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Optimizing quantum noise‑induced 
reservoir computing for nonlinear 
and chaotic time series prediction
Daniel Fry 1*, Amol Deshmukh 1, Samuel Yen‑Chi Chen 2, Vladimir Rastunkov 1 & 
Vanio Markov 2

Quantum reservoir computing is strongly emerging for sequential and time series data prediction 
in quantum machine learning. We make advancements to the quantum noise-induced reservoir, in 
which reservoir noise is used as a resource to generate expressive, nonlinear signals that are efficiently 
learned with a single linear output layer. We address the need for quantum reservoir tuning with 
a novel and generally applicable approach to quantum circuit parameterization, in which tunable 
noise models are programmed to the quantum reservoir circuit to be fully controlled for effective 
optimization. Our systematic approach also involves reductions in quantum reservoir circuits in the 
number of qubits and entanglement scheme complexity. We show that with only a single noise model 
and small memory capacities, excellent simulation results were obtained on nonlinear benchmarks 
that include the Mackey-Glass system for 100 steps ahead in the challenging chaotic regime.

Quantum computing and machine learning have come together in recent years as a rapidly growing, cross-
disciplinary field with huge transformative potential via quantum advantage. This new field of quantum machine 
learning (QML) aims to further revolutionize many of the areas that are currently seeing real transformation from 
new approaches in machine learning and artificial intelligence. An area that is critical to business and research 
is predicting or forecasting sequential time series data, which is paramount in finance, business, economics, 
climatology, meteorology, and ecology.

Reservoir computing (RC) is a paradigm for time series prediction that draws from some of the successful 
properties of RNNs, such as sequential memory, while greatly improving learning efficiency by fixing reservoir 
weights for all but a single trainable output layer1–6. While RC is well-suited to dynamical system modeling, it is 
proven to be a universal approximator for sequential functions7. The quantum-enhanced version of RC (QRC) 
leverages a quantum reservoir, a natural quantum many-body system or a programmable quantum computer 
circuit. QRC provides a path to quantum advantage by using a quantum reservoir with an exponentially larger 
computational space and greater complexity for time series prediction.

Many QRC frameworks have been developed, under which QRC algorithms can be classified at a higher 
level. For example, QRC reservoir nodes have been realized with quantum basis states8,9 in contrast to qubits or 
qudits. One such novel framework leverages hybrid quantum-classical RNNs, such as quantum long short-term 
memory (QLSTM), as a reservoir10. QRC reservoirs can be based directly on known quantum system models or 
on hardware-efficient quantum feature map designs, where this work falls under the latter. In this work we focus 
on noisy or dissipative quantum reservoirs, pioneered in works11–13. Furthermore, we demonstrate a success-
ful, novel approach to quantum reservoir optimization, where other schemes have been explored in works14–16.

QRC has been applied to many prediction tasks including nonlinear time series prediction10,11, time series 
classification11, image recognition17, and stock market value14 and volatility prediction15. In quantum informa-
tion science, QRC has been used for entanglement recognition, non-linear function estimation and quantum 
state tomography18–20.

QRC may have begun to demonstrate superior computational capacity to classical RC. In one example, 
numerical studies have shown that quantum reservoirs consisting of 5–7 qubits possess computational capaci-
ties comparable to conventional recurrent neural networks of 100–500 nodes21. In this work we demonstrate 
excellent prediction capacity of few-qubit reservoirs.

The most significant computational capacity that is a main goal of QML is quantum advantage, which is a 
measurable performance improvement over classical computation on a well-defined objective task (e.g. a busi-
ness time series prediction task) using quantum computation22. Quantum advantage with QRC likely exists if 
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the quantum reservoir requires a complex, many-qubit entangled architecture that is intractable to classical 
computation. This view is the same as that expressed in23 for quantum-enhanced feature spaces, a closely related 
approach to QRC, where the quantum reservoir acts as a sequential feature map.

In this work we build on the quantum noise-induced reservoir (QNIR) framework11,12, with a novel approach 
to parameterized quantum circuits for the reservoir and a systematic reduction of circuit complexity. The term 
reduction is used for minimizing quantum circuit resources to clearly differentiate it from the reservoir optimi-
zation achieved with parameterized noise channels. QNIR is a type of QRC that relies on quantum hardware 
noise or, as in the focus of this work, artificial noise models in quantum software, as a resource to generate rich, 
dissipative quantum reservoir dynamics. In the current, transitional NISQ phase of quantum computing, QNIR 
can use inherent hardware noise. However, in future strongly error-mitigated and fault-tolerant quantum com-
puters, QNIR noise channels can be coded instructions in a quantum program along with quantum gates. This 
approach abstracts this QNIR algorithm from the underlying physical device. In a novel approach we implement 
parameterized artificial noise models programmed to a quantum computer for improved time series prediction 
performance. With this, we address the important need of reservoir tuning, in QNIR and QRC in general, for 
classes of prediction tasks.

