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Clinical courses of acute kidney 
injury in hospitalized patients: 
a multistate analysis
Esra Adiyeke 1,2, Yuanfang Ren 1,2, Ziyuan Guan 1,2, Matthew M. Ruppert 1,2, Parisa Rashidi 1,3, 
Azra Bihorac 1,2,4* & Tezcan Ozrazgat‑Baslanti 1,2,4

Persistence of acute kidney injury (AKI) or insufficient recovery of renal function was associated with 
reduced long‑term survival and life quality. We quantified AKI trajectories and describe transitions 
through progression and recovery among hospitalized patients. 245,663 encounters from 128,271 
patients admitted to UF Health between 2012 and 2019 were retrospectively categorized according 
to the worst AKI stage experienced within 24‑h periods. Multistate models were fit for describing 
characteristics influencing transitions towards progressed or regressed AKI, discharge, and death. 
Effects of age, sex, race, admission comorbidities, and prolonged intensive care unit stay (ICU) on 
transition rates were examined via Cox proportional hazards models. About 20% of encounters had 
AKI; where 66% of those with AKI had Stage 1 as their worst AKI severity during hospitalization, 
18% had Stage 2, and 16% had Stage 3 AKI (12% with kidney replacement therapy (KRT) and 4% 
without KRT). At 3 days following Stage 1 AKI, 71.1% (70.5–71.6%) were either resolved to No 
AKI or discharged, while recovery proportion was 38% (37.4–38.6%) and discharge proportion was 
7.1% (6.9–7.3%) following AKI Stage 2. At 14 days following Stage 1 AKI, patients with additional 
frail conditions stay had lower transition proportion towards No AKI or discharge states. Multistate 
modeling framework is a facilitating mechanism for understanding AKI clinical course and examining 
characteristics influencing disease process and transition rates.

Background and significance
Acute kidney injury (AKI) occurs in almost 25% of patients admitted to hospitals and up to 60% of patients 
receiving critical  care1–3.  Persistence of AKI or insufficient recovery of renal function exacerbates risk for adverse 
health conditions and worsens long-term survival in addition to patients’ well-being4 5.  To optimize and tailor 
clinical actions and their timely delivery, it is imperative to understand clinical course of AKI in terms of severity 
and recovery during hospitalization.

Conventional survival analysis methods have been utilized to describe AKI trajectories and associated 
 outcomes4,6,7.  These models have the capacity to deal with time-to-event type data and censored subjects, where 
a subject being censored refers to failing to experience the study’s event of interest or being dropped out of the 
study by the end of the observation period or follow-up  time8,9.  Despite their significant merits, traditional 
survival analysis methods, such as Kaplan–Meier methods, have certain limitations. For instance, censoring 
action used in these models could be considered uninformative since in real-world scenarios patients are subject 
to several competing risks. Competing risks models could deal with aforementioned structures; however, both 
approaches treat all states as absorbing and therefore lack inclusion of patients’ history. For analyses that involve 
patient histories with several events of interest occurrence, multistate models could be used to characterize the 
competing risks. Applications of multistate models could be found for various care  levels10,11 and patient groups 
such as kidney  disease12,   diabetic13 ,  surgical14 ,  cancer15 , COVID-1916,  and  geriatric17 cohorts.

Multistate models are specifically beneficial in analyzing temporal changes and present an alternative 
approach with considerable potential in research studies with longitudinal nature; however, multistate models 
require precise and detailed records of transitions between the identified states. Consequently, we retrospectively 
performed multistate-based analyses on a large cohort of subjects with the following objectives: (1) to understand 
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the clinical course of AKI among hospitalized patients by estimating the probability of being in a specific clini-
cal state at a certain time after entering each one of the AKI stages, and (2) to investigate the effects of age, sex, 
race, comorbidities, and prolonged ICU stay on transition rates via Cox proportional hazards regression models.

