.775), but recall was low (0.699). Considering a double threshold approach 
led to acceptable results even with a low uncertainty level (recall = 0.756 with 5% uncertainty). Better results were 
possible by increasing the uncertainty level (F1-score = 0.884 with 20% uncertainty).

With a 6-month window (Fig. 4, top-left panel) and a single threshold (0% uncertainty) results were not 
acceptable (F1-score = 0.660); despite the model achieving good recall (0.733), precision was low (0.600) Preci-
sion remained low (max 0.637) even when using two thresholds.

While not directly comparable, performance was overall better in the by-patient setting than in the by-visit 
one, which was expected as it is easier to obtain a correct classification look at multiple visits for each patient 
rather than classifying each visit independently.

Despite a high level of uncertainty at the visit level (~ 20%), at the patient level few patients were excluded 
for having all visits classified as uncertain (4–6). These results justify the use of a two-threshold scheme and a 
relatively low uncertainty level (5–10%), especially for the by-patient setting.

When considering infinite, 24-, and 12-month windows, false negatives (rather than false positives) were the 
main drivers of performance degradation. As a positive label is associated to a visit close to a CVD hospitalisation, 
false negatives, in this context, consist of visits that are close to CVD hospitalisations but are not recognised as 
such based on their free-form text. The higher number of false negatives is, thus, mostly due to how the clinicians 
record relevant information in the free-form text. Specifically, in the text of positive visits, there were mentions of 
CVD pathologies, hospital admission, or hospital discharge; however, this information was not always present, 
e.g., because the specialist may not have discussed previous hospitalisations with the patient, but only their gen-
eral health status, glycaemic control, or diet. Hence, even an expert would not have been able to classify these 
particular visits correctly based on free-form text alone.

When using two thresholds, recall tended to increase more sharply than precision even with a low uncertainty 
level. The main drivers of this result were once again those false negatives given by positive visits characterised 
by free-form text with no mention of CVD. In a two-threshold scenario, the vast majority of these visits ended 
up being classified as uncertain and thus excluded from the computation of performance metrics, leading to the 
observed sharp increase in recall.

Conclusions
In this study, a set of neural networks was developed to associate free-form text written by clinicians during the 
routine visits of patients with diabetes to previous CVD hospitalisations within different time windows. To this 
end, a specialist-care database was enriched with the hospitalisations records retrievable from the local admin-
istrative claims repository (N ~ 6400 unique, harmonised patients).

Four different time windows were considered when looking for hospitalisations prior to each visit: infinite, 
24, 12, and 6 months. Results obtained with the first two windows, suggest that the proposed NLP model could 
be reliably used to automatically fill patients’ medical records or identify recent CVD events. Moreover, in these 
scenarios, discrimination performance could be remarkably improved with a limited workload from clinicians 
(as few as 328 visits to be manually parsed to obtain an F1-score of 0.847). Not surprisingly, shortening the time 
window produces a deterioration of the discrimination performance, in fact, with a 12-month window, satisfac-
tory results could not be obtained without assuming a significant contribution by clinicians (upwards to 736 
visits to assess manually to obtain an F1-score of 0.759). In the 6-month window scenario, the discrimination 
performance was once more not acceptable even when allowing for a contribution by clinicians. This suggests 
that it is not possible to use the proposed approach to translate routine visits’ free-form text into a CVD hospi-
talisation time-to-event outcome.

Tools based on these approaches may be useful for clinicians as they may help address the known problem 
that, when faced with a choice between reporting information in a structured or an unstructured field, physicians 
tend to prefer the latter, which is more in line with their attitude and training. Case in point, in the eCharts used 
in this study, among patients who had a CVD hospital discharge, only one in three had previous history of CVD 
correctly reported in the structured section of their healthcare record, despite almost all having at least one visit 
with mentions of hospitalisations or CVD. Moreover, NLP tools that automatically read all of a patient’s visits 
may help overcoming the fatigue clinicians may encounter in re-reading bulks of text buried in different records 
of a patient’s EHR to recall their history of prior CVD. Payers and administrators may also benefit from the use 
of such tools as they could better investigate whether relevant information, such as previous pathologies, are 
coherently reported in EHR systems, and possibly implement mitigation strategies, e.g., if they are not satisfied 
with the reporting rate.

Future studies may focus on the development of more complex architectures or training schemes, with the 
aim of improving performance on shorter time windows, i.e., when positive visits are rare, and models struggle 
to successfully learn key features useful to distinguish them from negative visits. Use of an external dataset, pres-
ently not available, would help in validating the method against more heterogeneous data, with visits coming 
from different clinics, where clinicians may follow slightly different protocols or conventions.

Data availability
The datasets generated during and/or analysed during the current study are not publicly available as they are 
owned by the Regional Healthcare System and were used under license for the current study. Data are however 
available from the authors upon reasonable request and with permission of the Regional healthcare system.
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