
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17587  | https://doi.org/10.1038/s41598-023-45004-7

www.nature.com/scientificreports

A critical re‑evaluation of the slope 
factor of the operational model 
of agonism: When to exponentiate 
operational efficacy
Alena Randáková , Dominik Nelic  & Jan Jakubík *

Agonist efficacy denoting the “strength” of agonist action is a cornerstone in the proper assessment 
of agonist selectivity and signalling bias. The simulation models are very accurate but complex and 
hard to fit experimental data. The parsimonious operational model of agonism (OMA) has become 
successful in the determination of agonist efficacies and ranking them. In 1983, Black and Leff 
introduced the slope factor to the OMA to make it more flexible and allow for fitting steep as well 
as flat concentration–response curves. First, we performed a functional analysis to indicate the 
potential pitfalls of the OMA. Namely, exponentiation of operational efficacy may break relationships 
among the OMA parameters. The fitting of the Black & Leff equation to the theoretical curves of 
several models of functional responses and the experimental data confirmed the fickleness of the 
exponentiation of operational efficacy affecting estimates of operational efficacy as well as other OMA 
parameters. In contrast, fitting The OMA based on the Hill equation to the same data led to better 
estimates of model parameters. In conclusion, Hill equation-based OMA should be preferred over the 
Black & Leff equation when functional-response curves differ in the slope factor. Otherwise, the Black 
& Leff equation should be used with extreme caution acknowledging potential pitfalls.

In pharmacology, efficacy serves as a measure of how much response each ligand-receptor complex can pro-
duce upon its formation1. A sound method to assess agonist efficacy is essential for research and drug discov-
ery. The operational model of agonism (OMA) introduces the term operational efficacy2. OMA has become a 
golden standard in the evaluation of agonism and subsequently also of signalling bias3–5. The OMA describes 
the response of the system as a function of ligand concentration using three parameters: (1) The equilibrium 
dissociation constant of agonist (KA) to the receptor initiating functional response; (2) The maximal possible 
response of the system (EMAX); (3) The operational efficacy of agonist (τ). As we will show, in the OMA, KA rep-
resents the affinity of the agonist for the receptor. Therefore, KA is specific to a given combination of ligand and 
receptor. The maximal possible response of the system EMAX is specific to the system. The operational efficacy 
(τ) is a measure of the response to a given agonist at a given system, ranging from 0 to infinity, and is specific to 
a combination of ligand and system.

OMA has numerous limitations and possible pitfalls. All three parameters (EMAX, KA, and τ) are inter-depend-
ent, thus, one of them has to be predetermined before fitting OMA to data or the global fit of multiple curves at 
various receptor densities has to be performed6. Besides that, there are additional methodological and conceptual 
issues7–9. Here we focus on the exponentiation of operational efficacy. In practice, positive cooperativity or posi-
tive feedback leads to steep and negative cooperativity or negative feedback leads to flat concentration–response 
curves that the OMA (Eq. (2)) does not fit. Therefore, an equation intended for the description of non-hyperbolic 
concentration curves (Eq. (7)) was introduced by Black et al.10. Since then, Eq. (7) has been commonly used. The 
presented simple mathematical analysis of Eq. (7) shows that the slope factor affects the relationship between 
observed maximal response to agonist (E’MAX) and operational efficacy (τ) and the relationship between the 
concentration of agonist for half-maximal response (EC50) and its equilibrium dissociation constant (KA). Some 
combinations of operational efficacy and slope factor in the Black & Leff equation (Eq. (7)) lead to EC50 greater 
than KA which is biochemically counterintuitive. In the system with receptor reserve maximum effect is reached 
before the occupation of all receptors is reached. Therefore, half of the effect (EC50) is reached before reaching 
the occupation of half of all receptors (KA). In a system without receptor reserve, full occupation of receptors 
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is reached before reaching system EMAX. Therefore, EC50 occurs at KA. Black & Leff model, however, allows for 
EC50 > KA in the systems with low efficacy and high slope factor.

The Hill equation was originally formulated to describe the binding of oxygen molecules to haemoglobin11,12. 
The Hill equation was then incorporated into the first model of receptor function, the so-called occupation 
theory13. In contrast to the Black et al. slope factor, the slope factor of the Hill equation (Eq. (10)) does not affect 
the centre or asymptotes of the hyperbola describing concentration–response curves. Therefore, the Hill coef-
ficient does not affect relationships between E’MAX and τ nor between EC50 and KA. This makes Hill equation-
based OMA (Eq. (11)) more practical in many ways. Fitting the Black & Leff equation (Eq. (7)) to the theoretical 
data revealed several drawbacks, like under- or over-estimation of parameters or high levels of uncertainty of 
parameter estimates. Moreover, in contrast to Hill equation-based OMA (Eq. (11)), in some cases, fitting the 
Black & Leff equation to the experimental data resulted in the wrong ranking of agonist efficacies τ and wrong 
estimates of agonist KA. However, it should be noted that the Black & Leff equation should not be used firsthandily 
as slopes of individual response curves vary among agonists.

The general concept of the operational model of agonism
For demonstrative purposes, we will derive OMA from scratch for receptor-effector systems. This will become 
handy for the analysis of systems with low expression of receptors. The OMA equation for ligand-gated ion 
channels is the same, although, it is based on different sets of equations. In general, OMA consists of two func-
tions. One function describes the binding of an agonist to a receptor as the dependence of the concentration 
of agonist-receptor complexes [RA] on the concentration of an agonist [A]. The second function describes the 
dependence of functional response (E) on the concentration of agonist-receptor complexes [RA]. OMA expresses 
the dependence of response E on the concentration of [A].

Rectangular hyperbolic OMA
Definition of OMA
In the simplest case, when both binding and response functions are described by rectangular hyperbola (Sup-
plementary Information Figure S1), the resulting function is also a rectangular hyperbola. For example, in a bi-
molecular reaction, the dependence of ligand binding to the receptor [RA] is described by Eq. (1) where [A] is the 
concentration of ligand and KA is its equilibrium dissociation constant that represents the concentration of ligand 
at which half of the total number of receptors, RT, binds the ligand and the other half of the receptors is free.

