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Radiomics–clinical nomogram 
based on pretreatment 18F‑FDG 
PET‑CT radiomics features 
for individualized prediction 
of local failure in nasopharyngeal 
carcinoma
Jianming Ding 1,3, Zirong Li 2,3, Yuhao Lin 1,3, Chaoxiong Huang 1, Jiawei Chen 1, Jiabiao Hong 1, 
Zhaodong Fei 1*, Qichao Zhou 2* & Chuanben Chen 1*

To explore the prognostic significance of PET/CT-based radiomics signatures and clinical features 
for local recurrence-free survival (LRFS) in nasopharyngeal carcinoma (NPC). We retrospectively 
reviewed 726 patients who underwent pretreatment PET/CT at our center. Least absolute shrinkage 
and selection operator (LASSO) regression and the Cox proportional hazards model were applied to 
construct Rad-score, which represented the radiomics features of PET-CT images. Univariate and 
multivariate analyses were used to establish a nomogram model. The concordance index (C-index) and 
calibration curve were used to evaluate the predictive accuracy and discriminative ability. Receiver 
operating characteristic analysis was performed to stratify the local recurrence risk of patients. The 
nomogram was validated by evaluating its discrimination ability and calibration in the validation 
cohort. A total of eight features were selected to construct Rad-score. A radiomics–clinical nomogram 
was built after the selection of univariate and multivariable Cox regression analyses, including the 
Rad-score and maximum standardized uptake value (SUVmax). The C-index was 0.71 (0.67–0.74) 
in the training cohort and 0.70 (0.64–0.76) in the validation cohort. The nomogram also performed 
far better than the 8th T-staging system with an area under the receiver operating characteristic 
curve (AUC) of 0.75 vs. 0.60 for 2 years and 0.71 vs. 0.60 for 3 years. The calibration curves show that 
the nomogram indicated accurate predictions. Decision curve analysis (DCA) revealed significantly 
better net benefits with this nomogram model. The log-rank test results revealed a distinct difference 
in prognosis between the two risk groups. The PET/CT-based radiomics nomogram showed good 
performance in predicting LRFS and showed potential to identify patients at high-risk of developing 
NPC.

Nasopharyngeal carcinoma (NPC) is a rare cancer with a highly asymmetric geographical distribution. According 
to the International Agency for Research on Cancer, approximately 129,000 new cases of NPC were diagnosed 
worldwide in 2018. The majority of new cases were reported in East Asia and Southeast Asia1–3. Radiotherapy, 
with some cases requiring the addition of chemotherapy, is the standard treatment for NPC. Intensity-modu-
lated radiation (IMRT) is a revolutionary radiotherapy technique that has considerably improved the treatment 
outcomes of patients with NPC, particularly in terms of local control. Although extensive use of IMRT has 
contributed to excellent local control, local recurrence remains an important cause of treatment failure in ~ 10% 
of advanced NPC cases. Owing to the potential existence of a disease with intrinsic radioresistance, the salvage 
treatment options are complex and limited for patients with locally recurrent NPC and typically present with a 
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poor prognosis for patients with rT3–T4 disease4,5. Local recurrence plays a particularly vital role in treatment 
failure. Therefore, a more accurate prediction method is required to identify the individuals who are resistant 
to treatment and susceptible to recurrence and metastasis. Adjusting the prediction-based therapeutic strategy 
could provide a more favorable outcome. Although the American Joint Committee on Cancer TNM (AJCC/
TNM) staging system is the key to prognosis prediction and risk stratification, the prediction of local failure still 
can be improved in some ways6.