Methods
Study design
The study was designed and approved by the Institutional Review Board of the University of Florida and the 
University of Florida Privacy Office as an exempt study with waiver of informed consent (IRB 201901123). 
The University of Florida Health (UFH) Integrated Data Repository acted as Honest Broker. We performed all 
methods in accordance with the relevant guidelines and regulations. A single-center, longitudinal dataset was 
curated from the electronic health records of 156,699 adult patients admitted to UFH between January 1, 2012, 
and August 22, 2019. We excluded patients with end stage kidney disease (ESKD) encounters with no serum 
creatinine measurement to determine AKI status during hospitalization and within 48 h of hospital admission, 
and encounters discharged (alive or dead) within 24 h of admission. Our final cohort included 245,663 hospital 
encounters from 128,271 patients (Supplementary Fig. S1). This study followed Strengthening the Reporting of 
Observational Studies in Epidemiology (STROBE)  recommendations18.

Assessment of kidney function and study outcomes
In identifying and staging the AKI, we used a validated computable phenotyping  algorithm19 that relies on 
Kidney Disease: Improving Global Outcomes (KDIGO) serum creatinine  criteria20–22. Reference creatinine was 
determined using preadmission  records23 or estimated using the Chronic Kidney Disease Epidemiology Col-
laboration (CKD-EPI) Study equation refit without race multiplier, as per recommendations, with a baseline 
estimated glomerular filtration rate assigned to 75 ml/min/per 1.73  m222,24–26. We identified primary clinical 
outcomes as No AKI, AKI Stage 1, AKI Stage 2, AKI Stage 3 without kidney replacement therapy (KRT), AKI 
Stage 3 with KRT, hospital death, and discharge (Supplementary Fig. S2). Details regarding assumptions and the 
phenotyping algorithm pipeline can be found in Ozrazgat-Baslanti et al.19.

Multistate analyses
Multistate models allow intermediate events to simultaneously change the risk of reaching a terminal  state13.  
In defining and fitting a multistate model, state set and transition set need to be identified. In this context, state 
set represents temporal status of a patient whereas transition set defines possible movements between states. A 
state is considered absorbing (or terminal) if leaving that particular state is impossible, and a state is considered 
transient if transitioning to another state is possible. Basically, state set of a multistate model is a collection of 
initial state(s), transient state(s), and terminal state(s). An initial state is the time point of the subject’s entry 
into the model, and returning to an initial state is not possible once it was left. Apart from absorbing and initial 
states, remaining transient states could be visited several times. The collection of states and transitions presents 
the framework for designating a statistical model for hazard function for each of the transitions identified.

Multistate models assist in quantifying separate transition intensities for switching from one particular state 
to another state and in quantifying the present proportion of the patients occupying a specified state at a given 
time point. Therefore, these models allow estimating the probability of a clinical event occurring after an entrance 
to a particular state over an extended time. We refer the reader for relevant background of the non-parametric 
or semi-parametric models to Andersen et al.27,  Thernau et al.28,  and Geskus et al.29.

We developed two separate multistate models by using a large dataset that assembles both time-varying and 
static information of the patients. We identified 8 mutually exclusive states based on patients’ clinical condi-
tion at each time point. These states are enumerated and listed as follows: (0) Admission, (1) No AKI, (2) AKI 
Stage 1, (3) AKI Stage 2, (4) AKI Stage 3 without KRT, (5) AKI Stage 3 with KRT, (6) Death, and (7) Discharge 
(Supplementary Fig. S2). States were discretely determined by considering the worst AKI condition a subject 
experienced within 24-h time periods.

We first quantified the transition probabilities using an Aalen-Johansen estimation-based non-parametric 
multistate model where the variable effects were ignored in estimating transition probabilities from one state to 
another. Following that, in describing the variable effects on the hazards, we fit a Cox model in the multistate 
semi-parametric framework. This approach aids in specifying distinct variable effects for distinct transitions in 
the terminal states either with or without inclusion of intermediate events. We included age, sex, race, Charlson 
comorbidity index (CCI), and prolonged ICU stay (e.g., ICU stay longer than 48 h) as the  variables30.  We pre-
sented the clinical course of the AKI patients via alluvial plots where we stratified the patients by considering 
their movements between the specified states throughout their hospitalization (Fig. 1)31.