Powerful optimization approaches for reservoir noise are offered by dual annealing and evolutionary optimi-
zation (EO). EO is capable of optimizing quantum systems at various levels, such as quantum circuit parameters, 
successfully realized in this work and in previous works24–26 and quantum circuit architecture. Here we use a 
previously successful EO algorithm27 in which model parameters were evolved for quantum reinforcement 
learning agents in a hybrid quantum-classical neural network approach.

Quantum noise‑induced reservoir computing
Theoretical framework
We develop QNIR theory starting from general RC theory. RC is a computational paradigm and class of machine 
learning algorithms that derives from RNNs. RC involves mapping input signals, or time series sequences, into 
higher dimensional feature spaces provided by the dynamics of a non-linear system with fixed coupling constants, 
called a reservoir. Having a smaller number of trainable weights confined to a single output layer is a core benefit 
of RC because it makes training fast and efficient compared to RNNs. RC has a number of properties that should 
be met28,29 including adequate reservoir dimensionality, nonlinearity, fading memory/echo state property (ESP) 
and response separability.

For the univariate case, a reservoir, f, is a recurrent function of an input sequence, ut , and prior reservoir 
states, x̄t−1 , as

As output sequences, x̄t , training sequences are selected between time-steps t = ti and t = tf  , and form a training 
design matrix, Xtr . The initial sequence, t < ti , is a washout interval required for fading memory/ESP. A multiple 
linear regression model with an initial form:

is trained based on least squares, where y is the target vector and W is an initial weight vector. The trained model 
has the form:

with an optimized weight vector, WT
opt , to give a predicted sequence, ŷ , from new sequences, X.

For QNIR with artificial noise channels, the RC framework that has been developed is now instantiated in 
the following way. The density operator evolves in time steps as

where the reservoir map Tut is composed of a sequence unitary quantum gates, Ui , and associated artificial noise 
channels, Ei , that are completely positive and trace preserving (CPTP). The reservoir map can be represented as 
a composition of quantum channels

where the notation EUi = Ei(UiρU
†
i ) is used for clarity and to emphasize that each quantum gate is acted on by 

a noisy channel and K is the number of noise channels in the time step. We will refer to Tut as a noisy quantum 
circuit. QNIR requires an initial washout phase, t < ti , where the reservoir forgets its initial state before a steady 
state is reached.

The unitary, noiseless part of the quantum circuit is composed of an initial layer of RX gates followed by an 
entanglement scheme of RZZi,j gates, which are 2-qubit entangling gates

where all RX(θ) and RZ(θ) rotation gates encode the time series data with a scaling map, θ = φ(u) . The purpose 
and structure of the unitary encoding gates is detailed in subsection: Reservoir circuit designs.

Single-qubit expectation values, �Zi� = Tr(Ziρ) , are measured for all n qubits at each time-step,

(1)x̄t = f (x̄t−1, ut).

(2)y = WTXtr ,

(3)ŷ = WT
optX,

(4)ρt = Tut (ρt−1),

(5)Tut (ρt−1) = EUK ◦ . . . ◦ EU2
◦ EU1

(ρt−1),

(6)(CXi,jRZj(θ)CXi,j)RX
⊗n(θ) = RZZi,j(θ)RX

⊗n(θ),



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19326  | https://doi.org/10.1038/s41598-023-45015-4

www.nature.com/scientificreports/

as shown in a circuit diagram in Fig. 1. Figure 2 depicts that time series values are encoded to all reservoir qubits 
and 〈Zi〉 are measured of all qubits, which are concatenated for each time step to give n reservoir feature sequences 
qi = {�Zi�}

N
t=0 , where N is the number of time steps. In turn, qi form a design matrix X and the QNIR model is 

trained as in Eq. (3). A schematic of the full QNIR computer is shown in Fig. 3.
It is important in RC and by extension QRC that the reservoir system can capture the temporal dynamics of 

the target system. To ensure this we implement a reservoir optimization scheme for QNIR. The artificial noise 
channels, Ei , of the quantum reservoir circuit are iteratively updated by an optimization routine with an MSE 
cost function based on the time series prediction performance. This serves to optimize the quantum reservoir for 
time series prediction. Details of the optimization approach are in subsection: Reservoir noise parameterization.