18F-Fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) imaging 
is becoming widely implemented because of its better sensitivity and specificity than conventional anatomical 
imaging techniques like CT7. The spectrum of information provided by 18F-FDG PET/CT improves the early 
detection of cancer and consequently the treatment outcome. Coincidentally, it has excellent utility in combina-
tion with radiomics. Radiomics, a relatively new field aimed at connecting medical imaging information with 
biological and clinical endpoints, has grown into a promising field in oncology. By translating medical imaging 
into mineable, high-dimensional, and quantitative imaging features via high-throughput extraction of data-
characterization algorithms, radiomics provides a brand new and dependable way to strengthen the predictive 
ability of a prediction model8–10. To our knowledge, the predictive capability of 18F-FDG PET/CT features for 
local failure NPC remains unclear. Thus, this research aimed to establish a radiomics signature based on 18F-FDG 
PET/CT to predict local failure.

Materials and methods
Patient
This retrospective study enrolled 726 patients with newly diagnosed NPC who underwent complete treatment 
at our center between January 2012 and December 2018. We included patients (a) with a biopsy-confirmed 
primary NPC; (b) with comprehensive baseline clinical data available; (c) with pretreatment whole-body 18F-
FDG PET/CT findings available; and (d) having undergone radical treatment. We excluded patients with (a) 
distant metastasis; (b) other malignancies; (c) a concomitant fatal disease; (d) a history of cancer treatment; and 
(e) insufficient follow-up data available. All patients were staged according to the 8th edition of the AJCC/TNM 
staging system. Our study was performed in accordance with the Helsinki Declaration. The Ethics Committee 
of the Fujian Cancer Hospital authorized this study (YKT2020-011-01).

Image processing
The whole-body [18F] FDG PET/CT scan before treatment was performed using a Gemini TF-64 PET/CT 
scanner (Philips, The Netherlands), and 18F-FDG was manufactured by HM-10 cyclotron. Patients fasted for 
over 6 h to maintain a serum blood glucose level of 3.9–6.5 mmol/L before radiotracer injection. Then, images 
were acquired 40–60 min after FDG injection at a dose of 148–296 MBq. A low-dose CT from the head to the 
proximal thigh (2.5 mA, 140 kV, 4-mm slice thickness, matrix: 512 × 512) was obtained for attenuation correc-
tion and fusion purposes. PET image reconstructions were finished using the manufacturer’s proprietary Blob-
ordered-subset-time-of-flight algorithm.

The entire segmentation process was performed using Accucontour software (Version 3.0, http://​www.​mante​
iatech.​com/). The primary tumor was delineated on PET-CT imaging by a single observer (clinical radiation 
therapist, 10 years of experience) under the guidance of an experienced superordinate physician (20 years of 
experience). Pretreatment enhanced MRI and/or CT images were used as a guide for PET-CT delineation. The 
ROI of the primary tumor (ROI-P) was semi-automatically segmented based on the region with an SUVmax of 
more than 2.5. Each ROI was evaluated and manually adjusted, if necessary. The ROI-P of CT was automatically 
generated from the corresponding PET volumes.

Feature extraction and reduction
Radiomics takes high-definition images from ROIs and effectively turns medical images into multi-dimensional 
mineable features by quantifying information on tumor shape, size, volume, texture, and intensity features. For 
each ROI, about 3375 features were extracted from original and derived images [seven built-in filter features: 
Laplacian of Gaussian (LOG), wavelet, sigma, square, square root, logarithm, gradient, and exponential], which 
were obtained from ROI-P in both PET and CT images using the Pyradiomics package (version 2.12). The fixed 
bin width was set to 0.1 g/mL for PET images, 25 HU for CT images. The features could be categorized as follows: 
shape-based features, first-order statistics, and texture features [e.g., gray level cooccurrence matrix (GLCM), gray 
level run length matrix (GLRLM), gray level size zone matrix (GLSZM), gray level dependence matrix (GLDM), 
and neighboring gray tone difference matrix (NGTDM)].

To increase algorithmic stability and performance, all features were scaled using Z-score normalization. 
Next, the univariate analysis was first used to select the relevant radiomics features with LRFS (P < 0.05). Then, 
Spearman’s correlation analysis was performed to reduce the redundancy of radiomics features. One of the paired 
significantly correlated features was removed by completely random (P < 0.05; correlation coefficient > 0.9).