If the bound ligand is an agonist, it activates the receptor and produces functional response E. Response as a 
function of agonist binding (agonist-receptor complexes [RA]) is given by Eq. (2).

where EMAX is the maximum possible response of the system and KE is the value of [RA] that elicits a half-
maximal effect. Various agonists produce a functional response of different strengths. The OMA was postulated 
to introduce the “transducer ratio” τ that is given by Eq. (3).

The substitution of Eq. (2) with Eq. (1) and Eq. (3) gives Eq. (4).

Analysis of OMA
Equation (4) is the equation of OMA2. It has three parameters: The equilibrium dissociation constant of agonist 
(KA) at the effect-eliciting (active) state of the receptor6 that is specific to a combination of ligand and receptor. 
The maximal possible response of the system (EMAX) is specific to the system. And the “transducer ratio” (τ) that 
is specific to a combination of ligand and system. Equation (4) is a rectangular hyperbola with the horizontal 
asymptote, the observed maximal response to agonist A (E’MAX), given by Eq. (5).

A more efficacious agonist (having a high value of parameter τ) elicits higher E’MAX than less efficacious 
agonists (having a low value of parameter τ). Thus, τ is actually operational efficacy. The relationship between 
parameter τ and E’MAX is hyperbolic meaning that two highly efficacious agonists (e.g., τ values 10 and 20) differ 
in E’MAX values less than two weak agonists (e.g., τ values 0.1 and 0.2).

In Eq. (4), the concentration of agonist A for half-maximal response (EC50), is given by Eq. (6).

(1)[RA] =
RT [A]

[A]+ KA

(2)E =
EMAX [RA]

[RA]+ KE

(3)τ =
RT

KE

(4)E = EMAX
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According to Eq. (6), for τ > 0, the EC50 value is always lower than the KA value. The KA to EC50 ratio is greater 
for efficacious agonists than for weak agonists. Similarly to E’MAX, the relationship between parameter τ and EC50 
is hyperbolic. In contrast to E’MAX values, the ratio KA to EC50 ratio is more profound for two highly efficacious 
agonists (e.g., τ values 10 and 20) than for two weak agonists (e.g., τ values 0.1 and 0.2).

Limitations of OMA
The OMA has several weak points. The major drawback of OMA is the lack of physical basis of the agonist 
equilibrium dissociation constant KA. Equation (2) assumes that agonist binding [RA] denotes effect-producing 
active complexes. The agonist binding to the receptor in an inactive conformation is not observed in the response 
(KE → ∞; τ = 0). In the radioligand binding experiments, agonists bind to all receptor conformations including 
the inactive ones. For various reasons, the receptors in an active conformation may be scarce or absent from 
radioligand binding experiments. Then it may be impossible to determine the KA value in the radioligand bind-
ing experiments. All three parameters of OMA (EMAX, KA and τ) are interdependent6. To fit Eq. (4) to individual 
concentration–response curves, one of the parameters must be fixed. E.g., the maximal response of the system 
EMAX is determined by comparing the functional response to a given agonist in a system with a reduced popula-
tion of receptors by irreversible alkylation14 or cell lines with varying receptor expression levels6. Alternatively, 
global fitting of multiple concentration–response curves with all parameters free can be employed. However, due 
to a high number of degrees of freedom global fitting is less robust than per partes methods6. Another limitation 
of the OMA is that the shape of the functional response is a rectangular hyperbola.

Non‑hyperbolic OMA
Definition of non‑hyperbolic OMA
In practice, concentration–response curves steeper or flatter than the ones described by Eq. (4) are observed. In 
such cases, Eq. (4) does not fit experimental data. As stated by the authors, Eq. (7) was devised for non-hyperbolic 
dependence of functional response on the concentration of agonist10. Eq. (7) was derived in the same way as 
Eq. (4) from Eq. (1) and Eq. (2) while [RA] and KE in Eq. (2) were exponentiated to factor n.

Analysis of non‑hyperbolic OMA
Introduced power factor n changes the slope and shape of the functional-response curve (Supplementary infor-
mation Figure S3). Nevertheless, Eq. (7) as a mathematical function has rectangular asymptotes: The horizontal 
asymptote (x →  ± ∞) E’MAX is given by Eq. (8) and the vertical asymptote (y →  ± ∞) is equal to -KA/(τ + 1) (Sup-
plementary Information Eq. (S2) and Eq. (S3)). From Eq. (7), the EC50 value is given by Eq. (9).

Evidently, the introduced slope factor n affects both the observed maximal response E’MAX and the half-
efficient concentration of agonist EC50 ( Fig. 1A and C). The influence of the slope factor on E’MAX is bidirectional 
(Supplementary Information Table S1, Figure S2). For operational efficacies τ > 1, an increase in the value of the 
slope factor increases E’MAX. (Figs. 1A and 2A blue lines). For operational efficacies τ < 1, an increase in slope 
factor decreases E’MAX (Figs. 1C and 2A yellow lines). The effect of the slope factor on E’MAX is the most appar-
ent for low values of operational efficacy τ, making the estimation of model parameters of weak partial agonists 
impractical. Imagine strong agonist τ = 10 and weak agonist τ = 0.1. For n = 1: Strong agonist E’MAX is 90% and 
weak agonist E’MAX is 10% of system EMAX. For n = 2: Strong agonist E’MAX is 99% (one-tenth more) and weak 
agonist E’MAX is just 1% (ten times less).

An increase in the value of the slope factor increases the EC50 value (Fig. 2B). Again, the effect of the slope 
factor on the EC50 value is more eminent at low values of operational efficacy τ (yellow lines). Paradoxically, any 
combination of operational efficacy τ and slope factor fulfilling the inequality in Fig. 2C (blue area) results in 
EC50 values greater than KA (e.g., Fig. 1C, yellow lines). For example, EC50 > KA applies if τ = 0.5 and n > 1.6, or 
if τ = 1 and n > 1.6, or when τ = 1.5 and n > 2.15. The upper asymptote of inequality is 2. Thus, the possibility of 
EC50 > KA applies to τ < 2 in these cases, due to the high slope factor n the response function (Eq. (2)) has a “lag” 
before the steep growth where the binding function (Eq. (1)) grows faster. Therefore, in this range EC50 > KA.

