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Uncovering the relationship 
between gut microbial dysbiosis, 
metabolomics, and dietary 
intake in type 2 diabetes mellitus 
and in healthy volunteers: 
a multi‑omics analysis
Mohammad Tahseen Al Bataineh 1,2,7*, Axel Künstner 3,4,7, Nihar Ranjan Dash 5, 
Habiba S. Alsafar 1,2, Mohab Ragab 6, Franziska Schmelter 6, Christian Sina 6, 
Hauke Busch 3,4* & Saleh Mohamed Ibrahim 1,2,3,6*

Type 2 Diabetes Mellitus has reached epidemic levels globally, and several studies have confirmed 
a link between gut microbial dysbiosis and aberrant glucose homeostasis among people with 
diabetes. While the assumption is that abnormal metabolomic signatures would often accompany 
microbial dysbiosis, the connection remains largely unknown. In this study, we investigated how 
diet changed the gut bacteriome, mycobiome and metabolome in people with and without type 2 
Diabetes.1 Differential abundance testing determined that the metabolites Propionate, U8, and 
2‑Hydroxybutyrate were significantly lower, and 3‑Hydroxyphenyl acetate was higher in the high 
fiber diet compared to low fiber diet in the healthy control group. Next, using multi‑omics factor 
analysis (MOFA2), we attempted to uncover sources of variability that drive each of the different 
groups (bacterial, fungal, and metabolite) on all samples combined (control and DM II). Performing 
variance decomposition, ten latent factors were identified, and then each latent factor was tested 
for significant correlations with age, BMI, diet, and gender. Latent Factor1 was the most significantly 
correlated. Remarkably, the model revealed that the mycobiome explained most of the variance in 
the DM II group (12.5%) whereas bacteria explained most of the variance in the control group (64.2% 
vs. 10.4% in the DM II group). The latent Factor1 was significantly correlated with dietary intake 
(q < 0.01). Further analyses of the impact of bacterial and fungal genera on Factor1 determined that 
the nine bacterial genera (Phocaeicola, Ligilactobacillus, Mesosutterella, Acidaminococcus, Dorea A, 
CAG-317, Caecibacter, Prevotella and Gemmiger) and one fungal genus (Malassezia furfur) were found 
to have high factor weights (absolute weight > 0.6). Alternatively, a linear regression model was fitted 
per disease group for each genus to visualize the relationship between the factor values and feature 
abundances, showing Xylose with positive weights and Propionate, U8, and 2‑Hydroxybutyrate 
with negative weights. This data provides new information on the microbially derived changes that 
influence metabolic phenotypes in response to different diets and disease conditions in humans.

Dietary fiber intake is crucial for maintaining general health. Several research groups have linked a high-fiber 
diet with reduced risks of many health  conditions1,2. Numerous health advantages, such as better blood glucose 
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control, cardiovascular health, weight management, and digestive function, have been linked to consuming a 
high-fiber  diet3. Dietary fibers’ impacts on health outcomes are mediated in a significant way by the gut micro-
biome, which contains bacteria like Prevotella. Prevotella, which is well-known for its capacity to convert dietary 
fiber into advantageous short-chain fatty acids, produces SCFA which have been shown to be advantageous in 
maintaining gut  homeostasis4,5. However more investigation is required to properly understand the complex 
connection between fiber consumption, the gut microbiome, and particular bacterial taxa like Prevotella in the 
context of health and diabetes treatment. Type 2 Diabetes Mellitus (DM II) is a rising health concern worldwide, 
involving almost 6.3% of the world’s population and causing more than 1 million deaths  annually6. The Mid-
dle East and North Africa region have the second-highest rate of worldwide diabetes growth, with a projected 
96.2% increase in diabetes cases by  20357. In addition, lifestyle, obesity, nutrition, and environment, among other 
factors, gut microbiota dysbiosis has become recognized as a significant diabetes-related cause. However, the 
exact link between DM II and gut microbiota composition is yet unclear. Currently, most studies have gathered 
evidence for the role of gut bacteriome in the onset and progression of DM II, though reports vary regarding the 
association of particular taxonomic groups with the  disease8. Interestingly, a recent study reported that different 
microbes were associated with the same metabolic outcomes in other geographical  areas9. While much emphasis 
is focused on the role of gut bacteria in DM II, the effect of gut mycobiome (fungal species) and metabolome in 
DM II are poorly explored and understood.

When examining the potential molecular mechanisms by which the gut microbiota changes during the disease 
process in type 2 diabetes (DM II), studies have shown that gut inflammation, compromised gut permeability, 
impaired glucose and lipid metabolism, insulin insensitivity, increasing fatty acid oxidation, and interactions 
with dietary components were the main potential modulating  factors8,10,11.