Prediction model construction and evaluation
A radiomics model called Rad-score was built using least absolute shrinkage and selection operator (LASSO) 
regression and the Cox proportional hazards model for predicting local recurrence-free survival (LRFS) of 
patients with NPC in the training set. The training cohort was split as follows: 80% of the data represented the 
verification cohort for parameter selection and model construction and 20% of the data represented the test 
cohort for model validation. Three-fold cross-validation was performed, and the Rad-score and clinical param-
eters were subjected to univariate analysis. Then, statistically significant variables were included in multivariable 
Cox regression analysis to identify independent prognostic factors. Then, the factors identified were used to 
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establish a radiomics–clinical model. A nomogram was constructed to predict 2- and 3-year LRFS rates on the 
basis of the radiomics–clinical model. The concordance index (C-index) and area under the receiver operating 
characteristic curve (AUC) analysis were used to evaluate the nomogram’s discriminating power. The calibration 
curve was derived to compare the observed and predicted probabilities. DCA was used to evaluate the clinical 
validity of the nomogram by quantifying the net benefits at different threshold probabilities. Then, the ROC 
curve was used to classify the patients into two risk groups. Using the Kaplan–Meier method of survival analysis, 
survival curves for the different risk groups were plotted and then compared using the log-rank test.

Treatment
Platinum-based chemotherapy was delivered to 682 patients (682/726, 93.9%). In the entire cohort, 624 (86%), 
532 (73.3%), and 162 (22.3%) cases underwent neoadjuvant, concurrent, and adjuvant chemotherapy, respec-
tively. The most commonly used regimen was platinum + paclitaxel/gemcitabine. Intensity-modulated radiother-
apy (IMRT) was used for radiotherapy. The target volume and radiotherapy dose were implemented according to 
a previously described protocol11. The prescribed radiotherapy doses were as follows—GTV: 70–72.6 Gy/31–33 
fx, CTV1: 62–62.7 Gy/31–33 fx, and CTV2: 54.4–56.2 Gy/31–33 fx.

Endpoints and follow‑up
Notably, LRFS, which was defined as the time from pathological diagnosis to local relapse or the end of follow-up, 
was selected as the primary endpoint. All patients had a regular follow-up schedule—every 3 months for 2 years, 
every 6 months for years 3–5, and then annual visits.

Statistical analysis
All analysis were performed using R and Python. The Chi-squared test was used to validate differences between 
the two variables. The ROC curve determined the optimal cutoff value for Rad-score, EBV-DNA, SUVmax, 
and other continuous variables to predict local recurrence with the maximum value of the Youden’s index. The 
log-rank test was used to assess the statistical significance of differences between the two survival groups in 
Kaplan–Meier survival analysis. A statistically significant difference was indicated by a two-sided P value of < 0.05.

Ethics approval and consent to participate
The study was approved by the Ethical Committee of Fujian Cancer Hospital (YKT2020-011-01) and was con-
ducted in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical stand-
ards. Patient identifiers, such as names, were not collected, and instead, patients were given a numerical identifier. 
Informed consent was obtained from all participants, and for those aged under 18 years, the consent was obtained 
from a parent or legal guardian. For confidentiality, the patients’ charts were used only within the confines of the 
records department, and only the investigators and study assistant had access to the files.