We calculated instantaneous hazard rates for particular events from predetermined states without considering 
intermediate events. Specifically, the instantaneous hazard rates from No AKI, AKI Stage 1, AKI Stage 2, and AKI 
Stage 3 states to these predetermined states including death state were calculated. For all analyses performed, 
we considered time 0 as the entrance moment into a certain state. Patients were censored at hospital discharge, 
death, or the end of the 14-day of observation period, whichever came first. Patient characteristics were presented 
in terms of their means and standard deviations (SD), medians with interquartile ranges (IQR), or frequencies 
with percentages, as appropriate. Kruskall-Wallis test or chi-square tests were performed to compare the data 
between groups, where appropriate. Threshold was set to 0.05 for a p-value to indicate statistical significance. 
All data processing and analyses were performed using Python 3.8 and R 4.1.2. We conducted modeling and 
statistical analyses using mstate and survival  packages32–35.
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Results
Clinical characteristics of patients
Subjects were categorized with respect to the worst AKI severity outcome during their hospitalization. Cohort 
characteristics and their statistical comparisons were reported in Table 1. Average age for No AKI patients was 55 
and was significantly lower than AKI groups (Table 1). Female patients were the majority for No AKI and Stage 2 

Figure 1.  Number of patients transitioning on consecutive days shown for 14 days of hospitalization for 
AKI Stage 1 (a), AKI Stage 2 (b), AKI Stage 3 without KRT (c), and AKI Stage 3 with KRT (d) patients. The 
horizontal axis of the figures in the panels represent the days in hospital and the vertical axis displays the 
number of patients.

Table 1.  Detailed cohort characteristics and outcomes stratified by worst AKI severity. AKI, acute kidney 
injury; CKD, chronic kidney disease; ICU, intensive care unit; IQR, interquartile range; KRT, kidney 
replacement therapy; SD, standard deviation. Bold values in Table 1 indicate a Bonferroni corrected 
p-value ≤ 0.05 compared to no AKI group.

Features No AKI AKI Stage 1 AKI Stage 2
AKI Stage 3 
without KRT

AKI Stage 3 
with KRT

Number of encounters, n 195,581 33,260 8,779 6,004 2,039

Age in years, mean (SD) 55 (18) 61 (17) 61 (17) 60 (16) 59 (15)

Female, n (%) 103,009 (53) 16,451 (49) 4,580 (52) 2,855 (48) 802 (39)

Hispanic ethnicity, n (%) 8,257 (4) 1,216 (4) 283 (3) 209 (3) 73 (4)

African American, n (%) 38,959 (20) 7,434 (22) 1,882 (21) 1,543 (26) 423 (21)

CKD, n (%) 40,573 (21) 12,988 (39) 2,909 (33) 3,002 (50) 1,194 (59)

Charlson comorbidity index, median (IQR) 1 (0, 3) 2 (1, 4) 2 (1, 4) 3 (1, 5) 3 (2, 5)

Reference creatinine, mean (SD) 0.84 (0.32) 0.97 (0.47) 0.85 (0.30) 1.53 (1.61) 1.63 (1.58)

Mechanical ventilation days, median (IQR) 2 (2, 4) 3 (2, 7) 4 (2, 9) 5 (3, 10) 9 (4, 18)

Length of stay (days), median (IQR) 3 (2, 6) 7 (4, 12) 8 (4, 16) 8 (5, 16) 21 (10, 35)

ICU length of stay (days), median (IQR) 3 (2, 6) 5 (3, 10) 7 (4, 13) 6 (4, 13) 15 (7, 28)

ICU length of stay ≥ 48 h, n (%) 29,987 (15) 126,25 (38) 4,385 (50) 3,133 (52) 1,803 (88)

Hospital mortality, n (%) 2,361 (1) 1,593 (5) 993 (11) 1,097 (18) 920 (45)
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AKI, whereas male patients were the majority for remaining patient groups. Percentage of CCI ≥ 3 was the lowest 
for No AKI group. Hospital length of stay was significantly lower for No AKI cohort. Similarly, time period with 
mechanical ventilation and ICU length of stay was lower for No AKI group. Detailed cohort characteristics and 
outcomes were reported in Supplementary Table S1.