The operational efficacy τ may be also considered as a measure of “receptor reserve”. In a system with a 
relatively small capacity of a functional response output, the strong agonist reaches its maximal response before 
reaching full receptor occupancy. Thus, the agonist EC50 value is lower than its affinity for the receptor. The 
smaller the occupancy fraction needed for the full response to a given agonist the greater is difference between 
agonist EC50 and KA values. According to OMA (Eq. (2)), the relation between EC50 and KA is described by 
Eq. (6). The greater value of operational efficacy τ, the smaller EC50 value and the greater the difference from KA. 

(6)EC50 =
KA

τ+ 1

(7)E =
[A]nτnEMAX

[A]nτn + ([A]+ KA)
n

(8)E
′
MAX = EMAX

τn

1+ τn

(9)EC50 = KA

1
n
√
2+ τ

n − 1
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Thus, the value of operational efficacy τ is a measure of the receptor reserve of a given agonist in a given system. 
In a system with a large capacity of functional output, agonists do not have a receptor reserve and must reach full 
receptor occupancy to elicit a full signal. In such a system, even strong agonists produce small effects attributed 
to partial agonists. Thus, the parameter τ is specific to a combination of ligand and system.

Nevertheless, for agonists that elicit at least some response in a given system, the parameter τ must be greater 
than 0. Then according to Eq. (6) of the operational model of agonism, the EC50 value must be smaller than the 
KA value. In principle, the EC50 value greater than the KA can be achieved only by some parallel mechanism 
that increases the apparent K’A provided that a ratio of K’A to KA is greater than EC50 to KA. For example, such 
a mechanism may be negative allosteric modulation of agonist binding or non-competitive inhibition of func-
tional response.

Limitations of the non‑hyperbolic OMA
Besides all limitations of the hyperbolic OMA, the non-hyperbolic version of OMA has additional drawbacks. 
The most important is the lack of mechanistic background for factor n. Exponentiation of agonist concentration 
[A] to power factor n results in non-hyperbolic functional-response curves. Importantly, as shown above, expo-
nentiation of operational efficacy τ to power factor n breaks the logical relationship between observed maximal 
response E’MAX and operational efficacy τ. That, as it will be shown later, impedes the correct estimation of τ. 
Further, exponentiation of τ may result in KA values smaller than EC50 (Fig. 2C, blue area).

OMA with Hill coefficient
Definition of OMA with Hill coefficient
The Hill coefficient may serve as an alternative slope factor in the OMA. Hill equation incorporates the Hill 
coefficient as a slope factor to rectangular hyperbola12. The major advantage of the Hill coefficient as a slope 
factor is that it allows for a change in the eccentricity (vertices) of the hyperbola-like curves without changing 
the centre (EC50) and asymptotes (E’MAX) (Supplementary Information Figure S3). The Hill equation published 
in 191011 can be formulated as15 Eq. (10).

Figure 1.   Theoretical concentration–response curves. Theoretical curves of concentration responses under 
equilibrium according to Eq. (7), left and Eq. (11), right. Simulation parameters: EMAX = 1; τ = 3 (top) or τ = 0.3 
(bottom); KA = 10−6 M. Values of slope factors are listed in the legend.
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where nH is the Hill coefficient. Substitution of E’MAX by Eq. (5) and EC50 by Eq. (6) gives Eq. (11). For deriva-
tion from first principles see for example Roche et al.16

As expected, the Hill coefficient does not influence the maximal observed response E’MAX or half-efficient con-
centration of agonist EC50 (Fig. 1B,D). Eq. (11) was suggested as suitable for the analysis of functional responses 
displaying symmetrical response curves16.

Implications of OMA with Hill coefficient
Analysis of the OMA with slope factor by Black et al. (Eq. (7)) has shown that the slope factor n has a bidirectional 
effect on the relationship between the parameters E’MAX and τ. and that the slope factor n affects the relationship 
between the parameters EC50 and KA. In contrast, in Eq. (11) neither the value of E’MAX nor EC50 is affected by 
the Hill coefficient (Fig. 1B,D). The parameters E’MAX and EC’50 can be readily obtained by fitting Eq. (10) to the 
single concentration–response data.

Limitations of OMA with Hill coefficient
The major criticism of the Hill equation is its parsimonious character. It is relatively simple and its parameters are 
easy to estimate. However, as a model, it is just an approximation. In an experiment, the slope of the concentra-
tion–response curve different from unity may be a result of the parallel signalling mechanism providing feedback 
or allosteric cooperativity. In the case of positive cooperativity, it results in steep concentration–response curves. 
In the case of negative cooperativity, it results in flat concentration–response curves.

(10)E =
[A]nH E′MAX

[A]nH + EC
nH
50

(11)E =
[A]nH τ

τ+1
EMAX

[A]nH +
(

KA

τ+1

)nH

Figure 2.   Analysis of Black & Leff equation (Eq. (7)). (A) Dependency of observed E’MAX to system EMAX 
ratio (ordinate) on slope factor n (abscissa) and operational efficacy τ (legend). (B) Dependency of EC50 to 
KA ratio (ordinate) on slope factor n (abscissa) and operational efficacy τ (legend). (C) Inequality plot of slope 
factor n (abscissa) and operational efficacy τ (ordinate) yielding half-efficient concentration EC50 greater than 
equilibrium dissociation constant KA.
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OMA of allosteric systems
The simplest scenario leading to variation in the slope of concentration–response curves is allosteric interac-
tion between agonist and allosteric modulator or two molecules of agonist, e.g., in a ligand-gated channel or 
dimeric GPCR17,18. Positive cooperativity among agonist molecules results in steep functional-response curves 
and negative cooperativity results in flat functional-response curves. As the mode of cooperativity is the property 
of a given agonist, the slope of the functional-response curve may vary among agonists. Slope factor n in Eq. (7) 
is deemed the property of the system and thus the same for all agonists. In the attempt to keep slope factor n 
constant in allosteric systems, the second slope factor m was introduced to Eq. (7) resulting in19 Eq. (12):

where factor n links agonist concentration to the slope of the functional-response curve and factor m links 
agonist concentration to the slope of the receptor-binding curve. As the slope factors are interdependent one 
of them must be predetermined. It is only possible to predetermine the slope of the binding curve m. When fit-
ting Eq. (12) to the data, functional-response slope factor n should become the same for all agonists. Observed 
maximal response E’MAX is still given by Eq. (8) but half-efficient concentration EC50 is given by Eq. (13).