Reservoir circuit designs
This section is concerned with the architecture and purpose of the unitary gates of the quantum circuit, the 
high-level structure of the noisy quantum circuits and entanglement scheme. The details of the noise scheme 
are covered in subsection: Reservoir noise parameterization.

(7)ht = [�Z1�, �Z2�, . . . , �Zn�]
T
,

Figure 1.   Circuit channel diagrams of the QNIR computer in the unrolled view, composed using30. The initial 
state of the quantum reservoir is |+�⊗n and the quantum channels labeled Tui evolve the density operator 
as in Eq. (4), where N quantum circuits are required for N time steps. A number of output sequences, n, are 
concatenated from sequential, single-qubit expectation value measurements 〈Zi〉 on n qubits.

Figure 2.   This drawing represents many repeats of data encoding of a single value, ui , to all reservoir qubits 
(left) and measurements of single-qubit Z expectation values (right). This two-part process occurs at each time 
step i to build feature signals by concatenation. Noisy quantum circuits are shown for each time step in Fig. 1. 
This drawing shows an example of a four-qubit reservoir with fixed, pair-separable dynamics.

Figure 3.   In this graphic the first layer contains an array of duplicates of a single time series value. Each value 
in the input array is encoded to all qubits of the reservoir as in Eq. (6). The second layer is a quantum reservoir 
with arbitrary entanglement scheme, represented by connecting lines between qubit nodes. The Z observable 
expectation value, 〈Zi〉 , is measured for all qubits. These measurements are repeated and concatenated to build 
output signals, qi . In the final layer, these signals are used in multiple linear regression for time series prediction, 
as in Eq. (3).
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The initial state of the quantum reservoir, |+�⊗n , is prepared by an initial Hadamard gate layer. Continuing 
with Eq. (6), an n-qubit QNIR circuit has a fixed sequence of quantum gates

where i, j are indices for two qubits that denote the placement of multiple 2-qubit RZZ entangling gates. The 
decomposed form of the circuit with CX and RZ gates23 is implemented with noise channels (see subsection: 
Reservoir noise parameterization). A time series data value, u, is encoded to all RX(θ) and RZZ(θ) gates by angle 
θ = φ(u) , where φ is a scaling map.

To implement the recurrent architecture of QNIR, a set of N quantum circuits are executed for a time series 
{ut}

N
t=0 . The first circuit encodes {u0} , the second circuit encodes {u0, u1} , and the Nth circuit encodes {ut}Nt=0 as

All unitaries Ut for arbitrary t constrain the i expectation values to a zero bitstring

where |�0� = |+�⊗n is the initial reservoir state and Zi represents n single-qubit Z measurement operators. It 
is the action noise that ensures the qubit signals are non-zero, feature sequences, qi . Now considering the full 
QNIR circuits with artificial noise, the noisy quantum circuit for the final iteration, encoding {ut}Nt=0 , is the 
quantum channel

The noisy quantum circuit with artificial noise scheme will be detailed in the next subsection: Reservoir 
noise parameterization. This scheme may further reduce resources by circuit truncation based on a memory 
criterion29,31–33.

For RZZi,j gates, the degree of entanglement between qubits i and j is a function of ut . It is important that 
the range of magnitudes of the data values is constrained and we observe that values much larger than 2π cause 
undesirable effects. We consider benchmarks that do not require re-scaling.

Drawing from the close connection with quantum feature maps23,34–36, entanglement schemes are defined 
by the number and placement, i.e. the architecture, of RZZ gates in Eq. (6). Common entanglement schemes 
that could be trialed are full, linear, pair-wise, and what we call pair-separable used in Suzuki et al.11. The 
pair-separable (PS) and linear entanglement (LE) schemes explored in this work have RZZ gates indexed as 
i, j ∈ {(0, 1), (2, 3), (4, 5), ..., (N − 1,N)} and respectively i, j ∈ {(0, 1), (1, 2), (2, 3), ..., (N − 1,N)} . To clarify, for 
an LE scheme, every additional RZZ gate is in a new circuit layer, increasing the circuit depth each time. The 
LE scheme creates whole circuit entangled states23. The state vector for a PS entanglement scheme evolves in a 
product state of qubit pairs, |ψ� =

⊗n/2
i=1 |φ�i , where |φ�i are two-qubit entangled states. The state, |ψ� , can be 

efficiently classically simulated and can be parallelized in classical simulation or on quantum computers37,38.