Our understanding of the complex relationship between gut microbiota and DM II has been chiefly due to 
the technological advancements in omics studies such as metagenomics, metabolomics, proteomics, and tran-
scriptomics. Despite the variation in bacterial species, there is a functional congruity that has helped to dissect 
the roles and actions of genes, proteins, and molecules in cellular metabolism in the context of metabolomic 
profiling. Metabolomics is especially valuable to trace the compounds produced by the bacteria in response to 
the host, particularly fungal species due to the increasing evidence of their interactions with the microbiome and 
the host at large. Now we can integrate and apply multi-omics approaches to explore the connection between 
microbiota dysbiosis and abnormal metabolic signatures in DM II to improve our understanding of the disease 
process, identification of biomarkers and efficient therapeutics, and application of precision  medicine12. The 
specific aim of this study is to explore the impact of diet on the composition of the gut bacteriome, mycobiome, 
and metabolome in individuals with and without type 2 diabetes, with a particular focus on understanding the 
connections between microbial dysbiosis and abnormal glucose homeostasis. we evaluated 16S rRNA and ITS2 
sequence data and metabolic profiles of individuals from the United Arab Emirates (UAE) with or without DM 
II using stool samples and food questionnaires to determine dietary fiber intake.

Material and methods
Patient inclusion and ethical statement
Following the acquisition of ethical approval from the University Hospital Sharjah Ethics Research Committee 
(UHS-HERC-021-0702), the study was conducted in adherence to the relevant research guidelines and regula-
tions specified by the committee. We randomly identified 25 subjects diagnosed with DM II at the endocrinology 
clinic. Additionally, 25 otherwise healthy Emirati individuals (HbA1C level < 6%) were recruited as healthy con-
trols. All subjects were given an information sheet and signed a written informed consent form. The demographic 
information such as age, gender, and diet (using a validated dietary fiber intake short food frequency question-
naire (DFI-FFQ)) was collected. The high dietary fiber intake cut-offs were > 25 g/day for females and > 30 g/
day for males, and low dietary fiber intake cut-offs were below 17.5 g/day for females and 22.1 g/day for  males13. 
Demographic information is given in Supplementary Table 1.

Bacterial and fungal sequencing
Bacterial and fungal DNA extraction and sequencing were already described in Al Bataineh et al.19. Briefly, DNA 
extraction of fecal samples was done using QIAamp PowerFecal DNA Kit (Qiagen Ltd., GmbH, Germany) fol-
lowing the manufacturer’s instructions (Qiagen Ltd.). Bacterial 16S rRNA gene amplification was performed 
targeting the V4 region with dual barcodes and sequenced with an Illumina MiSeq using 250bp paired-end kit 
(v.2)14. ITS2 region was sequenced on an Illumina MiSeq using a dual barcoding protocol (250bp paired-end 
sequencing)14.

Sample preparation for metabolic profiling
In brief, 100 mg of fecal samples were homogenized in 500 µl of water Optigrade for HPLC (Promochem SO-
6795-B025). Then, samples were incubated for 15 min at 20 °C, 1000 rpmThe mixture was centrifuged for 15 min 
at 14 000 rpm, 4 °C. The supernatants (200 µl) are evaporated to dryness using a SpeedVac. For NMR analysis, the 
dried extracts are subsequently reconstituted in 200 µL phosphate buffer in  D2O (100 mM, pH 7.4) containing 
0.1 mM TSP-d4. The whole sample volume is transferred into a 3.0 mm NMR tube used for the NMR analysis.

NMR spectroscopy
For each sample, one-dimensional 1H-NMR spectra were acquired on a Bruker 600 MHz Avance III HD spec-
trometer (Bruker BioSpin with TopSpin 3.5pl7) operating at 600.13 MHz proton Larmor frequency and equipped 
with a 5 mm PA TXI 1H-13C-15N and 2H-decoupling probe including a z-axis gradient coil, an automatic 
tuning-matching and an automatic sample changer (SampleJet). The temperature was kept stable within 0.1 K 
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using a BCU I. Before starting measurements manually, samples were kept inside the NMR probe head for at 
least 5 min to equilibrate temperature at 300 K. The standard Nuclear Overhauser Effect SpectroscopY (NOESY) 
presat pulse sequence (noesygppr1d; Bruker BioSpin) was used to detect both signals of small metabolites and 
high molecular weight macromolecules. The parameters of the experiment were: 512 scans, 32,768 data points, 
a spectral width of 12.0166 ppm, an acquisition time of 2.27 s, a relaxation delay of 2 s, and a mixing time of 0.01 
s. Fourier-transformed spectra were automatically corrected for phase and baseline distortions using Topspin 
3.2 (Bruker BioSpin) and then automatically calibrated to the proton signal of TSP-d4 at 0.00 ppm.