Similarly to Eq. (9), the effect of the binding slope factor m on the EC50 to KA ratio depends on operational 
efficacy τ and functional response slope factor n. The effect of binding slope factor m depends on the radicand 
value. The m-th root is greater than the radicand when m > 1 and radicand > 1 or m < 1 and radicand < 1. The m-th 
root is smaller than the radicand when m < 1 and radicand > 1 or m > 1 and radicand < 1. Moreover, functional 
responses of allosteric systems may be not only steep or flat but also biphasic including bell-shaped18. Neither 
Eq. (7) nor Eq. (12) can accommodate such shapes and equations adequate to the mode of action are needed.

OMA of non‑competitive inhibition
As shown in Fig. 2, OMA with slope factor n allows for EC50 values higher than KA. The simplest mode of inter-
action that increases observed EC50 above KA is non-competitive auto-inhibition20–23. Under non-competitive 
auto-inhibition, RA non-competitively blocks functional response by binding to effector G (Fig. 3). This type of 
inhibition is characterized by RA binding to a spatially distinct (allosteric) site resulting in a decreased response 
of effector G. In non-competitive inhibition, RA binds to both sites independently, exerting neutral binding 
cooperativity (absence of allosteric interaction). Non-competitive auto-inhibition results in a concentration-
dependent increase in EC50 and a decrease in E’MAX. Functional response is given by Eq. (14).

(12)E =
[A]nmτnEMAX

[A]nmτn +
(

[A]m + K
m
A

)n

(13)EC50 = KA
m

√

1
n
√
2+ τn − 1

Figure 3.   Non-competitive auto-inhibition of functional response. Dots, functional response to an agonist 
(KI = 1, EMAX = 1, RT = 1, KA = 10−6 M) in the model of non-competitive autoinhibition according to Eq. (15). 
Values of operational efficacies τ are indicated in the legend. Full lines, left, Black & Leff equation (Eq. (7)), right, 
Hill equation (Eq. (10)) fitted to the data. Parameter estimates are in Table 1.
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For KI > 0, after the substitution of Eq. (1) for [RA], Eq. (14) becomes Eq. (15) (Supplementary information 
Eq. (S31)).

where σ = RT/KI. The apparent maximal response E’MAX is given by Eq. (16) (Supplementary Information 
Eq. (S32)).

Thus, apparent operational efficacy τ’ is given by Eq. (17).

The EC50 value for the model of non-competitive auto-inhibition is given by Eq. (18) (Supplementary infor-
mation Eq. (S36)).

Non-competitive auto-inhibition decreases apparent maximal response E’MAX, increases observed half-effi-
cient concentration EC50 and results in steep curves (Fig. 3). The resulting concentration–response curve is 
asymmetric with a typical slope factor of about 1.2 regardless of values of KI and KE. Both models fit well. Fitting 
Hill equation gives correct estimates of apparent maximal response E’MAX and thus correct estimates of apparent 
operational efficacy τ’ (Table 1). In contrast, for KI ≥ 1, fitting the Black & Leff equation results in underestimated 
values of τ and pKA. Values of τn well approximate τ’ values.

Fitting Eq. (15) with fixed system EMAX to the model of functional response of non-competitive inhibition 
yields correct parameter estimates that are associated with the low level of uncertainty only when correct initial 
estimates of τ and σ are given (Supplementary Information Figure S7 and S8). In the case of KI = 5 (Supplemen-
tary Information Figure S9), estimates of operational efficacy τ and inhibition factor σ are swapped pointing to 
the symmetry of Eq. (15). This symmetry makes calculation of τ and σ impossible as any τ and σ combination 
resulting in an appropriate apparent efficacy τ’ (Eq. (17)) corresponds well to a given functional-response data 
(Supplementary Information Figure S8). Fitting the Black & Leff equation (Eq. (7)) yields wrong estimates of 
KA and underestimated values of τ. Importantly, the extent of underestimation varies. The τ of 0.2 was under-
estimated by 17%. The τ of 5 was underestimated sixfold. In contrast, the calculation of apparent operational 
efficacies from the fitting of the Hill equation (Eq. (10)) is very close.

Signalling feedback
Signalling feedback occurs when outputs of a system are routed back as inputs24. Negative feedback is a very 
common auto-regulatory (auto-inhibitory) mechanism in nature, for example at G-protein coupled receptors25. 
Positive feedback also occurs in biology to propagate signals that would be otherwise dampened by other mecha-
nisms, e.g. neuronal action potential. In the receptor-effector systems, an increase in output signal [RAG] propor-
tionally either decreases (negative feedback) or increases (positive feedback) input [RA]26. Functional response 
in employing feedback mechanisms is then given by Eq. (19). For derivation see Supplementary Information 
Eqs. (S25) to (S37).

(14)E = EMAX

[RA]

KE + [RA]

[RA]

KI + [RA]

(15)E = EMAX

τ [A]

KA + [A](1+ τ)

σ [A]

KA + [A](1+ σ)

(16)E
′
MAX = EMAX

τ

1+ τ

σ

1+ σ

(17)τ ′ =
στ

σ + τ + 1

(18)EC50 = KA

√
σ 2 + 6στ + 8σ + τ 2 + 8τ + 8+ σ + τ + 2

2(1+ σ)(1+ τ)

(19)E = EMAX

τ [A](τ [A]+ [A]+ KA)

[A]2
(

δτ + τ 2 + τ + 1
)

+ [A]KA(δτ + τ + 2)+ K
2
A

Table 1.   Results of fitting Black & Leff equations to the model of non-competitive auto-inhibition. Black & 
Leff (Eq. (7)) and Hill (Eq. (10)) equations were fitted to model data Eq. (15) with EMAX fixed to 1 or E’MAX 
confined <  = 1, respectively.

