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Identification of anoikis‑related 
subtypes and immune landscape 
in kidney renal clear cell carcinoma
Wencong Ding 1,2, Min Zhang 1,2, Ping Zhang 1, Xianghong Zhang 1, Junwei Sun 1 & Biying Lin 1*

Anoikis is a specific form of programmed cell death induced by the loss of cell contact with the 
extracellular matrix and other cells, and plays an important role in organism development, tissue 
homeostasis, disease development and tumor metastasis. We comprehensively investigated the 
expression patterns of anoikis‑related genes (ARGs) in kidney renal clear cell carcinoma (KIRC) 
from public databases. Anoikis‑related prognostic signatures were established based on four ARGs 
expression, in which KIRC patients were assigned different risk scores and divided into two different 
risk groups. In addition, four ARGs expression was validated by qRT‑PCR. A better prognosis was 
observed in the low‑risk group, but with lower immune activity (including immune cells and immune‑
related functions) in the tumor microenvironment. Combined with the relevant clinical characteristics, 
a nomogram for clinical application was established. Receiver operating characteristics (ROC) and 
calibration curves were constructed to demonstrate the predictive power of this risk signature. In 
addition, higher risk scores were significantly and positively correlated with higher gene expression of 
tumor mutation load (TMB), immune checkpoints (ICPs) and mismatch repair (MMR)‑related proteins 
in general. The results also suggested that the high‑risk group was more sensitive to immunotherapy 
and certain chemotherapeutic agents. Anoikis‑related prognostic signatures may provide a better 
understanding of the roles of ARGs and offer new perspectives for clinical prognosis and individualized 
treatment.

Renal cell carcinoma (RCC) is one of the most common types of cancer in humans and is classified into three 
main subtypes: renal clear cell carcinoma (KIRC), renal papillary cell carcinoma (KIRP), and suspicious cell 
 malignancy1. Of these, renal clear cell carcinoma (KIRC) is the most prevalent  subtype2. Moreover, KIRC patients 
usually do not exhibit obvious symptoms in the early stages, and approximately 30% of KIRC cases show metas-
tases upon detection. Currently, surgical resection remains the most effective treatment for KIRC  patients3. 
However, the prognosis of KIRC is still unsatisfactory due to its high recurrence  rate4. While PD-1/PD-L1 
blockers have been approved for the treatment of KIRC, some patients still respond poorly and show resist-
ance to  progression5. In addition, RCC is essentially a metabolic disease characterized by reprogramming of 
energy  metabolism6–9. The metabolic flux of glycolysis in RCC patients is  partitioned10–12, especially the impaired 
mitochondrial bioenergy, oxidative phosphorylation, and lipid  metabolism13–15. The use of comprehensive next-
generation sequencing methods to better understand ccRCC can help define and predict its behavior in terms of 
invasiveness, prognosis, and treatment response, and will become an innovative strategy for selecting the best 
treatment for specific patients. Thus, it is critical to unveil the underlying mechanisms of KIRC and establish an 
accurate prognostic model for diagnosis and treatment strategies for kidney cancer.

Anoikis is a specific form of programmed cell death induced by the loss of cell contact with the extracellular 
matrix and other  cells16,17. Anoikis occurs after the disruption of cell-extracellular matrix (ECM) interactions 
and is required for tumor cell survival after separation from the extracellular matrix. The emergence of anoikis 
resistance in tumors with loss of nesting can help isolated tumor cells avoid death signaling pathways and allow 
cell survival under unfavorable  conditions18. Anoikis resistance has been reported in various cancers, including 
lung cancer, where the PLAG1–GDH1 axis promotes anoikis resistance and tumor metastasis through CamKK2-
AMPK  signaling19. Several synthetics have been shown to exhibit pro-apoptotic potential in lung cancer cells and 
in vivo models to aid in the clinical management of  patients20. Although the development of anoikis resistance 
has been associated with metastasis in various cancers, studies on anoikis in KIRC are rare.
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Thus, this study focused on the predictive performance of anoikis-related genes (ARGs) in prognosis of KIRC 
and developed an anoikis-associated risk score model by univariate cox analysis and least absolute shrinkage 
and selection operator (lasso) analysis. This study further explored and compared differences in gene mutations, 
functional enrichment, and immune microenvironment between the two risk groups. The prognostic role of 
anoikis in the clinic has been used to provide a basis for individualized treatment of KIRC patients.