Results
Patient characteristics and survival
A total of 726 patients were recruited for our research. To construct and validate the nomogram, patients were 
randomly divided into a training cohort (n = 580) and validation cohort (n = 146) in an 8:2 ratio. Table 1 lists 
the baseline of patients recruited in training and validation cohorts. There were no statistically significant dif-
ferences between the training set and the validation set (P range: 0.090–1.000). The median follow-up times for 
training and validation groups were 48 months (range: 3–118 months) and 50.5 months (range: 9–118 months), 
respectively. There were 50 cases of local recurrence in the training group and 13 such cases in the validation 
group. Furthermore, the 2- and 3-year LRFS rates for the training cohort were 95.4% and 93.6%, respectively. 
The 2- and 3-year LRFS rates for the validation cohort were 97.3% and 93.1%, respectively. The above informa-
tion indicates that the patients in the training and validation cohorts had balanced distribution of survival and 
baseline characteristics.

Radiomics signature building
A total of 85 features remained after dimensionality reduction, which included Spearman’s correlation and 
univariate analysis. To avoid over-fitting, we used LASSO regression and the Cox proportional hazards model 
to identify potential features and build the Rad-score model. The α value (0.0108) was determined during 
cross-validation, which made the C-index of the verification cohort have the highest mean value (0.592, range: 
0.547–0.637 in the verification cohort; 0.70, range: 0.688–0.712 in the test cohort). Details of LASSO regression 
and the Cox proportional hazards model are shown in Fig. 1A,B. We identified eight potential radiomics features, 
namely PET-gradient_glcm_Clustershade, PET-logarithm_glcm_ldn, PET-square_gldm_SmallDependenceEm-
phasis, PET-square_ngtdm_Coarseness, CT-wavelet-LLH_ngtdm_Busyness, CT-wavelet-LLL_glcm_MCC, CT-
logarithm_ngtdm_Complexity, and CT-square_glszm_SmallAreaEmphasis. Based on the Cox regression analysis, 
the constructed RAD-score model had a C-index of 0.650 (range: 0.618–0.682) in the training cohort and 0.652 
(range: 0.591–0.713) in the validation cohort. The contribution of the selected features to build score and their 
corresponding regression coefficients are shown in Fig. 1C. These features were linearly combined to get each 
patient’s Rad-score, which was determined using the formula shown below.

Rad-score = 0.23*PET-gradient_glcm_Clustershade + 0.06*PET-logarithm_glcm_ldn-0.55*PET-square_
gldm_SmallDependenceEmphasis-0.54*PET-square_ngtdm_Coarseness + 0.17*CT-wavelet-LLH_ngtdm_Busy-
ness + 0.31*CT-wavelet-LLL_glcm_MCC + 0.11*CT-logarithm_ngtdm_Complexity-0.07*CT-square_glszm_
SmallAreaEmphasis.
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Development of radiomics–clinical nomogram
To build a robust prediction model, we enrolled Rad-score and several clinical parameters, including patients’ 
sex, age, T-stage, N stage, Rad-score (RS), systemic immune-inflammation index (SII), neutrophils (NE), lym-
phocytes (Lym), hemoglobin (Hb), and plasma Epstein–Barr virus DNA (EBV-DNA). Continuous variables 
were transformed into categorical variables to get meaningful information on the basis of the optimal cut-off 
value, which was determined using the maximum Youden’s index. Cut-off values were calculated using the ROC 
curve, and the specific cut-off values are shown below: age (44 years), RS (0.27), SII (321.75), NE (3.8*109/L), 
Lym (1.5*109/L) Hb (148 g/L), and EBV-DNA (34,200 copies/mL).

In multivariate analysis of LRFS, the results showed that RS (P < 0.001) and SUVmax (P < 0.033) were inde-
pendent indicators of prognosis. The holistic results of univariate and multivariate analyses are shown in Table 2. 
We integrated the selected independent risk factors to build a comprehensive nomogram for predicting 2- and 

Table 1.   Characteristics of patients recruited in training and validation cohorts. RS Rad-score, SII systemic 
immune-inflammation, NE neutrophil, Lym lymphocytes, Hb hemoglobin, EBV-DNA plasma Epstein–Barr 
virus DNA, SUVmax maximum standardized uptake value, LRFS local recurrence free survival.