AKI trajectory analyses
Daily transitions were demonstrated in Fig. 1 for each AKI stage. Patients admitted with AKI Stage 1 had the 
highest proportion for early resolution or discharge and the lowest percentage for AKI progression (Fig. 1a). 
Patients admitted with worse AKI severity had almost consistently lower proportions for resolution and dis-
charge compared to AKI Stage 1 group. Similarly, patients with more severe AKI groups on their early days of 
hospitalization had higher percentages for maintaining their initial AKI stage (Fig. 1b–d).

Within 24 h following the admission, 8.22% of the patients had AKI, and a majority of those AKI patients had 
Stage 1 AKI (Fig. 1, Table 2). From 7 days after admission, 2.09% (95% Confidence Interval (CI) 2.04–2.15%) of 
all patients had Stage 1 AKI, whereas 1.43% (95% CI 1.35–1.50%) experienced Stage 2 or more severe AKI. At 
that point, 66.39% (95% CI 66.22–66.56%) of the cohort were discharged, and the probability for terminal state 
of death was 1.19% (95% CI 1.16–1.23%). On day 7 following AKI Stage 2, proportion of progression to higher 
stages of AKI (5.67% [95% CI 5.35–6.02%]) was higher than the proportion of progression to higher stages from 
AKI Stage 1 (2.90% [95% CI 2.74–3.08%]). At that time point, resolved or discharged percentage of the patients 
with an initial status of AKI Stage 1 was higher (91.85% [95% CI 91.46–92.23%]) than cohorts with AKI Stage 2, 
3 without KRT, and 3 with KRT. Among AKI patients without KRT requirement, Stage 3 patients had the highest 
percentage for persisting condition (12.24% [95% CI 11.60–12.91%]).

Patients with No AKI diagnosis had the highest transition rates to AKI Stage 1 state throughout the hospi-
talization (Fig. 2a, Supplementary Fig. S3a). For those patients, first peak was observed within first two days, 
whereas the second peak transfer rate to AKI Stage 1 appeared near following completion of first week of the 
14-day hospital stay. Though at much lower rates, transfer rates from No AKI to death repeated a similar pattern 
of peaks and lows as transfer rates to AKI Stage 1. AKI Stage 1 patients were more likely to start resolving in next 
day (Fig. 2b, Supplementary Fig. S3b). Among AKI Stage 1 patients, top transfer rates occurred for resolving 
state, while the second highest transfer rates were for advancing to Stage 2. These two top processes had slightly 
different timings for jumps occurring in a 14-day time period.

AKI Stage 2 cohort had the highest transition rates for regression to AKI Stage 1 (Fig. 2c, Supplementary 
Fig. S3c). Among patients with AKI Stage 2, hazard rates for transitioning towards resolution were observed 
higher than progressing to AKI Stage 3 without KRT until approximately day four and risk for progressing to 
AKI Stage 3 without KRT elevated and surpassed resolution hazard rates thereafter. AKI Stage 3 without KRT 
patients were more likely to transfer to AKI Stage 2 compared to transitions to AKI Stage 1 and No AKI states 
(Fig. 2d, Supplementary Fig. S3d). Transition rates from AKI Stage 3 without KRT to AKI Stage 2, AKI Stage 1, 
and No AKI were at their highest within the first two days. Instantaneous hazard rates for transitioning to death 

Table 2.  Multistate models based estimated proportions of patients in each clinical state over time. AKI, acute 
kidney injury; CI, confidence interval; KRT, kidney replacement therapy.