Materials and methods
Data acquisition
RNA sequence transcriptome data, mutations and clinical data of KIRC patients were downloaded from The 
Cancer Genome Atlas (TCGA, https:// portal. gdc. cancer). RNA-Seq data included 542 tumor samples and 72 
normal samples, and after excluding samples with incomplete prognostic information, a total of 533 KIRC 
patients were screened for further analysis. The exclusion criteria included removing all samples without clinical 
follow-up information, removing all samples with the unknown survival time, and removing all samples without 
a survival status. As an external validation dataset, 39 samples from GSE29609 were obtained from the Gene 
Expression Omnibus (https:// www. ncbi. nlm. nih. gov, GEO) database. We obtained 434 Anoikis-associated genes 
(ARGs) from previously published  articles21. The “limma” package was used to screen the TCGA-KIRC dataset 
for differentially expressed genes (DEGs) and cut-off values were |log fold change (logFC)| > 1 and p < 0.0522. 
The anoikis-related genes associated with the survival of KIRC patients were identified using univariate Cox 
regression analysis, with a threshold of p < 0.05 and named as prognosis-related  genes23.

Functional and gene set enrichment analysis
Gene Ontology (GO) functional and Kyoto Gene and Genome Encyclopedia (KEGG) pathway enrichment 
analyses were performed using the “clusterProfiler” package to reveal the signaling pathways and functions of 
different risk  groups24. In addition, gene set enrichment analysis (GSEA) was performed to identify biological 
processes between two risk groups based on the file ““c2.cp.kegg.v6.2.symbols.gmts” from the MSigDB database. 
Significance was determined based on a threshold of p < 0.0525.

Immunophenoscore (IPS) and chemotherapy analysis
The immunophenotype score (IPS) is a validated predictor of response to immunotherapy against CTLA-4 and 
PD-126. The half-maximal inhibitory concentration (IC 50) of representative drugs was assessed by a database 
called Genomics of Drug Sensitivity in Cancer (GDSC)27. We calculated the half-inhibitory concentration (IC50) 
values of commonly used chemotherapeutic drugs in OC using the “pRRophetic” package to examine the change 
in efficacy of chemotherapeutic drugs between the two groups of  patients28. The correlation between ARGs 
expression and drug sensitivity was estimated in NCI-60 database by Pearson correlation  analysis29.

Construction of risk score signature
KIRC patients were randomly divided into three groups, including the training, testing, and entire groups in a 
1:1 ratio, and the results of the chi-square test showed no significant differences between the subgroups (Sup-
plementary Table 1). Firstly, univariate Cox regression analysis was performed on the training set to identify 
differently expressed ARGs associated with prognosis. The LASSO Cox regression model was used to narrow 
the most robust anoikis-related genes for prognosis and ten-fold cross validation was applied to overcome the 
over-fitting by the package “glmnet”. Four candidate genes (ITGA6, AR, PLK1 and IRF6) were subsequently 
obtained using multivariate Cox regression analysis. Risk scores were calculated for each sample by using the 
expression values of key genes and weighting their corresponding coefficients. The risk score was calculated as 
follows. Risk score = ∑coef * Exp(genes). coef: coefficient of the gene; Exp(genes): expression of the gene. KIRC 
patients with different risk scores were divided into two risk groups according to the formula for calculating the 
median risk score. Subsequently, Kaplan–Meier survival analysis was used to reveal the prognostic differences 
between the two risk groups. Univariate and multivariate Cox regression analyses were performed to determine 
whether anoikis-related signature of lost nests could be an independent prognostic factor in KIRC patients. Based 
on age, grade, stage and risk score, a nomogram was created using the ’rms’ R package to predict OS in clinical 
patients at 1, 3 and 5 years. The receiver operating characteristic (ROC) curve was evaluated the predictive ability 
of the signature and assess the proportional hazard. Calibration curves were generated to assess the agreement 
between predicted and actual survival.

Identification of anoikis‑related prognostic signature
TME is mainly composed of tumor cells, immune cells, stromal cells and extracellular matrix and the “ESTI-
MATE” algorithm was used to explore the cell scores of different risk  groups30,31. The “ssGSEA” R script was used 
to quantify the relative proportion of infiltrating immune cells. Differences between tumor-infiltrating immune 
cells (TIIC) were assessed using multiple databases (TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISSEQ, 
MCPCOUNTER, XCELL and EPIC) and the 21 TIIC components between the two risk groups were evaluated 
by the CIBERSORT  algorithm32. Pearson correlation analysis showed a correlation between risk scores, ARGs 
expression and TIIC.