Reservoir noise parameterization
QNIR uses noise as a necessary resource to generate non-trivial feature sequences. We use artificial noise that 
can be programmed to a quantum computer. Within this scheme, many such artificial noise models can be 
implemented to produce different effects. To implement a noise scheme, we associate parameterized, single-
qubit noise channels with each unitary gate in the quantum circuit, Eq. (6), as shown in Fig. 4. Note that this 
differs from Kubota et al.12, where noise channels were situated at the end of every time step. In the following, 
we assume each noise channel depends on a single noise parameter.

Noise channels are associated with all quantum gates in the reservoir circuit in Fig. 4. Each noise channel 
E (p) is a function of a probability for the noise effect to occur. We use probabilities, pi , to parameterize the 
reservoir for optimization. The number of probability parameters scales linearly with the number of qubits. For 
pair-separable entanglement reservoir, the number of parameters is npi =

7
2
n , where n = 2, 4, 6, ... , and for linear 

entangled reservoir npi = 6n− 5 , where n = 2, 3, 4, ....
QNIR resource-noise optimization is performed through iterative training (Eq. 2) and testing (Eq. 3) of QNIR, 

giving optimized noise probability parameters, pi ∈ p (see Fig. 5). The parameters in the initial parameter vector, 
p , are probabilities randomly selected from a uniform distribution, pi ∼ U(0, 1),∀i.

(8)
Ub(u) = (CXi,jRZj(θ)CXi,j)RX

⊗n(θ)

= RZZi,j(θ)RX
⊗n(θ)

(9)Ut=N = Ub(uN ) . . .Ub(u1)Ub(u0).

(10)�Zi�t = ��0|U
†
t ZiUt |�0� = 000...,

(11)TN = TuN ◦ . . . ◦Tu2◦Tu1 .

Figure 4.   A 2-qubit quantum circuit channel diagram of an reservoir noise parameterization. Each unitary 
gate has an associated noise channel represented by E (pi) . This represents the novel quantum circuit 
parameterization approach proposed in this work.
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Two optimization approaches were trialed in this work, evolutionary optimization27 and dual annealing39, 
where the latter is available in the SciPy optimization package40. The mean squared error (MSE) was used as a 
suitable cost function to measure prediction performance, which is minimized as

where ŷ = WT
optX(p) is the QNIR test set prediction and X(p) are the reservoir signals matrix dependent on 

noise probabilities p.
In this work, we use only reset noise channels that can be simply implemented with a classical ancilla system 

(see next subsection: Reset noise).

Reset noise
We propose a simple hybrid quantum-classical algorithm for a reset noise channel that consists of probabil-
istically triggering a reset instruction using a classical ancillary system. A deterministic reset instruction is 
an important element of a quantum instruction set, for the need to reset qubit states. A quantum instruction 
set is an abstract quantum computer model41,42. In this work we consider a reset to |0� noise channel given by 
EPR(ρ) = p|0��0| + (1− p)ρ , where p is the reset probability43. EPR(ρ) is trace-preserving, Tr(EPR(ρ)) = 1.

Using dynamic circuits, quantum computers can implement a reset instruction with a mid-circuit meas-
urement followed by a classically controlled quantum X gate that depends on the measurement outcome44 
(see Fig. 6). For example, this is how a reset is now implemented on IBM quantum computers supported by 
OpenQASM341.

In classical computing, execution of a probabilistic instruction is triggered using a random number generator 
(RNG), such as those widely available in software as PRNGs or in hardware as HRNGs. Here we employ a clas-
sical RNG to probabilistically activate a reset, which is identical to reset noise. In this way, artificial reset noise 
is implemented without ancilla qubits. Ancilla qubits would be an undesirable overhead in the larger scheme 
presented in this work in which unitary gates require potentially many corresponding noise channels. This hybrid 
approach may be viable for other noise channels. For example, reset noise can approximate amplitude damping 
noise to high precision43.

(12)min
p

{MSE(ŷ(p), y) : pi ∈ [0, 1],∀i},

Figure 5.   This graphic shows the QNIR noise optimization scheme. The quantum model is trained and tested 
iteratively in a classical optimization loop, where dual annealing or evolutionary optimization are used. The 
quantum reservoir circuits have a number of gate-associated noise channels, each of which has a single error 
probability parameter that is iteratively updated.