Metabolic profiling
Metabolite identification was made using the SBASE database in Amix (v3.9.11; Bruker BioSpin, Germany) or 
available assignments in the literature. The peaks of the identified metabolites were fitted by a combination of a 
local baseline and Voigt functions based on the multiplicity of the NMR signal. The absolute concentration of 
each metabolite was calculated according to the equation described by Serkova et al.15. Metabolites below the 
limit of detection were set to zero.

Data processing, data import and filtering
Raw sequencing data from the bacterial assay (fastq format) was demultiplexed and processed into amplicon 
sequence variants (ASVs) using dada2 (v1.24.0)16. In brief, the expected error rate was set to 1 for the forward 
and to 2 for the reverse read. The minimum read length after trimming low-quality bases was set to 200bp; 
shorted read pairs were discarded. Next, forward and backward reads were merged into contigs and contigs 
were size selected (between 252 and 253 bp). Afterward, chimeric sequences were removed following the dada2 
recommendations and IdTaxa (DECIPHER package (v2.18.1)) with GTDB r207 as the reference database was 
used for taxonomic  assignments17,18. ASVs not belonging to the kingdom Bacteria or with unassigned phylum 
were excluded from further analysis. Additionally, ASVs belonging to the phylum Cyanobacteria were removed 
if there were annotated as unknown at class level.

Bacterial ASVs from dada2 (described above) and fungal data (processed data, OTU table and taxonomic 
assignments, was retrieved from Al Bataineh et al.19), were imported together with the metabolite assay into 
R (v4.2.2, phyloseq v1.40.0)19,20. The fungal assay was screened for operational taxonomic units (OTUs) with 
unknown or unassigned phyla, which were excluded from further analysis. Additionally, OTUs belonging to the 
order Talaromyces were removed as potential contaminants because they are not part of the normal gut flora. 
Samples with missing assay data were removed, resulting in 41 samples with complete data (20 control samples, 
21 Type 2 Diabetes Mellitus samples).

Alpha and beta diversity
Alpha diversity was estimated on ASV/OTU/metabolite level for each sample and assay using Shannon’s index, 
and significance was assessed using non-parametric Wilcoxon tests. To estimate beta diversity, abundances 
(counts) were centered log-ratio transformed (clr), and distances were calculated using Euclidean distance (i.e., 
Aitchison distance). The clr values are scale-invariant and sequencing depth does not play a role in the down-
stream analysis using these values. Permutational multivariate analysis of variance using distance matrices (PER-
MANOVA) was used to compare differences in beta diversity (adonis2 function, as implemented in the vegan 
package v2.6-4, with 99,999 permutations). In detail, the following models were used:

Diet (low or high fiber intake), disease (healthy or Type 2 Diabetes Mellitus) and gender (male or female) are 
categorial variables and the remaing factors are continuous variables.

Differential abundance testing
Differential abundant (DA) taxa (genera) and metabolites were identified using multiple DA methods to ensure 
robust biological findings. Note, differential abundance testing was performed within the healthy control group 
and within the DM II group separately and not between the healthy and the DM II group. For all three assays, 
we used ALDEx2 (v1.28.1), ANCOM-BC (v1.6.0), and MaAsLin2 (v1.10.0). Additionally, dacomp (v1.26) was 
applied to assays where count data was available (bacterial and fungal assays)21–25. Genera and metabolites with 
low prevalence (< 20%) were removed from the data before DA testing. ALDEx2 was run with 512 Monte Carlo 
instances to estimate the underlying distributions, and Welch’s t-test statistic. ANCOM-BC was run with standard 
parameters except for the detection of structural zeros (set to TRUE), the maximum number of iterations for the 
E-M algorithm (set to 10,000), and we used a conservative variance estimate of the test statistic as it is recom-
mended for small sample sizes (conserve option set to TRUE). Settings for MaAsLin2 were according to Nearing 
et al.29 using total sum scaling (TSS) to normalize the data followed by arcsine square rooted  transformation26. 
The resulting p-values from ALDEx2, ANCOM-BC and MaAsLin2 were corrected for multiple testing using 
Benjamini–Hochberg correction. The dacomp method was run with standard parameters using a Wilcoxon 
rank-sum test and a discrete false-discovery rate to correct for multiple testing. Results from DA testing were 
weighted using the number of algorithms that detected a genus/metabolite as differential abundant (fdr < 0.1), 
and a genus/metabolite with a weight of 2 or higher was considered significant.

betaBacteriome ∼ Diet + Disease + Prevotella+ Age + Gender + BMI + Diet : Disease

betaMycobiome ∼ Diet + Disease + Prevotella+ Age + Gender + BMI + Diet : Disease

betaMetaobolome ∼ Diet + Disease + Prevotella+ Age + Gender + BMI + Diet : Disease
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Correlation analysis and (semi‑) unsupervised learning
To calculate correlations and for (semi-) unsupervised learning data clr transformed counts of highly variable 
features (genera or metabolites with a variance larger than 10) were used.