Somatic mutation analysis
Somatic variant data were stored in mutation annotation format (MAF), and we used “maftools” to analyze 
mutation data from KIRC  samples33. For each KIRC patient, we determined the tumor mutation burden (TMB) 
score and investigated the association between risk score and TMB. It was determined how to calculate the TMB 
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score: (total mutations/total coverage base) ×  10634. The prognostic value of TMB in OC was investigated using 
Kaplan–Meier analysis.

Cell culture and reverse transcription and PCR analysis
We acquired two types of human ccRCC cell lines (786-O and ACHN) and a human renal proximal convoluted 
tubule cell line (HK2) from the American Type Cultural Collection (ATCC). The 786-O cells were cultured in 
RPMI 1640 media (Gibco, USA), while HK2 and ACHN were maintained in DMEM high glucose media (Gibco, 
USA). All cell types were kept in an incubator at 37 °C with 5%  CO2. The total RNA was extracted from the 
cells by using the Trizol reagent (Vazyme, China). The integrity and concentration of the extracted RNA were 
measured with the NanoDrop spectrophotometer (Thermo Fisher Scientific, USA). Subsequently, the total RNA 
was reversely transcribed to cDNA by using the RevertAid RT Kit (K1691, Thermo Fisher Scientific, USA). The 
cDNA was amplified with specific primers to detect target mRNA expression using qPCR Mix (RR430S, Takara, 
Japan) by an ABI 7500 system (Applied Biosystems, CA, USA). GAPDH was used as an internal reference. The 
sequences are listed in Supplementary Table 1.

Statistical analysis
Statistical analyses were performed using R software version 4.1.3. Differences between two risk groups were 
calculated by Student’s t-test or Chi-squared test. Kaplan–Meier analysis was used to calculate differences in 
overall survival (OS). Relationship analysis was calculated by Pearson correlation test. The Shapiro Wilk test was 
used to detect whether two variables belong to a normal distribution. Benjamini–Hochberg method was used 
to correct for false discovery rate (FDR). The p-value and FDR < 0.05 were considered statistically significant.

Results
Differential expression of anoikis‑related genes
Considering the potential relationship between ARGs and KIRC, first, we performed differential expression 
analysis in the TCGA-KIRC cohort and the 313 DEGs were exhibited in heat maps (Fig. 1A). A total of 179 
intersecting genes were obtained between prognosis-related genes and DEGs (Fig. 1B). After that, we explored 
the biological functions of these 179 differentially expressed ARGs. GO enrichment analysis indicated that these 
DEGs were involved in intrinsic apoptotic signaling pathway, regulation of apoptotic signaling pathway, focal 
adhesion, cell-substrate junction, integrin binding, phosphatase binding (Fig. 1C). In addition, KEGG pathway 
analysis demonstrated that the DEGs were mainly involved in proteoglycans in cancer, PI3K-Akt signaling 
pathway (Fig. 1D).

Construction of anoikis‑related signatures
To investigate the prognostic role of 179 DEGs, KIRC patients were randomly divided into a training set, testing 
set, and entire cohort and there was no difference in clinical information among the three sets (Supplemen-
tary Table 1). In the training set, univariate cox regression analysis revealed 143 ARGs identified as associated 
with overall survival (OS). To construct novel anoikis-related prognostic signature, LASSO and multivariate 
Cox regression analyses were performed to identify the key genes (Supplementary Fig. 1). Finally, ITGA6, AR, 
PLK1, and IRF6 were included in this signature, and anoikis-related risk scores for KIRC patients were calcu-
lated as follows: Risk score = (− 0.216 × ITGA6 expression) + (− 0.262 × AR expression) + (0.271 × PLK1 expres-
sion) + (− 0.17 × IRF6 expression). In the training set, we ranked the patients in training set according risk score 
and divided the patients in training set and validation set into high risk (HR) group and low risk (LR) group 
according to the median value of the score. In addition, scatter plots and survival distribution plots show the 
survival time and survival status of KIRC patients, while heat maps show the expression levels of four genes in 
training set (Fig. 2A,D,G), testing set (Fig. 2B,E,H) and entire set (Fig. 2C,F,I). Kaplan Meier analysis showed that 
three sets showed significantly worse survival outcomes for HR patients compared to the LR group (Fig. 2J–L). 
In addition, the area under the curve (AUC) of 1-, 3- and 5-year OS were all greater than 0.7, indicating a high 
predictive sensitivity of anoikis-related prognostic signature (Fig. 2M–O). To validate the predictive ability of this 
prognostic signature, we download the corresponding expression profile and follow-up file from GEO database, 
and GSE29609 dataset was selected as the verification cohorts. As shown in Supplementary Fig. 2A,B, patients 
were divided into two risk groups and their survival state in different risk group was revealed. The heat map 
displayed the expression of four candidate ARGs in different risk groups (Supplementary Fig. 2C). In addition, 
the OS of patients in high-risk group were worse and the ROC curve also proved that this signature has good 
predictive ability for prognosis (Supplementary Fig. 2E,F). In addition, human ccRcc cell lines were used to detect 
the expression level of four ARGs by qRT-PCR. Compared to the human renal proximal convoluted tubule cell 
HK2 cells, AR expression was up-regulated in 786-O and ACHN, PLK1 expression was higher in ACHN, while 
there was no significant different in expression of IRF6 and ITGA6 (Supplementary Fig. 3).