Patient 
Characteristics and 
Outcomes

No AKI, %
(95% CI)

AKI Stage 1, %
(95% CI)

AKI Stage 2, %
(95% CI)

AKI Stage 3 without 
KRT, %
(95% CI)

AKI Stage 3 with 
KRT, % (95% CI)

Death, %
(95% CI)

Discharge, %
(95% CI)

Days since admission

 Day 1 91.78 (91.78, 91.78) 4.92 (4.92, 4.92) 1.74 (1.74, 1.74) 1.51 (1.51, 1.51) 0.05 (0.05, 0.05) 0 (0, 0) 0 (0, 0)

 Day 3 75.93 (75.77, 76.09) 5.52 (5.42, 5.62) 1.19 (1.14, 1.23) 0.92 (0.89, 0.95) 0.29 (0.27, 0.31) 0.23 (0.21, 0.25) 15.93 (15.80, 16.07)

 Day 7 28.90 (28.74, 29.06) 2.09 (2.04, 2.15) 0.56 (0.53, 0.59) 0.49 (0.46, 0.51) 0.38 (0.36, 0.40) 1.19 (1.16, 1.23) 66.39 (66.22, 66.56)

Days since AKI Stage 1

 Day 1 0 (0, 0) 100 (100, 100) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

 Day 3 59.82 (59.46, 60.18) 22.30 (21.92, 22.68) 4.34 (4.18, 4.50) 1.17 (1.10, 1.24) 0.63 (0.57, 0.69) 0.52 (0.48, 0.57) 11.23 (11.07, 11.40)

 Day 7 30.23 (30.05, 30.41) 3.18 (3.09, 3.27) 1.19 (1.13, 1.25) 0.91 (0.86, 0.97) 0.80 (0.75, 0.86) 2.07 (2.00, 2.14) 61.62 (61.41, 61.82)

Days since AKI Stage 2

 Day 1 0 (0, 0) 0 (0, 0) 100 (100, 100) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

 Day 3 38.04 (37.44, 38.64) 26.43 (25.89, 26.98) 19.18 (18.57, 19.81) 6.06 (5.78, 6.34) 1.91 (1.75, 2.08) 1.31 (1.20, 1.43) 7.08 (6.87, 7.30)

 Day 7 28.66 (28.43, 28.89) 5.08 (4.92, 5.24) 3.09 (2.93, 3.26) 3.18 (3.01, 3.35) 2.49 (2.34, 2.67) 4.67 (4.49, 4.87) 52.83 (52.50, 53.17)

Days Since AKI Stage 3 without KRT

 Day 1 0 (0, 0) 0 (0, 0) 0 (0, 0) 100 (100, 100) 0 (0, 0) 0 (0, 0) 0 (0, 0)

 Day 3 17.58 (16.88, 18.31) 11.61 (11.06, 12.20) 15.50 (14.77, 16.26) 41.46 (40.28, 42.68) 7.82 (7.28, 8.41) 2.16 (1.88, 2.48) 3.86 (3.58, 4.17)

 Day 7 19.51 (19.12, 19.90) 5.60 (5.36, 5.86) 5.69 (5.35, 6.06) 12.24 (11.60, 12.91) 9.69 (9.12, 10.30) 10.30 (9.77, 10.87) 36.97 (36.32, 37.63)

Days since AKI Stage 3 with KRT

 Day 1 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 100 (100, 100) 0 (0, 0) 0 (0, 0)

 Day 3 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 92.83 (90.38, 95.34) 5.76 (3.87, 8.58) 1.41 (0.70, 2.81)

 Day 7 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 68.71 (65.64, 71.93) 26.36 (23.51, 29.55) 4.93 (3.69, 6.58)
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from AKI Stage 3 without KRT exceeded hazard rates for transitioning to resolution and AKI stages except AKI 
Stage 2 in the period following first week.