Model Eqs. 15 and 17 Black & Leff Hill Equation 18

τ pKA KI τ’ n τ τn pKA E’MAX nH pEC50 E’MAX τ pKA pKA

0.2 6.00 1 0.091 1.33 0.166 0.0917 5.91 0.084 1.21 5.78 0.083 0.090 5.74 5.99

0.5 6.00 1 0.200 1.46 0.333 0.201 5.98 0.167 1.22 5.84 0.165 0.199 5.76 5.99

1 6.00 1 0.333 1.58 0.499 0.333 6.06 0.250 1.22 5.91 0.248 0.330 5.79 5.99

2 6.00 1 0.500 1.71 0.666 0.499 6.15 0.333 1.21 5.99 0.331 0.494 5.82 6.00

5 6.00 1 0.714 1.55 0.804 0.713 6.15 0.416 1.18 6.10 0.414 0.706 5.87 6.00
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where δ is a feedback factor. Values greater than 1 denote negative feedback. Values smaller than 1 denote 
positive feedback. The maximal response E’MAX to an agonist with operational efficacy τ is related to the maximal 
response of the system EMAX according to Eq. (20).

Negative feedback decreases the observed maximal response to an agonist E’MAX while positive feedback 
increases it. And apparent operational efficacy τ’ of a given agonist can be calculated according to Eq. (21).

Furthermore, negative feedback decreases the KA to EC50 ratio while positive feedback increases it (Supple-
mentary Information Eq. (S54)). For derivations see Supplementary Information Eq. (S37) through Eq. (S54). 
In general, negative feedback results in flat functional-response curves as with the increase in signal output 
proportionally more of an agonist is needed for the same increase of the signal. Conversely, positive feedback 
results in steep functional-response curves as signal output proportionally increases signal input (Supplementary 
Information Figure S9).

Importantly, in a system with constant negative feedback, like in Fig. 4, the steepness of the curve depends 
on operational efficacy τ. Functional-response curves to agonists with high operational efficacy are flatter than 
the ones of agonists with low operational efficacy (Table 2).

Fitting Eq. (19) with fixed system EMAX to the model employing feedback mechanisms yields correct param-
eter estimates that are associated with the low level of uncertainty when correct initial estimates of τ and δ are 

(20)E
′
MAX = EMAX

τ 2 + τ

δτ + τ 2 + τ + 1

(21)τ ′ =
τ 2 + τ

δτ + 1

Figure 4.   Functional response with signal feedback. Dots, functional response to an agonist (EMAX = 1, RT = 1, 
KA = 10−6 M) in the model of the system with constant negative feedback (δ = 5) according to Eq. (19). Values 
of operational efficacies τ are indicated in the legend. Full lines, left, Black & Leff equation (Eq. (7)), right, Hill 
equation (Eq. (10)) fitted to the data. Parameter estimates are in Table 2.

Table 2.   Results of fitting Black & Leff equations to the model of the system employing signalling feedback. 
Black & Leff (Eq. (7)) and Hill (Eq. (10)) equations were fitted to model data with EMAX fixed to 1 or E’MAX 
confined <  = 1, respectively.

Model Eqs. 19 and 21 Black & Leff Hill Eq. S42

τ pKA δ τ’ n τ τn pKA E’MAX nH pEC50 E’MAX τ pKA pKA

0.2 6.00 5 0.120 0.96 0.109 0.119 6.17 0.106 0.98 6.25 0.107 0.120 6.20 6.01

0.5 6.00 5 0.214 0.87 0.168 0.212 6.20 0.175 0.93 6.38 0.177 0.214 6.30 6.01

1 6.00 5 0.333 0.76 0.236 0.334 6.13 0.250 0.87 6.45 0.251 0.333 6.33 6.02

2 6.00 5 0.545 0.68 0.409 0.544 6.01 0.353 0.81 6.48 0.355 0.545 6.29 6.01

5 6.00 5 1.154 0.66 1.245 1.16 5.86 0.536 0.78 6.55 0.541 1.155 6.22 6.01
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given (Supplementary Information Figure S9 and S10). Fitting the Black & Leff equation (Eq. (7)) yields wrong 
estimates of KA and underestimated values of τ. Again, the extent of underestimation varies. The τ of 0.2 was 
underestimated by 67%. The τ of 5 was underestimated fourfold. However, values of τn well approximate τ’ 
values. In contrast, calculations of apparent operational efficacies from the fitting of the Hill equation (Eq. (10)) 
are very close.

Systems with a similar expression of receptor and effector ([RT]≈[GT])
The Eq. (2) and consequently Eq. (4) are valid only when either [RA] or [G] is constant. That requires [RT] >  > [GT] 
or [RT] <  < [GT]. Usually, systems exhibit receptor reserve, indicating [RT] >  > [GT]. In systems with low recep-
tor expression, [RT] and [GT] may be similar. In a such system [RAG] as a function of [RA] is given by Eq. (22) 
(Supplementary Information Eq. (S62)).

where [RA] denotes the concentration of all receptor agonist complexes, free RA plus RA in complex with 
G (RAG) (Supplementary Information Eq. (S56)). [RAG] as a function of [A] (Supplementary Information Eq. 
(S64)) has only approximate solutions. Therefore, [RA] values as a function of [A] were calculated as [RA] accord-
ing to Eq. (1) and used in Eq. (22) to model functional responses of the system with low receptor-expression 
level (Fig. 5). The resulting curves are steep and asymmetric. In the low receptor-expression system, the response 
reaches the maximum at lower agonist concentration due to receptor depletion that cuts off the signal early 
which results in an apparent increased steepness and, in turn, in a curve asymmetry. The greater the operational 
efficacy is, the steeper and more asymmetric functional-response curves are (Table 3). However, the observed 
operational efficacy τ’ is equal to the modelled operational efficacy.