Figure 6.   A deterministic RESET instruction (left) is executed with this dynamic circuit. This can be used as a 
basis for a reset noise channel, EPR . A single line represents a qubit and a double-line represents a classical bit. A 
model classical ancillary system (right) would be executed on a classical computer. The classical NOT gate, Xp , is 
executed with probability p, which in turn triggers a classical controlled RESET instruction with probability p.
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Methods
Reservoir complexity reduction
Reservoir complexity reduction was performed for all benchmark tasks to reduce quantum resource footprint 
and prevent overfitting. This involved reductions in both reservoir entanglement scheme complexities and num-
bers of qubits. Reduction was performed as a typical optimization procedure in which resources increase until a 
stopping condition is satisfied. Reductions in circuit resources was determined largely by reservoir optimization 
and final MSE. See Methods: Noise optimization.

Entanglement scheme complexity is quantum circuit complexity45, determined by the number of entangling 
gates and resultant circuit depth, i.e. it is the cost of the quantum circuit. Linear entanglement schemes were 
trialed first for both benchmarks and were comparable to pair-separable entanglement schemes that were finally 
selected by the reduction principle.

The numbers of qubits in the quantum reservoirs were reduced to smaller numbers of qubits that still offered 
good performance. Diminishing returns were observed with reservoirs with larger numbers of qubits.

In preparation for this work, an artificial quantum noise scheme was downsized from a physical device noise 
model consisting of 10 submodels of thermal relaxation, depolarization, and state preparation and measure-
ment (SPAM) noise, to a single reset noise model. A systematic reduction approach for noise channels is not 
presented in this work.

Noise optimization
Dual annealing optimization and evolutionary optimization were employed for NARMA and Mackey-Glass 
benchmarks, respectively. Dual annealing from SciPy’s40 optimization package was used for reservoir optimiza-
tion using default settings. This stochastic approach, derived from39, dualizes the generalized classical simulated 
annealing (CSA) and fast simulated annealing (FSA)46 with a local search strategy47. Evolutionary optimization 
(EO) is a population-based approach to optimization in which candidate solutions, represented as a popula-
tion of agents, are initialized through random sampling. Subsequently, the fitness of each candidate solution is 
determined by evaluating it against a predefined objective metric. The superior solutions are then selected and 
utilized to generate the candidate population for the subsequent iteration. This process continues until satisfac-
tory solutions have been identified. Here we employ the EO algorithm in Chen et al.27.

Reset noise probabilities were optimized to maximize prediction performance, as detailed in the Reservoir 
noise parameterization. Optimization algorithms require stopping conditions. The three stopping condition were: 
multiple small changes in MSE, long iteration runtime without update and the maximum number of iterations 
was 5, which is generally observed to be a large number for the optimization algorithms used. These stopping con-
ditions returned reproducible final MSEs, indicating that they were near optimal for the optimization algorithms.

Simulations
The quantum reservoir circuits with artificial noise channels were simulated using Qiskit SDK48. The QASM 
Simulator was used with an ideal density matrix simulator. This theoretical approach allows for a simulation with 
a single computational run of a single QuantumCircuit object. The single-qubit Z expectation values were 
computed from intermediate density matrices at each time step. Simulations could not be performed with linear 
entanglement reservoirs larger than 12 qubits because of the demands of a density matrix simulator.

Reset noise channels are coded with Kraus instructions added directly to a QuantumCircuit. A reset_
error channel is available with a single probability parameter, the target of optimization. It was passed to the 
Kraus instruction.

Memory capacity
Recurrency of an RC enables retention of information or a short-term memory of past signals in reservoir states. 
The memory capacity (MC) is a measure which quantifies this ability to retain information of the past inputs 
and it plays a crucial role in the prediction abilities of a reservoir computer1.

To calculate MC, first a random sequence from a uniform distribution is prepared that is appropriate to for 
optimized QNIR model. The minimum and maximum values of the random sequence, i.e. the scale of the values, 
is made to be equivalent to benchmark time series scale that the model was optimized for. QNIR is then trained 
to predict signals d timesteps before the input sequence of the reservoir, uk , where the target signal is ŷk = uk−d . 
The memory function (MF) is defined as the square of the Pearson correlation coefficient,

and the MC is then calculated as the sum of the MFs for all the delays as

In Results, MCs are calculated for QNIR models that were trained and optimized for the three NARMA and 
two Mackey-Glass systems.

Metrics
Metrics normalized mean squared error (NMSE) and normalized root-mean-square error (NRMSE) are fre-
quently used in the relevant literature and therefore they are used here for convention and comparison. The 

(13)MFd =
cov2(yk , ŷk)

σ 2(yk)σ 2(ŷk)
,

(14)MC =
∑

d

MFd .
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mean absolute scaled error (MASE) metric of Hyndman and Koehler49 is used due to its many properties that 
allow for comparison between time series of different scales and is readily interpretable due to symmetry and 
linearity. Furthermore, MASE is used because we compare QNIR prediction performance with the Naive model, 
whose performance is better than a linear model and thus provides a more challenging reference prediction. 
The Naive model is one of the simplest forecasting models, in which the next time series value is predicted to 
be equal to the current value50.