We fit a Cox model that involves transition-specific variables for each specified transfer from one given 
stage to another. We considered possible demographic and health condition indicators as risk factors. In that 
Cox model, the patient’s age, sex (female vs male), race (African American vs non–African American), CCI, 
and prolonged ICU stay were included. Age was dichotomized as age < 65 and age ≥ 65 years old, and CCI was 
dichotomized as CCI < 3 and CCI ≥ 3. Prolonged ICU was indicated with a length of stay longer than 48 h in 
ICU.  We reported the Cox regression model coefficients, standard errors, and indication for significance of these 
variables in Supplementary Table S2. According to the results, these variables were statistically significant in a 
majority of the identified transitions.

Estimated percentages of patients for each state at any given day during hospital stay were mainly different 
with respect to their accompanied admission comorbidities and need of prolonged ICU stay (Fig. 3, Supple-
mentary Figs. S4–S19). Among AKI Stage 1 cohort, patients accompanied with the most severe conditions (i.e., 
CCI ≥ 3 and ICU length of stay ≥ 48 h) had greater proportion of patients for sustained AKI Stage 1 severity and 
progression to higher stages of AKI and lower discharge percentage compared to patients with milder condi-
tions (i.e., CCI < 3 and ICU length of stay < 48 h) (Fig. 3). Proportion of transfer to death condition from AKI 
states were more pronounced among male patients compared to female subjects throughout the 14-day period 
of hospital stay. Considering the cohorts with additional frail conditions, percentage of AKI Stage 3 without KRT 
progression was slightly higher for African American patients compared to non–African American subjects. In 
addition, similar to non-parametric analyses presented in this study, more advanced AKI stages were observed 
with higher tendency towards either maintaining current AKI condition or regressing to its neighbor AKI Stage 
when compared to AKI Stage 1 group (Supplementary Fig. S4–S19).

Discussion
We considered a large cohort of hospitalized patients and retrospectively characterized subjects’ AKI trajectory 
by using multistate models that consider the cohort’s longitudinal outcomes. Specifically, we fit multistate models 
for a state-space framework that indicates the clinical status in addition to feasible transitions between them, and 
we described the transition dynamics in terms of hazard rates and transition  probabilities36.  In this cohort, any 
stage AKI was developed among 20% of the patients, where the majority of AKI outcomes were labeled as Stage 1.

In order to understand the transition processes between clinical states regarding the AKI status, death, and 
discharge, we modeled the patients’ experiences over the course of the first 14 days of hospitalization. Towards 
that aim, we first calculated Aalen-Johansen estimators via non-parametric multistate models and estimated the 
instantaneous hazard rates of each transition occurrence in addition to the probability of being in certain states 
at a given time point. This granular and time-dependent analyses demonstrated AKI Stage 1 as the AKI condi-
tion with the lowest tendency towards developing more advanced stages. To clarify, around 7 days following 
initiation of AKI Stage 1, 91.85% of this patient group had either resolved AKI or were discharged. In contrast, 
within 7 days following AKI Stage 2, the estimated proportion of patients either being discharged or with no 
AKI was 81.49%, and if regression to AKI Stage 1 was also included, the probability of an outcome with more 
desirable conditions increased to 86.57%.

Figure 2.  Instantaneous hazard rates of outcomes from clinical states in hospitalized patients based on 
multistate analysis.
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We expanded the initial multistate analysis by modeling transitions’ hazard rates with Cox-type regression 
models to investigate the effect of a set of variables that are potentially associated with events of interest. Accord-
ing to Cox-type models, the variables indicate the severity of the overall condition of the subjects (i.e., CCI and 
prolonged ICU stay) heavily influenced the probability of being resolved or discharged. To clarify, near the end 
of a 14-day period of hospitalization with a Stage 1 AKI initiated at the beginning, patients admitted with a 
higher number of comorbidities and with prolonged ICU stay had a higher percentage for being at AKI Stage 
1 state and transitioning to either progressed AKI stages or death. In line with that, No AKI patients admitted 
with a higher number of comorbidities and who stayed in the ICU longer than 48 h had a higher probability of 
being in either AKI stages or death.