Characteristic Training set, n (%) Validation set, n (%) P

N 580 (79.9) 146 (20.1)

Sex 0.252

 Male 415 (71.6) 112 (76.7)

 Female 165 (28.4) 34 (23.3)

Age 0.503

 ≤ 44 years 238 (41) 65 (44.5)

 > 44 years 342 (59) 81 (55.5)

T stage 0.098

 1 129 (22.2) 42 (28.8)

 2 122 (21) 28 (19.2)

 3 213 (36.7) 58 (39.7)

 4 116 (20) 18 (12.3)

N stage 0.090

 0 64 (11) 27 (18.5)

 1 204 (35.2) 46 (31.5)

 2 186 (32.1) 47 (32.2)

 3 126 (21.7) 26 (17.8)

SUVmax 0.760

 ≤ 7.44 221 (38.1) 53 (36.3)

 > 7.44 359 (61.9) 93 (63.7)

RS 0.590

 ≤ 0.27 373 (64.3) 98 (67.1)

 > 0.27 207 (35.7) 48 (32.9)

SII 0.277

 ≤ 321.75 102 (17.6) 32 (21.9)

 > 321.75 478 (82.4) 114 (78.1)

NE (*109/L) 0.812

 ≤ 3.8 256 (44.4) 67 (45.9)

 > 3.8 321 (55.6) 79 (54.1)

Lym (*109/L) 0.638

 ≤ 1.5 107 (18.5) 24 (16.4)

 > 1.5 470 (81.5) 122 (83.6)

Hb (g/L) 0.807

 ≤ 148 333 (57.7) 82 (56.2)

 > 148 244 (42.3) 64 (43.8)

EBV-DNA (copies/mL) 0.111

 ≤ 34,200 475 (83) 128 (88.9)

 > 34,200 97 (17) 16 (11.1)

LRFS state 1.000

 0 530 (91.4) 133 (91.1)

 1 50 (8.6) 13 (8.9)
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3-year LRFS in the training cohort (Fig. 2). The total points gained by multiple variables are related to the pre-
dicted probability for a patient. Higher points in the nomogram indicate a shorter LRFS.

Performance and validation of the radiomics–clinical nomogram
To identify the prediction performance of the nomogram, the C-index and AUCs in the training and validation 
cohorts were calculated. The C-index of the nomogram for LRFS was 0.71 (95% CI 0.67–0.74) in the training 
cohort and 0.70 (95% CI 0.64–0.76) in the validation cohort. The AUCs of the nomogram (0.75 for 2 years; 0.71 
for 3 years) were found to outperform the 8th edition of the T-staging system (0.60 for 2 years; 0.60 for 3 years) 
in predicting 2- and 3-year LRFS (Fig. 3). The calibration curves for the probability of 2- or 3-year LRFS showed 
outstanding concordance between the estimation delivered by the radiomics–clinical nomogram and the actual 
observation in both training and validation cohorts (Fig. 4). Decision curve analysis (Fig. 5) revealed that the 
radiomics–clinical nomogram had significantly better net benefits than the 8th edition of the T-staging system 
across the range of reasonable threshold probabilities.

Risk stratification
To calculate the total nomogram score for each patient, the scores of all variables were added. All patients were 
further classified into high- and low-risk groups on the basis of the threshold (corresponding to a cut-off value of 
72.9 points on the nomogram). The abovementioned cut-off value was identified using the ROC. The log-rank test 
and Kaplan–Meier curve revealed a significant difference between high- and low-risk patients’ local failure risk 
in the training cohort (P < 0.001), and a significant difference was also noted in the validation group (P = 0.015; 
Fig. 6). Consequently, these findings indicated that the radiomics–clinical nomogram could successfully identify 
patients at a higher or lower risk of local failure.

Discussion
In this retrospective cohort study, we developed and validated a novel radiomics–clinical nomogram based on 
Rad-score and SUVmax to predict local recurrence in patients with NPC. Remarkably, our findings indicated 
that the nomogram could effectively categorize patients with significantly different probabilities of local failure 
into high- and low-risk groups and showed more robust predictive ability than the T-staging system.