The mean squared error (MSE) used as an optimization cost function is defined

NMSE used to evaluate prediction performance is defined

NRMSE is defined

where σ(y) is the sample standard deviation of the true values. MASE forecasting metric is defined

where ej = yj − fj is the true value minus the forecasted value. The denominator is the mean absolute error (MAE) 
of the non-seasonal Naive out-of-sample forecast.

Results
NARMA
We show that QNIR with noise optimization has excellent theoretical performance for the nonlinear auto-
regressive moving average (NARMA) sequence prediction benchmarks11,51. A NARMA regression task involves 
learning the nonlinear NARMA map between a fixed input sequence and a NARMA output sequence. We label 
the sequences NARMAN, where N is the order of the NARMA map. We consider three NARMA sequences of 
orders 2, 5 and 10.

The NARMA2 sequence51 is given by the recurrence relation

where the two initial sequence values are {0.196, 0.19468} . The input values ut are from the smooth function

where (a, b, c,T) = (2.11, 3.73, 4.11, 100) . NARMA5 and NARMA10 are described by the following general 
recursive function

For NARMA5, the initial sequence is {0, 0, 0, 0, 0.196} and the first four zeroes are excluded from the target 
sequence. The function parameters for NARMA5 are (α,β , γ , δ,T) = (0.3, 0.05, 1.5, 0.1, 100) . Similarly for 
NARMA10, the first nine values in the initial sequence are zeroes and are not included in the target sequence. 
The function parameters used are the same as for NARMA5. NARMA time series values were encoded directly 
to the angle of the encoding gates. Temporal train and test split indices are 20–80 and 81–100, respectively. The 
initial 20 time steps were excluded as a washout phase.

Excellent simulation results have been achieved for the NARMA2, 5 and 10 tasks, plotted in Fig. 7 and 
recorded in Table 1. The primary reason for the high quality results comes from the effectiveness of the reset 
noise parameterization and subsequent optimization, first implemented in this work. This effectiveness is dem-
onstrated by a 2 orders of magnitude improvement from random initialization of reset noise probabilities to 
the final optimization iteration for all three NARMA tasks, as plotted in Fig. 8. For each of the three NARMA 
tasks, three distinct sets of optimal parameters were obtained. Information processing capacity (IPC) analysis52 
has been used to show that QNIR can solve the NARMA2 task12. The excellent performance on NARMA2 in 
particular provides evidence that noise parameterization is suitable for approaching an optimal solution model.

In combination with reservoir noise optimization, reduction of the quantum reservoirs was performed in 
number of qubits and reservoir circuit complexity in terms of entanglement schemes (see "Methods"). Pair-
separable (PS) and linear entanglement (LE) scheme-based reservoirs were optimally reduced to 12 (6× 2) qubits 
for all NARMA tasks. Reservoirs with larger number of qubits did not improve NARMA prediction performance 

(15)MSE =
1

n

∑

i

(yi − ŷi)
2
.

(16)NMSE =

∑

i(yi − ŷi)
2

∑

i y
2
i

.

(17)NRMSE =

√

1
T

∑

t(yi − ŷi)2

σ(y)

(18)MASE =

1
J

∑

j |ej|

1
T−1

∑T
t=2 |yt − yt−1|

(19)yt+1 = 0.4yt + 0.4ytyt−1 + 0.6u3t + 0.1,

(20)ut = 0.1 sin

(

2πat

T

)

sin

(

2πbt

T

)

sin

(

2πct

T

)

+ 0.1

(21)yt+1 = αyt + βyt

(

n−1
∑

i=0

yt−i

)

+ γ ut−(n−1)ut + δ.
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and smaller numbers of qubits show a drop in performance, see Fig. 8. 12-qubit reservoirs are parameterized 
with 42 and 67 reset noise probabilities for PS and LE reservoirs, respectively. Next we consider the second 
dimension of reduction of entanglement schemes. For NARMA 2 and 10, the reservoir complexity and associ-
ated entanglement was reduced to a PS reservoir. This is because the results for LE reservoirs were comparable. 
However, for NARMA5 an LE reservoir was not reduced because of improved performance. The quantum state 
of the LE reservoir is non-separable due to a higher degree of entanglement.