The motivation for performing this study was that the clinical course of AKI for hospitalized patients had 
not been sufficiently described with multistate models that exploit granular and longitudinal structures, despite 
similar work having been performed for smaller patient populations. In a retrospective analysis of critically ill 
COVID-19 patients, a cohort of 367 subjects were considered and their AKI transitions were described with 
multistate  models37. In that study, Lyons et al. presented the estimated probabilities of being in a specified clinical 
status where the AKI-related states rely on the worst AKI stage within 12-h blocks. Another recent multistate 
modeling application for investigating kidney disease progression was given for a cohort of 225 patients who 
were prescribed  colistin38.  In addition to AKI, a retrospective study for modeling transitions between CKD 
stages via multistate methods was given for a cohort of 117 hospitalized and non-hospitalized  patients39.  To 
our knowledge, our study is the first large-scale, granular application of multistate methods for describing the 
characteristics influencing the transitions towards progressed or regressed AKI stages in addition to discharge 
and death states. With the aid of a large, diverse cohort of hospitalized subjects, we utilized multistate methods 
in modeling the longitudinal outcomes regarding the patients’ AKI status.

The results from this study indicated that the hospital resource utilization and mortality were higher for 
more severe stages of AKI, showing 50%, 53%, and 88% needing to stay in ICU more than 48 h and 11%, 18%, 
and 45% with hospital death for Stage 2, Stage 3 without KRT, and Stage 3 AKI with KRT, respectively. Patients 
at more severe AKI stages were more likely to stay at that stage or progress to worse stages or die. This study 
provides us a better understanding of clinical course of AKI and characteristics influencing disease process and 
transition rates, and resource needs. It illustrates importance of precise and timely identification of patients at 
elevated risk for progression of AKI in order to provide the delivery of tailored treatments that can improve life 
quality and optimize resource planning.

Multistate models developed in this study output a probabilistic way to describe clinical course of AKI among 
hospitalized patients. Those estimations could be utilized in planning prevention decisions, resource usage, and 

Figure 3.  Proportion of non–African American patients estimated to be in each clinical state for Stage 1 AKI 
patients with CCI < 3 and ICU < 48 h (a and b) and Stage 1 AKI patients with CCI ≥ 3 and ICU stay ≥ 48 h (c and 
d).
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timely intervention of AKI. Despite our use of a large and diverse cohort in building the multistate models, 
the cohort relies on a single institution. Consequently, this single-center design limits generalizability to other 
practice settings. We excluded encounters discharged within 24 h of admission, including those who died within 
24 h due to not having sufficient transitions.

The timing precision of a transition relies on the serum creatinine measure date and time, however serum 
creatinine as a biomarker with a long half-life lags behind renal injury and  recovery40,41. Future work could be 
based on defining AKI conditions considering more frequently obtained biomarkers with beyond suboptimal 
performance in diagnosing AKI, which allows more precise and timely monitoring as well as transition time 
 records42.

Conclusions
Harnessing the granular and longitudinal information processing capability of multistate models, we estimated 
possible pathways in clinical trajectories of AKI among hospitalized patients, thus stressing the ability of this 
approach to convey insights into AKI course from a probabilistic perspective. Moreover, the large and diverse 
cohort was expected to assist mitigating the bias in fitting the model. Precise and timely identification of patients 
at elevated risk for AKI progress or other terminal states may facilitate the delivery of tailored treatments that 
prevent adverse outcomes or foster kidney recovery to improve life quality and optimize resource planning.

Data availability
Data is available from the University of Florida Intelligent Clinical Care Center at ic3-center@ufl.edu and the 
University of Florida Integrated Data Repository at IRBDataRequest@ahc.ufl.edu for researchers who meet the 
criteria for access to confidential data and may require additional IRB approval (University of Florida IRB contact 
is Peter Iafrate, IRB Chair [iafrate@ufl.edu]). Author contact is Azra Bihorac (abihorac@ufl.edu).
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