Radiomics, a potential technique for obtaining crucial data on tumor heterogeneity, connects large-scale 
medical imaging information with clinical prognosis. Accordingly, a large amount of structural and functional 
information may be saved and could together contribute to predicting prognosis12. In addition, the detection of 
intratumor heterogeneity in particular patients can yield significant insights for therapeutic selection and drug 
development13,14. Many researches have revealed that radiomics features have excellent performance in predict-
ing prognosis. Zhang et al. integrated a radiomics nomogram with the multi-parametric MRI-based radiomics 

Figure 1.   Radiomics signature building. (A,B) Radiomics feature screened by LASSO regression and the 
Cox proportional hazards model; (C) the contribution of the selected features to build Rad-score and their 
corresponding regression coefficients.
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Table 2.   Univariate and multivariate analyses of risk factors for local failure in patients with NPC. RS Rad-
score, SII systemic immune-inflammation, NE neutrophil, Lym lymphocytes, Hb hemoglobin, EBV-DNA 
Plasma Epstein–Barr virus DNA, SUVmax maximum standardized uptake.

Characteristics

Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Sex, n (%)

 Male Reference

 Female 0.853 (0.453–1.605) 0.623

T stage

 1 Reference

 2 1.624 (0.578–4.563) 0.358 1.225 (0.433–3.463) 0.702

 3 2.103 (0.839–5.273) 0.113 1.040 (0.396–2.728) 0.937

 4 3.239 (1.264–8.297) 0.014 1.057 (0.379–2.948) 0.915

N stage

 0 Reference

 1 4.175 (0.989–17.631) 0.052

 2 2.392 (0.535–10.697) 0.254

 3 3.312 (0.734–14.947) 0.119

RS

 ≤ 0.27 Reference

 > 0.27 4.224 (2.328–7.667)  < 0.001 3.171 (1.639–6.136)  < 0.001

Age

 ≤ 44 Reference

 > 44 1.410 (0.785–2.532) 0.250

SUVmax

 ≤ 7.44 Reference

 > 7.44 3.625 (1.699–7.732)  < 0.001 2.419 (1.073–5.455) 0.033

EBV-DNA

 ≤ 34,200 Reference

 > 34,200 1.709 (0.868–3.364) 0.121

SII

 ≤ 321.75 Reference

 > 321.75 1.351 (0.607–3.004) 0.461

NE

 ≤ 3.8 Reference

 > 3.8 1.519 (0.846–2.728) 0.161

Lym

 ≤ 1.5 Reference

 > 1.5 1.503 (0.676–3.344) 0.317

Hb

 ≤ 148 Reference

 > 148 1.462 (0.839–2.546) 0.180

Figure 2.   Nomogram model predicting 2- and 3-year local failure in patients with NPC.
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features and the TNM staging system and reported superior prognostic accuracy in advanced NPC compared 
to the TNM staging system alone15.

Owing to the useful information it provides regarding tumor load and aggressiveness, 18F-FDG-PET/CT 
has been widely used to predict survival in patients with NPC. In a comparison of PET and CT radiomics for 
predicting local tumor control in HNSCC, Bogowicz et al. found PET to be more accurate than CT16. Therefore, 
greater focus should be placed on PET-based radiomics analysis for prognosis prediction. In the present study, 
we combined the advantages of radiomics and PET-CT to develop a prognostic model. Eight potential predictors 
from among 3375 radiomics features were extracted by LASSO regression and the Cox proportional hazards 
model, and Rad-score was built according to their coefficients. Rad-score showed a strong association with 
the risk of local failure and needs to be incorporated to construct a robust model. Moreover, some researches 
have also explored the local recurrence of NPC through radiomics analysis. Lv et al. found that combining PET 
and/or CT features with clinical parameters enhanced the predictive power compared to models with PET or 
CT radiomics features or clinical parameters alone, particularly in the local advanced subset17. Their model’s 
C-index was 0.69 (95% CI 0.59–0.77). This was consistent with our observations. The C-index in our study was 
0.71 (95% CI 0.68–0.74); however, we had a considerably larger cohort than Lv et al.’s study (726 vs. 140) for the 
construction of predictive model.