This result strongly indicates an improvement from recent work11 in terms of reducing resource-noise require-
ments to a single reset noise model. Those experimental results11 have inherent measurement sampling error, 
however, our result demonstrates that multifaceted physical device noise is not required for the NARMA tasks 

Figure 7.   Plot (a) is the input sequence for all NARMA tasks, Eq. (20). Plots (b–d) are QNIR training and 
prediction of NARMA2, 5, 10 maps, respectively. Training data sequences are between time step indices 20–80 
and test data sequences are between 81 and 100. Test set prediction performance metrics are in Table 1.

Table 1.   QNIR performance metrics are explicitly compared with the Naive model, which has an out-of-
sample MASE of 1 by definition (Methods: Metrics).  NARMA2 and 10 were achieved with pair-separable 
reservoir and NARMA5 with linear entanglement.

Metric NARMA2 NARMA5 NARMA10

QNIR NARMA results

 MASE 2.8× 10
−2

6.4× 10
−2 0.39

 NMSE 6.1× 10
−9

1.4× 10
−6 8.3× 10

−5

 NRMSE 1.6× 10
−2

3.3× 10
−2 0.22

 MSE 2.3× 10
−10

4.6× 10
−8

3.2× 10
−6

Naive model NARMA results

 MASE 1 1 1

 NMSE 6.5× 10
−6

3.0× 10
−4

6.1× 10
−4

 NRMSE 0.51 0.48 0.60

Figure 8.   Log plots of MSE cost curves for reservoir tuning iterations for both pair-separable (PS) and linear 
entanglement (LE) reservoir designs. The number of qubits in both PS and LE reservoirs were increased from 
4 qubits in steps of 4 qubits until 12-qubit reservoirs were selected. For NARMA2 and 10 both PS and LE 
reservoirs had similar final MSE values. For NARMA5 the LE reservoir provided a better option. See "Methods" 
for details on optimization and simulation matters.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19326  | https://doi.org/10.1038/s41598-023-45015-4

www.nature.com/scientificreports/

defined in these works, as only reset noise channels were required here. These results may further suggest that a 
reset noise QNIR would be a favorable direction for more NARMA benchmarks12.

MCs of the systems were observed to be saturated at 4.55(±0.07) , 4.50(±0.07) , and 4.70(±0.06) at the delays 
of 8, 8, and 10 for NARMA2, 5, and 10, respectively (see Fig. 11). Confidence intervals at α = 0.05 are indicated 
in brackets. The MF profiles differ from unoptimized QNIR reservoirs, which suggests structural differences 
in short-term memory. Unoptimized reservoirs have more sigmoid or S-shaped curves with lower MC. The 
NARMA10 MF plot has very clear structure in MF values that are larger for longer delays up to 10, needed for 
the higher order function. A partial reason for the lower NARMA10 prediction result may be the smaller MF 
value at d = 10 . The memory-nonlinearity trade-off inherent in RC algorithms53 should be established and 
investigated in a dedicated work for QNIR to aid interpretation of these metrics.

Mackey‑Glass
The Mackey-Glass (MG) nonlinear system54 is a commonly used benchmark for time series prediction that is dif-
ficult to predict due to challenging chaotic dynamics under some parameters. The Python package ReservoirPy55 
was used to generate MG system time series, which are discretized using the Runge-Kutta method and initialized 
with a default seed value. For MG benchmarking, we extend the training sequence from 60 to 250 data points 
and the testing sequence from 20 to 100 data points from what was used for NARMA. This extension is designed 
to stress test QNIR.

The MG delay differential equation (DDE) is

To generate time series for benchmarking, parameters (x0, a, b, n) = (1.2, 0.2, 0.1, 10) were used. The input and 
target time series are defined as x(t − τ) and x(t), respectively. We considered two distinct, chaotic MG systems 
determined by integer delay values τ = 19 and 25, which we denote MG19 and MG25, respectively. The gener-
ated time series were then downsampled by a factor of 2. For both downsampled MG19 and MG25 time series, 
chaoticity is indicated by positive Lyapunov exponents56, calculated using the nolds Python library57.

The time series were downsampled from 800 time steps to 400 time steps. Temporal train and test split indices 
are 20-300 and 301-400, respectively. The initial 20 time steps were excluded as a washout phase. The MG time 
series values were encoded directly to the angle of the encoding gates.

We report good prediction performances, plotted in Fig. 9 and recorded in Table 2. QNIR has demonstrated 
prediction performances much better than the Naive model and shows promise for modeling challenging cha-
otic dynamics with exponential sensitivity to initial conditions. Larger reservoirs with three times the number 
of qubits were required for the MG modeling compared to NARMA, indicating greater prediction difficulty. 
However, it is worth emphasizing that 32-qubit reservoirs are still relatively small by conventional approaches.