Pairwise correlations between all three assays were calculated using the cor.mtest function (corrplot v0.92) 
and results were filtered for significant correlations (p < 0.01, absolute Spearman’s ρ > 0.3).

To uncover sources of variability within each group (healthy or disease) we performed a multi-omics factor 
analysis as implemented in MOFA2 (v1.6.0)27. The data was imported and samples were labeled (Control or DM 
II) to be able to compare the sources of variability within each group. Next, the method was run with 10,000 
iterations in ‘slow’ convergence mode to ensure model convergence and seed set to 42; the final model converged 
after 8466 iterations. Significantly associated features were fitted using the following linear model:

To look into differences between disease states a semi-supervised learning approach that performs feature extrac-
tion from noisy and high-dimensional data as implemented in KODAMA (v2.4) was applied to stratify the data by 
disease and diet with partial least squares discriminant analysis (PLS-DA) as classifier function. The best number 
of classifiers was determined using entropy filtering for models with 2, 4, 6, 8, 10, 20, 50, and 100 parameters. 
The model with the lowest entropy was selected for further analysis, and linear regression was applied to the best 
model results to estimate the effect of diet on estimates of the first and second dimensions.

Statistical analysis and visualization
All analyses were performed using R (v4.2.2). For data handling the phyloseq library and tidyverse (v1.3.2) 
were used; cowplot (v1.1.1), ggpubr (0.5.0), and patchwork (v1.1.2) were applied to create the figures. Gradient 
boosting was performed for each group (control or DM II) separately using the packages caret (v6.0-93) and 
gbm (v2.1.8.1) with a fivefold cross-validation approach. Briefly, the data were re-coded to match the Bernoulli 
distribution (low/high dietary fiber intake). Next, the data was repeatedly split into training (80%) and test data 
(20%) (1000 iterations), and for each iteration, the maximum number of trees explored was set to 20,000, the 
class.stratify.cv argument was set to TRUE, and the shrinkage parameter applied to each tree in the expansion 
was set to 0.001. The code used for the microbiota analysis is available at https:// github. com/ kunst ner/ 2022_ 
Fiber_ DMII_ Middle_ East.

Results
After processing the data, 20 control samples and 21 Type 2 Diabetes Mellitus samples contained data from all 
three collected assays (bacteriome, mycobiome, metabolome). The bacteriome data comprised on average 9534 
contigs (s.d. ± 3465), ranging from 2032 to 18,320 contigs (786 ASVs). The mycobiome data contained on average 
5450 contigs (s.d. ± 4964), with a minimum of 532 and a maximum of 20,605 contigs (460 OTUs).

Data stratification
Age was significantly different between control and Type 2 Diabetes Mellitus (DM II) samples (control 27.1 ± 7.5, 
DM II 60.4 ± 10.8; Wilcoxon test p = 8.70*10–8; see Suppl. Figure 1A for details). Additionally, we found a sig-
nificant difference in BMI between the two groups (p = 6.04*10–4) with higher BMI in the DM II group (control 
24.4 ± 5.05; DM II 30.8 ± 6.76). Due to the significant differences in age and BMI between controls and DM II 
samples, data were stratified by disease status to avoid findings linked to differences in age and BMI and to ensure 
that findings are related to fiber intake. After splitting the samples into control and DM II samples (control: low 
fiber diet n = 11, high fiber diet n = 9; DMII: low fiber n = 9, high fiber diet n = 12) no significant differences in age 
were observed within each data set between low and high dietary fiber intake (healthy: p = 0.52; DMII p = 0.27; 
Suppl. Figure 1B), and BMI was similar within each subset with respect to fiber intake (pcontrol = 0.09, pDMII = 1.00).

Diversity analysis
To evaluate differences in diversity we estimated sample-wise diversity (alpha diversity) and the variation of 
microbial communities between samples (beta diversity).

Alpha diversity, estimated by Shannon’s index (H), showed no significant differences in any of the assays when 
comparing a high dietary fiber diet (HFD) versus a low dietary fiber diet (LFD) in the healthy control group or 
in the DM II group (Wilcoxon test, p > 0.05; Fig. 1A–C).

Next, we looked at the abundances of the genus Prevotella because of its known association with fiber intake 
(Suppl. Figure 2 shows Prevotella abundances for our data)28 and we link the abundances to alpha diversity. We 
found a significant increase in the LFD group compared to the HFD group in the control samples but not in 
DM II samples (likelihood ratio test: H0 = 1; H1 = diet; pcontrol = 0.0051, pDMII = 0.9856). Furthermore, no general 
correlation was observed between Shannon’s H and Prevotella abundances (Spearman’s ρ = − 0.2449, p = 0.1228).