Fitting the Black & Leff equation (Eq. (7)) to the model system with a low receptor-expression level yields 
wrong estimates of KA for extremely high operational efficacy (τ = 1000). Values of τ are far off for all modelled 
efficacies. While τ of 1000 is overestimated more than sixfold, the other τ values are underestimated up to 

(22)[RAG] =
1

2

(

KE + [RA]+ [GT ]−
√

K
2
E
+ 2KE([RA]+ [GT ])+ ([RA]− [GT ])

2

)

Figure 5.   Functional response of the system with a similar expression of receptor and effector ([RT]≈[GT]). 
Dots, functional-response data modelled in two steps. First, binding was calculated according to Eq. (1). Then 
resulting [RA] was used in Eq. (22). ET = 10−6 M, RT = 10−5 M, KA = 10−7 M. Values of operational efficacies τ are 
indicated in the legend. Full lines, left, Black & Leff equation (Eq. (7)), right, Hill equation (Eq. (10)) fitted to the 
data. Parameter estimates are in Table 3.

Table 3.   Results of fitting Black & Leff equations to the model of the system with a similar expression of 
receptor and effector ([RT]≈[GT]). Black & Leff (Eq. (7)) and Hill (Eq. (10)) equations were fitted to model data 
with EMAX fixed to 1 or E’MAX confined <  = 1, respectively. CNBD cannot be determined.

Model Eqs. 1 
and 22 Black & Leff Hill

τ pKA n τ τn pKA E’MAX nH pEC50 E’MAX τ pKA

1000 7.00 1.91 6701 2.03.107 4.50 1.00 1.89 8.32 1.00 CNBD CNBD

100 7.00 1.54 36.2 251 6.68 0.996 1.52 8.23 0.991 108 6.19

33.3 7.00 1.35 13.6 33.9 6.98 0.971 1.29 8.10 0.968 30.1 6.61

10 7.00 1.15 6.94 9.28 6.98 0.903 1.11 7.84 0.900 9.04 6.84

3.33 7.00 1.05 2.93 3.09 6.98 0.756 1.03 7.55 0.755 3.08 6.94
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threefold. Values of τn approximate model τ values of 33.3, 10 and 3.33. However, the τn value is overestimated 
20,000 and 2.5 times for model values of 1000 and 100, respectively. Except for the τ value of 1000, operational 
efficacies calculated according to the Hill equation (Eq. (10)) are less than 10% off the model values.

The case study
How fitting the Black & Leff equation to experimental data can affect estimates of the operational efficacy and 
subsequent analysis is demonstrated in the following example of measurement of the GTPγS binding as a func-
tional response of M2 receptor to muscarinic agonists carbachol, iperoxo, N-desmethyl clozapine (NDMC) and 
oxotremorine at five subtypes of inhibitory G-proteins: Gi1, Gi2, Gi3, GoA and GoB expressed in Sf9 cells. According 
to the saturation of [3H]NMS binding, Sf9 cell membranes contained about 7 pmol of binding sites per mg of 
membrane protein. Co-expression of individual subtypes of inhibitory G-proteins did not affect the expression 
level of M2 receptors. According to competition with [3H]NMS binding, tested agonists had the same affinity for 
M2 receptors in all co-expression systems (Supplementary Information Table S2).

When analysing the functional response, first, system EMAX values were determined using the procedure 
described earlier6. They ranged from 84 to 88% of the maximum binding capacity of G-proteins. After subtraction 
of basal binding, responses were expressed as a fraction of EMAX. The system EMAX was set equal to 1.

Signalling profiles varied among subtypes of G-proteins. For example, carbachol and oxotremorine reached 
similar maximal responses E’MAX at Gi1, GoA and GoB. At Gi2, the E’MAX of oxotremorine was substantially greater 
than the E’MAX of carbachol. In contrast, at Gi3, the E’MAX of oxotremorine was substantially lower than the 
E’MAX of carbachol (Fig. 6). Also, the steepness of functional responses to agonists varied among agonists as well 
as among subtypes of G-proteins. The functional response to carbachol was normal (nH ≈ 1), except for a flat 
response (nH = 0.68) at GoB (Supplementary information Table S2). The functional response to NDMC was steep 
(nH > 1.2) at Gi1 and Gi3, normal at Gi2 and flat (nH < 0.85) at GoA and GoB. As the exact reason for variation in the 
steepness of functional-response curves is unknown, the Hill equation (Eq. (11)) was fitted to the experimental 
data for comparison with the fitting of the Black & Leff equation (Eq. (7)). Results of fitting are summarized in 
Supplementary Information Table S2).

The analysis of estimates of equilibrium dissociation constants KA obtained from fitting Black & Leff (Eq. (7)) 
and Hill (Eq. (11)) equations shows that in comparison to Hill fits, estimates from Black & Leff fits are associ-
ated with greater variability (among individual fits) and uncertainty (individual fits) (Fig. 7). In the majority of 
cases, KA estimates according to the Black & Leff equation were substantially lower than according to the Hill 
equation. Except for NDMC, KA estimates for both models are higher than KI from competition with [3H]NMS. 

Figure 6.   Functional response of muscarinic M2 receptors. GTPγS binding to Gi1 (upper left), Gi2 (upper 
middle), Gi3 (upper right) GoA (lower left) and GoB (lower right) G-proteins upon stimulation of M2 
muscarinic receptors by carbachol (red), iperoxo (green), NDMC (blue) or oxotremorine (yellow) at the 
concentration indicated on the x-axis is expressed as the fraction of maximal response of the system (EMAX). 
Data are means ± SD from 3 to 5 independent experiments performed in quadruplicates. Solid curves, Black 
& Leff equation (Eq. (7)). Dotted curves, Hill equation (Eq, (11)). Parameter estimates are in Supplementary 
Information Table S2.
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Notably, agonist KI values are the same for all subtypes of G-protein α-subunit while KA values vary among them 
(Supplementary Information Table S2 and S3).

Similarly to estimates of KA, in comparison to Hill fits, estimates of operational efficacies τ from Black & Leff 
fits are associated with greater variability and uncertainty (Fig. 8). Overall, τ values tend to be underestimated 
for flat curves and overestimated for steep curves. Following analysis of the Black & Leff equation, this phe-
nomenon is apparent for low operational efficacies, especially for τ < 1. In the extreme case of steep response to 
NDMC (n = 1.5) and flat response to oxotremorine (n = 0.7) at Gi3, Black & Leff estimates of τ are the same for 
both agonists despite oxotremorine elicited E’MAX three-times higher than NDMC. In the less extreme case, at 
GoB G-protein, oxotremorine was about 60% more efficacious than carbachol but estimated τ values by Black & 
Leff were the same for both agonists although functional-response curves of both agonists are flat (nH = 0.6 and 
0.5, respectively). Thus, even a small change in the steepness of the functional-response curve has a profound 
effect on the estimation of the τ value.