Validation of the predictive power of anoikis‑related prognostic signatures in KIRC
To verify the predictive ability of this signature, we conducted univariate cox analysis and univariate cox analysis 
in entire set. The results showed that risk scores, as well as age and stage, were predictive factors for better sur-
vival of patients with KIRC (Fig. 3A,B). In addition, we also conducted survival analysis in different subgroups 
to evaluate the predictive value of this signature. Kaplan Meier analysis showed that in KIRC patients with male 
or female, young or elderly patients, Grade1 and 2 or Grade3 and 4, stage I and II, or stage III and IV, the LR 
group had better OS (Fig. 3C–F). In summary, these results indicated that the anoikis-related risk model was a 
promising prognostic classification tool for patients with KIRC.
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In order to accurately predict the OS of KIRC patients, we constructed nomogram of 1-, 3- and 5-year survival 
probabilities based on risk scores and clinical pathological characteristics (Fig. 4A). The results of the calibration 
curve show that the actual OS was basically consistent with the OS predicted through the nomogram (Fig. 4B). 
According to the results of receiver operating characteristic (ROC), the AUC value of anoikis-related signature 
was superior to other clinical factors, such as age, sex and histological grade, but inferior to the clinical stage in 
1-, 3-year OS (Fig. 4C).

Analysis of the immune microenvironment (TME) and immune‑related pathways
To elucidate the potential tumor related pathways between the LR and HR groups, GSEA analysis was conducted. 
The results showed that the HR group mainly enriched in complement and coagulation cascades, cytokine and 
cytokine receptor interaction, while the LR group was mainly related to pathways with endocytosis, endometrial 
cancer (Fig. 5A,B). Afterwards, we used ESTIMATE to calculate the proportion of stromal cells and immune 
cells in different risk groups to estimate the purity of tumors. The HR group had higher immune scores, while 

Figure 1.  Differential expression analysis and functional analysis. (A) The heat map shows the difference in the 
expression of anoikis-related genes (ARGs) between tumor tissue and normal tissue. The blue square represents 
the lower expression, while the red square represents the higher expression. (B) The Venn diagram shows the 
distribution of differentially expressed genes (DEGs) and prognosis-related ARGs in patients with KIRC. (C,D) 
GO terms and KEGG pathway enriched analysis of differentially expressed ARGs.
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the tumor purity was relatively low (Fig. 5C–E). The results of ssGSEA confirmed that the HR group had higher 
levels of immune cell infiltration and more active immune related functions (Fig. 5F,G). These findings indicate 
that patients in the HR group, although with poor prognosis, have strong immunity and may be more sensitive 
to immunotherapy.