To investigate factors that have potentially an impact on the community structure (beta diversity), the data 
were not stratified by disease, to be investagte differences between diseased and healthy samples as well. Disease 
(PERMANOVA; bacteria: R2 = 0.0524, p = 8.3 ×  10–4; fungal: R2 = 0.0536, p = 1.2 ×  10–4; metabolite: R2 = 0.1307, 
p = 1.0 ×  10–5) and diet (bacteria: R2 = 0.0487, p = 2.2 ×  10–3; fungal: R2 = 0.0443, p = 1.9 ×  10–3; metabolite: 
R2 = 0.0568, p = 3.6 ×  10–3) contribute significantly to differences in community structure in all three assays. 
Additionally, in the bacterial assay, we found significant associations with Prevotella abundances (R2 = 0.0654, 
p = 3.0 ×  10–5). Prevotella abundances were significantly correlated with the first and the second principal com-
ponent (ρPC1 = − 0.3514, pPC1 = 0.0243; ρPC2 = − 0.4966, pPC2 = 9.6 ×  10–4) showing its influence on community 
structure in the data. In the fungal assay, Prevotella abundances (R2 = 0.0371, p = 1.3 ×  10–2) had an additional 

AbundanceCLR ∼ factor_values_of _group (with group either healthy control or DMII)

https://github.com/kunstner/2022_Fiber_DMII_Middle_East
https://github.com/kunstner/2022_Fiber_DMII_Middle_East
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significant effect on beta diversity besides the already mentioned factors disease and diet. Beta diversity for each 
assay is shown in Fig. 1D–F and PERMANOVA results are shown in Supplementary Tables 2–4.

Taxonomic and metabolite abundances
The top five most abundant bacterial genera were Prevotella, Phocaeicola, Blautia A, Dialister, and Bacteroides. 
In the fungal data, we found Ascomycota uncl., Saccharomyces cerevisiae uncl., Candida albicans uncl., Candida 
tropicalis uncl., and Clavispora lusitaniae uncl. as the top 5 genera. The unknown metabolite 8 (U8), Acetate, 
Propionate, Butyrate, and Alanine showed the highest abundances in the metabolite data. Genus and metabolite 
abundances for each group are shown in Fig. 2, and phylum abundances are shown in Suppl. Figure 3.

The bacterial genera Coprococcus A, Dorea A, Dysosmobacter, Gemmiger, Lachnospira and Sutterella showed 
a significant increase in the HFD samples, whereas Acidaminococcus, Bifidobacterium, CAG-317, Lachnoclo-
stridium B, Ligilactobacillus, Mesosutterella, Mitsuokella, Phocaeicola and Prevotella were higher abundant in the 
LFD samples when considering the control group (fdr < 0.1; Suppl. Figure 4). In the fungal assay, no genus was 
significantly different between HFD compared to LFD in controls (fdr > 0.1). The metabolites Propionate, U8, 
and 2-Hydroxybutyrate were significantly lower in HFD and 3-Hydroxyphenyl acetate was significantly higher 
in HFD compared to LFD in controls (fdr < 0.1; Suppl. Figure 5). In the DM II group, no genera (bacterial or 
fungal) or metabolites were identified as differentially abundant between HFD and LFD. All significantly differ-
ent genera/metabolites are shown in Supplementary Table 5.