The effectiveness of noise parameterization and optimization can be seen in Fig. 10 with the large initial 
drops from iteration 0 to 1, where iteration 0 reflects randomly initialized parameters. This is a main result in 
demonstrating the effectiveness of this noise parameterization approach.

By the reduction procedure, reservoirs were reduced to 32 (16× 2) qubits for MG19 and MG25 tasks. Increas-
ing the number of qubits beyond these numbers saw diminishing returns and reductions below caused a drop-off 
in performance, as can be seen in Fig. 10. The 32-qubit reservoirs were parameterized with 112 noise probabilities. 
Comparable performances were obtained for both LE and PS reservoirs, therefore by reduction PS reservoirs 
were selected.

MCs of the systems were saturated at 4.56(±0.07) and 4.55(±0.08) at the delays of 6, and 8 for MG19 and 
MG25, respectively (see Fig. 11). Confidence intervals at α = 0.05 are indicated in brackets. Since MCs for these 
larger MG reservoirs were similar to those utilized for the NARMA benchmark, the larger modeling complexity 
may be provided by the threefold number of available reservoir output signals to the linear regression layer. The 
MF plots suggest a small memory design for these QNIR reservoirs although an in-depth analysis of MG system 

(22)
dx

dt
=

ax(t − τ)

1+ x(t − τ)n
− bx(t).

Table 2.   QNIR performance metrics are explicitly compared with the Naive model, which has an out-of-
sample MASE of 1 by definition (Methods: Metrics).

Metric MG19 MG25

QNIR Mackey-Glass results

 MASE 0.29 0.38

 NMSE 4.6× 10
−4

7.3× 10
−4

 NRMSE 8.7× 10
−2 0.10

 MSE 4.3× 10
−4

6.5× 10
−4

Naive model Mackey-Glass results

 MASE 1 1

 NMSE 4.4× 10
−3

4.0× 10
−3

 NRMSE 0.27 0.24
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would be required to confirm. Further investigation would center on memory-nonlinearity trade-off, which may 
explain why smaller memories were traded for greater reservoir nonlinearity for the chaotic MG time series.

Conclusions
We have demonstrated a new QNIR reservoir optimization approach that uses parameterized resource noise 
to address the need for quantum reservoir tuning for improved prediction performance. This parameterization 
approach to reservoir tuning embodies a new, general quantum circuit parameterization approach for QML 
models.

Benchmarking has demonstrated that resource noise parameterization, and optimization with dual annealing 
and evolutionary algorithm, is effective for improving prediction performance. Our simulations showed that 

Figure 10.   Log plots of MSE cost curves for reservoir tuning iterations. MSEs from initial to final iterations 
improved up to 2.5 orders of magnitude, demonstrating the effectiveness of noise optimization. In the two plots 
comparing LE and PS reservoirs, it can be seen that there is no notable difference between final MSEs for MG19 
or MG25 data up to 12 qubits. By the principle of resource reduction PS reservoirs should be favored. See 
Methods for details on optimization and simulation matters.

Figure 11.   QNIR memory functions for NARMA and Mackey-Glass tasks over 30 trials plotted against delay d 
in the input signal. The colored bands correspond to the standard deviations.

Figure 9.   The input and target time series are defined as x(t − τ) and x(t), respectively (Eq. 22). Plots (a,b) 
are MG19 input and 19-step delay target time series and prediction result, respectively. The same applies for 
plots (c,d) for MG25. Training data sequences are between time step indices 20–300 and test data sequences are 
between 301 and 400. Test set prediction performance metrics are in Table 2.
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few-qubit QNIR computers are capable of predicting nonlinear dynamics including challenging chaotic dynamics 
in the Mackey-Glass system. We demonstrated a significant minimization of noise resource over previous QNIR 
work, resulting in a single reset noise model being selected for the benchmark samples chosen in this work.

Systematic reduction of quantum resources in the number of qubits and entanglement scheme of the reser-
voir was employed. While reduction of entanglement scheme complexity may produce quantum circuits that 
are efficient to compute classically, this process is desirable when the learning task does not require quantum 
advantage. This is consistent with the machine learning principles of model selection and resource reduction. 
Furthermore, the QNIR framework is consistent with complex entanglement schemes, and therefore opens a 
path towards investigating quantum advantage.

Reducing quantum circuit complexity has positive implications for quantum hardware efficiency, which is 
critical for current quantum computers hindered by noise. Therefore, we recommend implementation on current 
quantum computers using error mitigation.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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