Figure 2.  Construction and validation of anoikis-related signatures in training, testing, and the entire groups. 
The risk curve shows the distribution of risk scores between the high-risk and low-risk groups (A–C). Scatter 
plots show survival status and survival time (D–F), while heatmaps show the expression of four ARGs in high-
risk and low-risk groups (G–I). Kapan Meier survival curves for overall survival (OS) of patients in the high-risk 
and low-risk groups (J–L). ROC analysis for predicting prognosis role of risk scores (M–O).
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We further explored the role of the tumor microenvironment in KIRC patients with different risk scores. 
Algorithms such as TIMER, CIBERSORT and EPIC were used to explore the expression levels of tumor immune 
infiltrating cells (TIICs) in different risk groups (Fig. 6A). In addition, CIBERSORT algorithms was used to 
compare differences in immune infiltration levels of 22 immune cells between different risk groups (Fig. 6B). In 
the LR group, the proportion of resting CD4 memory T cells, M1 and M2 macrophages, and resting mast cells 
increased significantly. The infiltration degree of Tregs and M0 macrophages increased significantly in HR group. 
Finally, we further evaluated the relationship between risk score and TIIC, and the risk score showed a signifi-
cant positive correlation with Tregs, but a significant negative correlation with mast cells (Fig. 6C). These results 
indicate that anoikis-related signature can effectively distinguish different features of TIIC in KIRC patients.

Somatic variation analysis
Other study suggested that patients with higher TMB may benefit from immunotherapy due to a higher number 
of antigens. We generated two waterfall plots to explore the detailed gene mutations between the LR and HR 
groups (Fig. 7A). Afterwards, we investigated the correlation between risk score and TMB level, as shown in 
Fig. 7B. The TMB level in the LR group was significantly lower, and there was a positive correlation between 
TMB and risk score. According to the median TMB values, patients were divided into two groups for survival 
analysis. The combination of risk score and TMB was used to divide patients into four subgroups for survival 
evaluation. The results showed that the low TMB and LR groups had the best prognosis, which helps to screen the 
best prognostic subgroups for clinical use (Fig. 7C). HLA is widely used in the research of immune related dis-
eases, organ and bone marrow transplantation, vaccine and drug targeted population screening, tumor immune 
research. Next, we evaluated the expression differences of HLA-related genes in different risk groups (Fig. 7D). 
In addition, expression level mismatch repair (MMR)-related genes were detected, and the results showed that 
MLH1 | EPCAM, MSH2, PMS2, and MSH6 were downregulated in the low-risk group (Fig. 7E).

We found significant differences in the vast majority of immune checkpoint genes between the two risk 
groups. Most of them were typically significantly higher in the HR group (Fig. 8A). In addition, the risk 
score was positively correlated with CTLA4 expression and negatively correlated with PD-L1 (Fig. 8B). The 

Figure 3.  Subgroup analysis of the prognostic value of risk score. Independent factors analysis through 
univariate (A) and multivariate (B) Cox regression analysis. The prognostic value of risk scores for KIRC 
patients with different ages (C), genders (D), grades (E), and stages.
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immunophenotype (IPS) quantitative scoring scheme could be used to determine the determining factors of 
tumor immunogenicity and serve as an effective predictor for detecting anti PD-1 and anti CTLA4 antibody 
responses. To evaluate the likelihood of receiving immune checkpoint inhibitor (ICB) treatment, we calculated 
the IPS score. As shown in Fig. 8C, the HR group had higher IPS scores. The results demonstrate the effectiveness 
of anoikis-related prognostic signatures in predicting immunotherapy.

Chemotherapy sensitivity analysis
To further explore differences in chemotherapy drug resistance, we compared IC50 levels of chemotherapy drugs 
including cisplatin, paclitaxel, docetaxel, bexarotene, and vincristine. The HR group was more sensitive to cis-
platin, paclitaxel, docetaxel, and vinblastine (Fig. 9A). In addition, a strong association was found between the 
expression of four ARGs and the sensitivity of some chemotherapy agents (Fig. 9B). For example, the expression 
level of IRF6 was positively correlated with cisplatin sensitivity.

Discussion
Renal clear cell carcinoma (ccRCC) is a widespread form of kidney cancer, accounting for a significant 
 proportion35. This type of cancer is typified by the presence of clear cells in the tumor tissue, and is notorious 
for its aggressive behavior and resistance to conventional therapies. Anoikis, a type of apoptosis induced by the 
detachment of cells from their extracellular matrix (ECM), is critical in maintaining tissue homeostasis and elimi-
nating abnormal or damaged  cells36. Typically, separation from the ECM triggers anoikis, leading to apoptosis 