Correlation between bacterial, fungal, and metabolite assay
To uncover two-dimensional relationships, Spearman rank correlations of centered log-ratio transformed (clr) 
abundances between the three assays (bacteria, fungal, metabolite) were calculated for features with a variance 
above 10. As already pointed out, clr transformed abundances are scale-invariant and therefore independent 
from sequencing depth. Correlations were considered significant if p-values were below a threshold of 0.01 and 
an absolute value of Spearman’s ρ above 0.3. The two diets showed markedly different patterns of correlations, 
regardless of the disease group (Suppl. Figure 6 and 7). Particularly, the correlations between bacterial and fun-
gal data were dominated by negative correlations between Meridosma and several fungal genera in control LFD 
samples (e.g., Candida dubliniensis uncl., Malassezia restricta). The metabolite Glycine showed a strong negative 
correlation with several bacterial genera in the control HFD group (e.g., Clostridium AP/AQ/P, Lactobacillus, 
Streptococcus), and the metabolite galactose showed negative associations with some fungal genera in the control 
HFD group. In contrast, DMII HFD correlations were dominated by positive associations of Odoribacter with 
several fungal genera (e.g. Basidiomycota uncl., Pichia manshurica uncl.). In addition, the LFD DMII group 
showed marked negative correlations between Propionate and several bacterial genera (e.g. Pseudoruminococ-
cus A, Victivallis).
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Figure 1.  Alpha diversity estimated using Shannon’s index for bacteriome (A), mycobiome (B), and metabolite 
data (C). Distance-based analysis (beta diversity) of diversity (Aitchison distance) for bacteriome with Prevotella 
abundances color-coded is shown in (D). (E, F) Beta diversity for the mycobiome, and metabolite data, 
respectively; controls (n = 20) are encoded using dots, and triangles encode DM II individuals (n = 21); high 
dietary fiber intake  (nControls = 9,  nDMII = 12) is colored blue, and low dietary fiber intake  (nControls = 11,  nDMII = 9) is 
colored by orange.
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Multi‑omics factor analysis
Next, we tried to uncover sources of variability that drive each of the groups using multi-omics factor analysis 
(MOFA2) with ten factors on the full data consisting of the three different assays (bacterial, fungal, and metabo-
lite) and all samples combined (control and DM II). The data were filtered for highly variable features per assay 
as we did in the correlation analysis to ensure the same number of features per assay and group (Fig. 3A). From 
the high dimensional input data, MOFA2 infers a set of latent factors in an interpretable low-dimensional 
representation. These latent factors represent the main sources of variation across data sets and can be used to 
discriminate subgroups within the data.

The bacteriome explained most of the variance in the control group (64.2% vs 10.4% in the DM II group), 
whereas the mycobiome explained most of the variance in the DM II group (12.5%), which was very similar in 
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Figure 2.  Relative abundances of (A) bacterial genera (abundances above 2%), (B) fungal genera (above 1%), 
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Figure 3.  Graphical summary of the number of samples (‘N’) and features per assay (‘D’) used for the multi-
omics factor analysis per group; the number of features is the same between groups (A). Values for latent 
Factor1 stratified by the disease are shown in (B), where blue refers to high and orange to low dietary fiber 
intake, respectively. (C) The proportion of variance explained by each assay for the DM II and healthy controls.
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the control group (12.3%). The metabolome contribution was higher in the control group (13.7%) compared to 
the DM II group (5.8%). Ten latent factors were identified, capturing global sources of variability in the data. To 
perform variance decomposition, each latent factor was tested for significant correlations with age, BMI, diet, 
and gender. Latent Factor1 was significantly correlated with dietary fiber intake (q < 0.01) in the combined data. 
Stratifying the data by disease revealed that latent Factor1 is significantly correlated with fiber intake in the 
control group as well (-log10(q) = 3.62). Additionally, gender was associated with latent Factor10 in the control 
group (-log10(q) = 2.02). The DM II group showed no significant association with fiber intake, gender, age, or BMI 
(q > 0.01). All significant associations are shown in Supplementary Fig. 8, and estimated values for latent Factor1 
are shown for each sample stratified by disease and dietary fiber intake in Fig. 3B.

The major source of variation was captured in latent Factor1 and this factor was found to be linked to diet in 
the full data and in the control group. Therefore, the contribution of the bacteriome, mycobiome, and metabolites 
on this factor was further investigated, stratified by disease status. In the control group, most of the variance was 
explained by the bacteriome (29.3%), followed by the metabolite (4.3%) and the mycobiome data (3.8%) (Fig. 3C). 
In the DM II group, bacteria explained 1.4% and fungal and metabolite less than 1% each. In the following, we 
further analyze the impact of bacteria and fungi genera on latent Factor1. Nine bacterial genera (Phocaeicola, 
Ligilactobacillus, Mesosutterella, Acidaminococcus, Dorea A, CAG-317, Caecibacter, Prevotella and Gemmiger; 
Suppl. Figure 8) and one fungal genus (Malassezia furfur; Suppl. Figure 9) were found to have an estimated 
absolute weight of 0.6 or higher. Four metabolites showed an absolute weight above 0.6 (U8, 2-Hydroxybutyrate 
and Propionate with negative weights; Xylose with positive weights; Suppl. Figure 10).

A linear regression model was fitted per disease group for each genus to visualize the relationship between 
the factor values and feature abundances. Absolute R-values of the models were significantly higher in the 
control group than in the disease group (one-sided Wilcoxon test, p = 2.9 ×  10–5). In the bacteriome, most of the 
associations are similar with respect to the sign of the R-value between control and DMII samples (7 out of 9 
comparisons). In the mycobiome data (genus Malassezia furfur), the healthy control group showed negative and 
the DM II group showed positive association with estimated values for Factor1 (Rcontrol = − 0.69, RDMII = 0.18). The 
four metabolites showed a higher correlation with Factor1 in the control group compared to the DMII group.