Discussion
The operational model of agonism (OMA)2 is widely used in the evaluation of agonism. The OMA characterizes a 
functional response to an agonist by the equilibrium dissociation constant of the agonist (KA), the maximal pos-
sible response of the system (EMAX) and the operational efficacy of the agonist (τ) (Eq. (4)). To fit non-hyperbolic 
functional responses slope factor n was introduced to the OMA (Eq. (7))10. Analysis of the Black & Leff equation 
(Eq. (7)) has shown that the slope factor n has a bidirectional effect on the relationship between the parameters 
E’MAX and τ (Fig. 1A versus C) and also affects the relationship between the parameters EC50 and KA.

Fitting Black & Leff equation (Eq. (7)) to the models of non-competitive auto-inhibition (Fig. 3, Table 1), 
signalling feedback (Fig. 4, Table 2) and system with a similar expression of receptor and effector ([RT]≈[GT]) 
(Fig. 5, Table 3) resulted in inaccurate estimates of τ and KA values. In the presented examples, the degree of 
over- or under-estimation of τ is not the same for all its values but depends on the value of τ, distorting rela-
tions among estimates of τ vales. In contrast, fitting the Hill equation (Eq. (10)) to the model data gave more or 
less accurate estimates of apparent operational efficacies τ’ from which operational efficacies can be calculated 
(according to Eq. (17), and Eq. (21)), provided that mechanism of action is known.

Biased agonists stabilize specific conformations of the receptor leading to non-uniform modulation of indi-
vidual signalling pathways27. To measure an agonist bias, the parameters τ and KA must be determined and log(τ/
KA) values of tested and reference agonists compared at two signalling pathways3. It is evident from the analysis 
of the Black & Leff equation, that as far as the EC50 value is dependent on parameters n and τ (Fig. 1A,C), log(τ/
KA) values cannot be compared to judge possible signalling bias unless the parameter n is equal to 1 for both 
tested and reference agonist.

Despite the dire effects of slope factor n, the Black & Leff equation is widely accepted4,28–34. It even entered 
textbooks5. Very little concern on factor n has risen. For example, Kenakin et al.3 analysed in detail the effects 

Figure 7.   Analysis of pKA estimates. Estimates of equilibrium dissociation constant KA from fitting Black & 
Leff (Eq. (7)) (blue) or Hill (Eq. (11)) (yellow) equation are expressed as negative logarithms (pKA). Data are 
means ± SD from fits of 5 independent experiments performed in quadruplicates. *, different from Black & Leff 
(p < 0.05) according to ANOVA and Tukey HSD post-test.
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of slope factor n on EC50 and τ to KA ratio but did not deal with the bi-directional effect of n on τ nor proposed 
an alternative approach to avoid potential pitfalls. To force a proper shape on functional-response curves whilst 
keeping slope factor n constant for all ligands, Gregory et al.19 introduced the second slope factor into their 
OMA and operational model of allosterically modulated agonism (OMAMA) analysis making equations even 
more complex. So far, the greatest criticism of OMA was voiced by Roche et al.16, noting that to accommodate 
the shape of theoretical curves Black & Leff equation tends to overestimate equilibrium dissociation constant 
KA and operational efficacy τ and thus be misleading. They advocated for different expressions of operational 
models including OMA modified by the Hill coefficient in the case of symmetric concentration–response curves. 
Theoretical models show that in cases of non-competitive auto-inhibition and signal feedback where the slope of 
functional response does not vary, Black & Leff equation can be used to estimate apparent operational efficacy τ’ 
(Tables 1 and 2). However, estimates of operational efficacy do not approximate τ of the models.

The fitting of the Hill equation (Eq. (10)) to the functional response is straightforward and easier than fitting 
the Black & Leff equation. As shown in Figs. 3, 4, 5, 6, the Hill equation fits well with various functional-response 
curves, often better than the Black & Leff equation. In contrast to the Black & Leff equation, the Hill equation 
gives correct estimates of maximal response to agonist E’MAX and its half-efficient concentration EC50 as docu-
mented in Tables. 1, 2, 3 and Figs. 7 and 8. In the case of the Hill equation, neither the value of E’MAX nor the 
value of EC50 is affected by the Hill coefficient (Fig. 1B,D). Therefore, biased signalling may be inferred from the 
comparison of the ratio of intrinsic activity (E’MAX/EC50) of tested agonist to the intrinsic activity of reference 
agonist at two signalling pathways as in the case of the Hill equation the E’MAX/EC50 ratio is equivalent to τ/KA 
ratio35,36. Further, if needed, apparent operational efficacy τ’ can be calculated from known E’MAX values and 
known maximal response of the system EMAX. From the relationship between τ’ and EC50

6,17, the mechanism of 
functional response can be inferred by comparison to explicit models.

The case study of the functional response of individual subtypes of inhibitory G-proteins to activation of 
the M2 muscarinic receptor (Fig. 6) demonstrated the pitfalls of exponentiation of operational efficacy τ: At Gi3 
G-protein, oxotremorine reached 3-times higher maximal response E’MAX than NDMC. However, estimates of 
operational efficacy τ by the Black & Leff equation were the same for both agonists (Fig. 8), rendering it unsuit-
able for such data. An analysis of the Black & Leff equation implies that the source of the discrepancy lies in the 
profound effects of slope factor n on the estimation of τ value. The τ estimates by the Hill equation reflected 
differences in E’MAX values, making it suitable for such a scenario. The root of the problem is variation in the 
slope of the functional response among tested agonists, indicating that the slope is not the property of the sys-
tem required by the Black & Leff model. Rather agonists exert various degrees of cooperativity. As muscarinic 
receptors possess only one orthosteric binding site the data indicate that muscarinic receptors may function as 
oligomers18. Although cooperativity does not automatically mean oligomerization37, several lines of evidence 
indicate that muscarinic receptors may indeed oligomerize38–41.