Figure 4.  Construction of a nomogram for predicting the survival of KIRC patients. (A) A prognostic 
nomogram that included clinical pathological features (age, stage, risk score), predicting the 1-, 3- and 5-year 
survival rates of KIRC patients. (B) The calibration plots for 1-, 3- and 5-year OS show the consistency between 
the survival probability predicted by the nomogram and the actual outcome. (C) The receiver operating 
characteristic of OS in 1-, 3- and 5-year showed the prognostic accuracy of anoikis-related gene risk score and 
other clinical characteristics.
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and cell death. However, recent studies have demonstrated that ccRCC cells exhibit a high level of resistance to 
anoikis, enabling them to evade the normal cell death process and sustain tumor cell survival. This resistance to 
anoikis is thought to play a vital role in the development and progression of ccRCC. In particular, ccRCC cells 
have been found to express high levels of anti-apoptotic proteins, such as Bcl-2 and survivin, which hinder anoikis 

Figure 5.  Gene set enrichment analysis and estimation of immune cell infiltration in different risk groups. 
GSEA analysis was used to predict potential functions and pathways in high-risk (A) and low-risk (B) groups. 
(C–E) The stromal score, immune score, and ESTIMATE score were detected in different risk groups. (F,G) 
Differences in immune cells and immune-related functions between the two risk groups. ns not significant, 
*p < 0.05, **p < 0.01, ***p < 0.001.
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and sustain tumor cell  survival37,38. In sum, the resistance to anoikis is a hallmark of ccRCC and holds a crucial 
role in its development and progression. Decoding the molecular mechanisms underlying anoikis regulation in 
ccRCC cells holds enormous potential for the development of new and more effective treatments for this cancer.

In this study, we integrated the anoikis gene expression profile from the TCGA-KIRC dataset and selected 
four genes to construct a novel anoikis-related prognostic model using Lasso regression analysis and COX hazard 
regression analysis. The anoikis-related prognostic model was demonstrated to be an independent prognostic 
factor for ccRCC and was divided into two different prognostic subgroups based on the median risk score. 
Subsequently, ROC curves, precision-recall plots, and calibration curves were constructed and a comprehensive 
analysis indicated that the predictive performance of the prognostic model was more pronounced compared 
to other conventional clinical indicators such as age, grade, and stage. Furthermore, there was satisfactory con-
sistency between the predicted values and the observed values. This can provide theoretical basis for clinical 
decision-making by medical practitioners.

ITGA6, or integrin alpha 6, is a cell surface receptor that plays a crucial role in cell adhesion, migration and 
 survival39. Recent studies have shown that ITGA6 is dysregulated in various types of cancer, including ccRCC. 
The abnormal expression of ITGA6 in ccRCC cells has been implicated in promoting tumor cell survival, angio-
genesis and resistance to apoptosis. The role of Androgen Receptor (AR) in the development and progression 
of ccRCC is complex and still not fully understood. In ccRCC, AR expression has been shown to be associated 
with increased cell proliferation and decreased apoptosis, which can lead to the development of the  cancer40. 
These findings highlight the potential of AR as a therapeutic target for ccRCC, but further studies are necessary 
to fully understand the mechanisms underlying the interaction between AR, ccRCC, and anoikis. PLK1, also 
known as Polo-like kinase 1, is a serine/threonine kinase that is thought to be involved in the regulation of vari-
ous cellular processes such as cell division, DNA repair, and cell  survival41. In ccRCC, overexpression of PLK1 
has been observed and is considered a potential therapeutic target for treating this invasive  cancer42. In ccRCC 
cells, overexpression of PLK1 has been shown to confer resistance to anoikis, making it a potential factor in the 
development and progression of ccRCC. IRF6 is a transcription factor that plays a crucial role in the regulation 

Figure 6.  Correlation between tumor infiltrating immune cells (TIC) and risk score. (A) The infiltration 
of 21 immune cells in high-risk and low-risk populations was evaluated using different database such as 
TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISSEQ, MCPCOUNTER, XCELL, and EPIC databases. (B) 
Comparison of TIICs between high-risk and low-risk groups. (C) The correlation between risk score and the 
degree of immune cell infiltration.
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of cellular processes such as development and immune  response43. The alteration of IRF6 expression has been 
shown to contribute to the progression and metastasis of ccRCC by impacting the regulation of genes involved 
in cell survival and apoptosis. Additionally, IRF6 has been implicated in the resistance of ccRCC cells to anoikis, 
a form of apoptosis that occurs when cells are detached from their extracellular  matrix44. These findings suggest 
that IRF6 may represent a potential therapeutic target for the treatment of ccRCC.