Confirmation of multi‑omics factor analysis
To verify that differences in fiber intake have more impact in the control group and that the effect in the DM II 
group is rather low, we applied a combined unsupervised and semi-supervised learning approach (knowledge 
discovery by accuracy maximization, KODAMA on the same data as was used for the correlation and the multi-
omics factor analysis. First, we ran KODAMA unsupervised to find the optimal number of parameters based on 
the lowest entropy. The optimal number of parameters that characterizes the data was 8 (Entropy = 6.8694). Then, 
KODAMA was applied semi-supervised on stratified data (stratified by disease) with the number of parameters 
set to 8. The results were very similar to the MOFA2 results. Using linear regression, we correlated the effect 
of diet on X1 and X2. In the control group, we found a significant influence of fiber intake on X1 and X2 (X1: 
R2

adj = 0.5492, p = 1.1 ×  10–4; X2: R2
adj = 0.4508, p = 7.1 ×  10–4), whereas this was not the case in the DM II group 

(X1: R2
adj = − 0.0518, p = 0.9011; X2: R2

adj = − 0.0455, p = 0.7219) (Fig. 4).
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Figure 4.  Visualisation of the first (X1) and second (X2) components of the semi-supervised KODAMA 
analysis. Controls are encoded using points, and triangles encode DM II individuals; high dietary fiber intake is 
colored blue, and low dietary fiber intake is colored orange.
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Feature selection using machine learning
Based on the data described in the previous section, we tried to predict whether a sample is on HFD or on LFD. 
This prediction was made by applying a gradient-boosting machine approach (1000 iterations, see Material 
and Methods for details) to each disease group separately. In the healthy group, prediction accuracy was 73.2% 
(± 20.9), with 15 features showing an average influence above 2%. Only one of these features was not a bacterial 
genus (Metabolite U8), and the top three features were Prevotella, Gemmiger and Lachnoclostridium B; all 15 
features are shown in Suppl. Figure 12. In the disease group, accuracy was 33.6% (± 19.9), with 13 features hav-
ing an influence above 2% on average. Besides the fungal genus Saccharomyces cerevisiae unclassified and the 
metabolite lactate all remaining features were bacteria genera (Suppl. Figure 13).

Discussion
The human gut microbiome is linked to various cardiometabolic disorders, primarily type 2 diabetes mellitus 
(DM II). Unfavorable variation in gut microbiome composition, known as dysbiosis, plays a significant role 
in DM II pathogenesis and response to anti-diabetic  medications19,30,31. Several studies have also suggested an 
association between changes in the gut microbiome and the metabolic signature that may alter the intestinal 
barrier and signaling events that contribute to insulin  homeostasis32,33.

Our study attempted to link the dysbiotic gut microbiome (here bacteriome and mycobiome) with the meta-
bolic signature in DM II among the Middle Eastern population. We accounted for diet as a major factor in 
influencing the gut microbiome composition, both the bacterial and fungal communities associated with DM II. 
Although fungal communities comprise a small percentage of the total gut microbiome, previous reports have 
shown that these small numbers of fungi have surprisingly strong effects on dulling inflammatory responses in 
the  gut34,35. Also, others have reported their impact on the bacterial community  composition36,37. Interestingly, 
we did detect a significant influence on community composition (beta diversity) of dietary fiber intake (low or 
high) in the bacterial, fungal, and metabolite assay among DM II and healthy subjects. The observed dissimilar-
ity of the alpha- and beta-diversity in correlation with the metabolic signature suggests an important difference 
in fungal composition and the corresponding metabolic profile at the intra-individual variability level and is 
consistent with previous  publications35,38. In contrast, the inter-individual differences between the samples show 
that most of the samples are grouped as two different clusters that correspond to DM II and healthy individu-
als, highlighting an intriguing contrast in bacterial microbiota composition and metabolic profile, particularly, 
Prevotella abundances that showed a significant increase in the LFD group and consistent with the previous 
 publication28. Fiber intake impacts Prevotella abundance which aids in polysaccharide breakdown. In our pre-
vious study, we also demonstrated enrichment in Prevotella with LFD, consistent with a significant increase in 
carbohydrate degradation modules observed in the GMM module analyses.

Despite the gut microbiome’s resilience, studies repeatedly show that nutrition continues to have a significant 
impact on both its makeup and  function39,40. The variety and abundance of microbial taxa are shaped by short- 
and long-term food patterns, which also have an impact on the metabolic activities of  microbes41. Although 
the gut microbiome can adjust to dietary changes to preserve stability, long-term or drastic dietary changes can 
still upset its homeostasis. As a result, supporting a healthy gut flora and overall well-being requires a balanced, 
varied diet that contains a suitable number of fiber-rich foods.