Figure 8.   Analysis of τ estimates. Estimates of operational efficacy τ from fitting Black & Leff (Eq. (7)) (blue) 
or Hill (Eq. (11)) (yellow) equation are expressed as decadic logarithms (log τ). Data are means ± SD from fits of 
5 independent experiments performed in quadruplicates. *, different from Black & Leff (p < 0.05) according to 
ANOVA and Tukey HSD post-test.
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Conclusions
Analysis of the Black & Leff equation has shown that (i) The slope factor n has a bidirectional effect on the 
relationship between the parameters E’MAX and τ. (ii) The slope factor n affects the relationship between the 
parameters EC50 and KA. Fitting the Black & Leff equation gives wrong estimates of τ and KA values when slope 
factor n varies among concentration–response curves, limiting the use of the Black & Leff equation to evaluate 
concentration–response curves with the same slope. Analysis of the Hill equation has shown that the Hill coef-
ficient does not affect the relationship between the parameters E’MAX and τ nor between the parameters EC50 and 
KA. Fitting the Black & Leff equation to the experimental data demonstrated the drawbacks of exponentiation 
operational efficacy τ. In contrast, fitting the Hill equation to the experimental data gave more realistic estimates 
of KA and τ. Black & Leff equation may be safely used only for systems where the slope of functional response 
does not vary substantially to estimate apparent operational efficacy.

Methods
Models and equations
Models and equations were derived from scratch as described in Supplementary Information. For modelling 
the theoretical curves and fitting curves to the experimental data the Python code employing numpy, scipy and 
matplotlib libraries was written.

Preparation of cells and membranes
Spodoptera frugiperda cells (Sf9) (Gibco) were maintained as a suspension culture in serum-free insect cell 
growth medium SF900 III (Gibco) in a plastic Erlenmeyer flask in a shaking incubator at 27 °C and 135 rpm in 
a non-humidified environment. The cultures were maintained at a density of 1–4 × 106 cells/ml. The density of 
the cells was determined with a haemocytometer, and viability was assessed by the exclusion of 0.2% trypan blue 
(Sigma-Aldrich). Human M2 receptors and α-subunits of (Gi1, Gi2, Gi3, GoA or GoB) G-proteins were expressed 
in recombinant baculoviruses, which were constructed and generated according to Bac-to-Bac® Baculovirus 
Expression System manual (Life Technologies)42.

One hundred ml of Sf9 cell suspension at a density of 2 × 106 cells/ml were co-infected with baculoviruses 
encoding the M2 receptor and Go or Gi α-subunit at a multiplicity of infection MOI = 0.1: 0.1. All infections 
were allowed to proceed for 69 h. Infected cells were harvested by centrifugation at 500 × g for 5 min and frozen 
at − 80 °C.

The pellets of harvested cells were suspended in the ice-cold homogenization medium (100 mM NaCl, 20 mM 
Na-HEPES, 10 mM EDTA, pH = 7.4) and homogenized on ice by two 30 s strokes using a Polytron homogenizer 
(Ultra-Turrax; Janke & Kunkel GmbH & Co. KG, IKA-Labortechnik, Staufen, Germany) with a 30-s pause 
between strokes. Cell homogenates were centrifuged for 5 min at 1000 × g. The supernatant was collected and 
centrifuged for 30 min at 30,000 × g. Pellets were suspended in the washing medium (100 mM NaCl, 10 mM 
MgCl2, 20 mM Na-HEPES, pH = 7.4), left for 30 min at 4 °C, and then centrifuged again for 30 min at 30,000 × g. 
The resulting membrane pellets were kept at − 80 °C until assayed.

[3H]NMS binding
Membranes (approximately 10 μg of membrane proteins per sample) from Sf9 cells were incubated in 96-well 
plates for 3 (saturation) or 5 h (competition) at 25 °C in the incubation medium (100 mM NaCl, 20 mM Na-
HEPES,10 mM MgCl2, pH = 7.4). The incubation volume for competition and saturation experiments with [3H]
NMS was 400 μl or 800 μl, respectively.

In saturation experiments, eight concentrations of the [3H]NMS ranging from 94 to 1000 pM were used. 
Agonist binding was determined in competition experiments with 1 nM [3H]NMS. Nonspecific binding was 
determined in the presence of 10 μM unlabelled atropine. Incubation was terminated by filtration through 
Whatman GF/C glass fibre filters (Whatman) using a Brandel harvester (Brandel, USA). Filters were dried in a 
microwave oven (3 min, 800 W), and then solid scintillator Meltilex A was melted on filters (105 °C, 90 s) using 
a hot plate. The filters were cooled and counted in a Wallac Microbeta scintillation counter (Wallac, Finland).

GTPγS binding
Agonist-stimulated [35S]GTPγS binding was performed as currently described43. Briefly, it was performed in 
96-well plates at 30 °C in the incubation medium described above that was supplemented with freshly prepared 
dithiothreitol at a final concentration of 1 mM. Suspension of membranes of Sf9 cells expressing M2 + G-pro-
tein α-subunit were preincubated with GDP and agonists for 15 min, then [35S]GTPγS was added for an addi-
tional 20 min. The final concentration of GDP and [35S]GTPγS was 20 µM and 500 pM, respectively. The maxi-
mum binding capacity of G-proteins was determined in the absence of GDP. Nonspecific binding was determined 
in the presence of 1 µM non-labelled GTPγS. Incubations were terminated by filtration through GF/C filtration 
plates (Millipore) using a Brandel cell harvester (Perkin Elmer, USA). Plates were dried in a microwave oven 
at 800W for 3 min and then 40µl of ROTISZINT® Eco Plus (ROTH) was added. The plates were counted in the 
Wallac Microbeta scintillation counter.

Analysis of experimental data
Experimental data were analysed using the two-step procedure described earlier6,17. First, the maximum sys-
tem response EMAX was determined. After subtracting the value of the basal signal, functional responses were 
expressed as the fraction of corresponding EMAX. Then, the Hill equation (Eq. (10)) and the Black & Leff equation 
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(Eq. (7)) were fitted to the data. In the case of the Hill equation, the maximum response to an agonist E’MAX was 
confined to less than 1. In the case of the Black & Leff equation, system EMAX was set equal to 1.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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