RCC stands out as one of the most immune-infiltrated tumors in pan-cancer  comparisons45,46. The tumor 
microenvironment features with extensive angiogenesis and inflammatory features show significant differences 
in response to immune checkpoint blockade and anti-angiogenic  drugs47,48. Therefore, the integration of tumor 
microenvironment and immune biomarkers can generate predictive and prognostic features to guide the manage-
ment of existing protocols and future drug  development49–51. In addition, Analyzing the tumor microenviron-
ment can infer the effectiveness of immunotherapy. The crucial importance of understanding the role of anoikis 
in the microenvironment of ccRCC and finding ways to overcome its resistance has been highlighted for the 
advancement of more effective treatments. Immunotherapy, which works by activating the immune system to 
attack and eliminate cancer cells, has shown promise in treating ccRCC 52. However, ccRCC cells often exhibit 
resistance to anoikis, limiting the effectiveness of immunotherapy. To address this issue, researchers are explor-
ing the molecular mechanisms behind anoikis resistance and developing strategies to target these mechanisms, 
such as targeting specific proteins or pathways that suppress  anoikis53. By inducing anoikis in ccRCC cells or 
increasing their sensitivity to anoikis, it is believed that the number of cancer cells can be reduced, leading to 
improved efficacy of ccRCC treatment and better patient outcomes. The restoration of anoikis in cancer cells 
and improvement of immunotherapy through these means holds promise as a promising approach for the treat-
ment of ccRCC. In our study, we found a higher degree of immune infiltration in the high-risk group, which also 
implies that patients in the high-risk group are more suitable for the application of immunotherapy.

TMB has become a promising biomarker in the field of cancer research, particularly for ccRCC 54. TMB refers 
to the number of mutations present in the cancer cells of a patient and is seen as an indicator of the immune 

Figure 7.  Tumor mutation burden and mutation analysis. (A) The waterfall plot revealed the mutation 
information of genes with high mutation frequency in the high-risk and low-risk groups. (B) The difference in 
TMB between high-risk and low-risk groups and the correlation between TMB and risk score. (C) The survival 
curves of patients in different risk groups and TMB groups. (D) The expression of HLA-related genes in two risk 
groups. (E) The expression of MLH1, MSH2, MSH6, PMS2, and EPCAM in two risk groups.
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system’s ability to recognize and attack the cancer  cells55. High TMB is associated with increased sensitivity 
to immunotherapy, making it a useful predictor of patient response to  immunotherapy56. Studies have shown 
that patients with ccRCC who have high TMB tend to have a better response to immunotherapy compared to 
those with low  TMB57. This is due to the presence of more mutations in the cancer cells, which in turn leads to 
a stronger immune response and a higher likelihood of success with immunotherapy. This finding has led to the 
development of TMB-based clinical trials and the incorporation of TMB into treatment decision-making for 
ccRCC patients. Additionally, research has also shown that TMB may be an independent predictor of overall 
survival in ccRCC  patients58. Patients with high TMB have been found to have a better prognosis and improved 
survival outcomes compared to those with low  TMB59,60. Our results also showed that patients in the high-risk 
group had a higher TMB than those in the low-risk group, implying that patients in the high-risk group are more 
likely to benefit from immunotherapy. This highlights the importance of TMB in guiding treatment decisions 
and improving patient outcomes for ccRCC patients. TMB has emerged as a promising biomarker in the field 
of ccRCC research. Its ability to predict patient response to immunotherapy and overall survival has led to its 
increasing use in clinical decision-making and its incorporation into clinical trials for ccRCC. Further research 
is needed to fully understand the implications of TMB in ccRCC and its potential as a therapeutic target.

Our study has clinical significance for prognostic assessment and treatment selection for ccRCC patients, yet 
it has some limitations. It is a retrospective study that needs to be validated in prospective studies. The signature’s 
potential to predict immunotherapy response was assessed indirectly due to lack of mRNA expression profile 
data from ccRCC patients receiving immunotherapy, which may lead to discrepancies. Thus, future validation 
should be done with data from ccRCC patients receiving immunotherapy.

Figure 8.  Results of immune checkpoint and immunophenotype (IPS) analysis. (A,B) The expression of 
immune checkpoint-related genes and the correlation between risk scores and CTLA4 expression and PD-L1 
expression. (C) Differences in IPS among patients with different risk scores. ns, not significant, *p < 0.05, 
**p < 0.01, ***p < 0.001.
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Data availability
The dataset generated and analyzed during the current study are available in The Cancer Genome Atlas (TCGA) 
with TCGA-KIRC accession number and with the link of https:// portal. gdc. cancer. gov/.
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