Next, differential abundance testing determined the composition in relation to diet and determined the 
several bacterial genera such as the following; Coprococcus A, and Sutterella among others showed a significant 
increase in the HFD samples, whereas Acidaminococcus, Bifidobacterium, and Prevotella among others were 
higher abundant in the LFD samples when considering the control group. In the fungal community, no genus 
was significantly different between HFD and LFD in the healthy cohort. The metabolites Propionate, U8, and 
X2 Hydroxybutyrate were substantially lower in HFD, and X3 Hydroxyphenyl acetate was significantly higher 
in HFD compared to LFD. The data were consistent with findings in a previous western  cohort42,43. Interestingly, 
however, the unidentified (U) metabolite U8 was found to be correlated with childhood overweight and rapid 
 growth44. Moreover, a previous study determined that imidazole propionate is increased in diabetes and associ-
ated with dietary patterns and altered microbial ecology, particularly with low Bacteroides 2 enterotype, which 
has previously been associated with  obesity45. Furthermore, hydroxyphenyl acetate, a phenylalanine breakdown 
product, has been associated with decreased insulin secretion and  diabetes46. In order to identify the linkage 
between the gut microbiome and metabolome data, we applied several approaches in a two-dimensional rela-
tionship, such as Spearman rank correlations. We found that the two diets showed markedly different patterns 
of correlations, regardless of the disease group. Also, patterns between the control and DM II samples were dif-
ferent. Particularly, the correlations between bacterial and fungal data were dominated by negative correlations 
between Meridosma and several fungal genera in healthy LFD samples. In contrast, DM II LFD correlations were 
dominated by positive associations of Odoribacter with several fungal genera (e.g., Humicola uncl., Macrophomina 
phaseolina, Microascus manginii uncl., Rhodotorula mucilaginosa). The increasing abundance of Odoribacter has 
been previously reported to reduce plasma glucose and insulin levels and improve energy  metabolism47,48. Fur-
thermore, Metformin influences the abundance of several microbial taxa, particularly reducing the abundance 
of Clostridium spp. As well as the production of propionate and  butyrate49,50. Intriguingly, we reported that the 
HFD DM II group showed marked negative correlations between Odoribacter and several fungal genera, further 
LFD DMII group showed marked negative correlations between Propionate and several bacterial genera. In the 
previous study, we determined that the phylum Lentisphaera and the genus Phascolarctobacterium have also been 
associated with the T2DM group and described a significant increase in individuals consuming a gluten-free diet. 
We also reported the genus Odoribacter, which includes butyrate-producing bacteria that negatively correlate 
with the T2DM group and also decrease in response to pre-natal metformin. Applying a multi-omics approach 
revealed that dietary fiber intake has a strong effect on the composition of the gut microbiome and metabolites, 
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whereas other factors such as age, and BMI show no significant correlations. Interestingly, this effect is only 
present in the complete data and the healthy control samples, but not in the DM II group. Potentially, the impact 
of dietary fiber intake plays only a minor role compared to the dysbiosis in the gut microbiome due to Type II 
Diabetes  Mellitus51. This finding was confirmed by a second unsupervised learning approach (KODAMA). Fur-
thermore, a machine learning classifier, which was individually trained on each data set, performed better in the 
healthy group (accuracy 73.2%) compared to the disease group (33.6%) completing the picture that the effect of 
dietary fiber intake on the gut microbiome/metabolites is stronger in healthy individuals. However, even in the 
healthy group, the overall accuracy is not very high, most likely due to the small sample size. We acknowledge 
the small sample size as a potential limitation of this study and more advanced functional studies to validate 
some of these findings as potential biomarkers.

In conclusion, this study provides valuable insight into the links between dietary fiber intake and the gut 
microbiome, including fungal communities, and the metabolomic profiles in healthy and DM II subjects in 
the Middle East. In addition, we interrogated high vs. low fiber diet as a significant factor influencing the gut 
bacterial and fungal communities associated with healthy and DM II subjects. These aspects will be crucial in 
understanding the functional role of the gut microbiome and its alterations to support host homeostasis against 
metabolic and inflammatory disorders such as DM II. For example, Prevotella abundance showed a significant 
increase in the LFD group. Interestingly, the identified metabolites linked with the gut microbiome, such as U8, 
propionate, and hydroxyphenyl acetate, were previously connected with childhood overweight and increased 
diabetes, underscoring an important link between dietary patterns and altered gut microbiome communities. 
Perhaps these findings open the possibility for future follow-up studies to validate biomarkers responsible for 
or associated with the diseases towards precision medicine.

Data availability
ITS2 and 16S rRNA gene sequencing data used for this study were submitted to the European Nucleotide Archive 
(ENA) and are available under accession number PRJEB59916. Additional data supporting this study’s findings 
are available on request from the corresponding author.
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