Figure 3.   ROC curves for nomogram and T-stage for 2- and 3-year local failure-free survival in the training 
cohort.

Figure 4.   Calibration curves of the nomogram predicted and actually measured survival probabilities at 2 and 
3 years of the training cohort (A,B) and validation cohort (C,D).
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As studies pursued the exploration of predictive factors of local recurrence, more and more potential factors 
were identified. According to Xiong et al.’s research, EBV-DNA was a promising predictor of survival in patients 
with locally advanced NPC18. Given the widespread use of 18F-FDG-PET/CT, SUVmax has often been acknowl-
edged as a useful parameter for estimating the prognosis of patients with NPC19,20. We incorporated SUVmax, 
EBV-DNA, and other clinical variables in this study. SUVmax was the only significant clinical factor according 
to the findings of the multivariable Cox regression analysis. Several studies have examined the significance of 
SUVmax as a predictor of treatment response or outcome in patients with NPC19,21,22. In a study by Xie et al., 
the cut-off value for SUVmax of the primary tumor was observed to be 8.0, which is roughly consistent with our 
study (7.4), and both studies reported it to be correlated with local recurrence19,23. SUVmax is used to deter-
mine the degree of malignancy on the basis of the rate of fluorodeoxyglucose breakdown in tumors. A higher 
SUVmax indicates that the tumor is metabolically more active and is likely to show faster proliferation and have 
lower differentiation potential. Thus, SUVmax showed a significant correlation with LRFS in the present study.

Interestingly, the T-stage showed significance in univariate analysis but not in multivariate analysis. Although 
patients with T4 NPC may have a higher recurrence risk, the negative results of T-stage could be explained by 
collinearity in T-stage and SUVmax because both represented tumor burden. Lu et al. identified no correlation 

Figure 5.   Decision curve analysis for 2- and 3-year survival predictions of the training cohort (A,B) and the 
validation cohort (C,D).

Figure 6.   Kaplan–Meier survival curves for different risk groups of the training cohort (A) and the validation 
cohort (B).
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between T-stage and local recurrence24. Jiang et al. also reported that T-stage was not adequately effective in clas-
sifying patients into separate categories depending on the risk of local recurrence25. EBV-DNA was not enrolled 
into the nomogram owing to its lack of significance in univariate and multivariate analyses. We attribute this 
finding to the lack of stringent quality assurance measures implemented during clinical testing. Preiksaitis et al. 
showed that only 13/28 worldwide labs reported EBV-DNA levels within acceptable standards, demonstrating 
considerable interlaboratory variance. Variations in the perception of the detection threshold and the time of 
specimen collection after therapy restrict the use of plasma EBV-DNA detection in regular clinical applications26.

Numerous studies have focused on integrating multiple significant clinical factors into prognostic models. 
In the study of Lu, the clinical factors included age, sex, T-stage, and plasma EBV-DNA levels24. Zhang et al. 
developed a radiomics nomogram incorporating age, sex, N-stage, and Hb as clinical variables27. Zhao et al. also 
constructed a nomogram for OS that incorporated the variables of age, N-stage, sex, EBV-DNA, T-stage, NLR, 
LMR, LAR, and PNI28. In the present study, a radiomics–clinical nomogram was developed. This nomogram 
could effectively estimate the 2- and 3-year LRFS risk and was valuable for categorizing patients into high- and 
low-risk subgroups. Risk classification and identifying the high-risk individuals who are more likely to develop 
local recurrence could be of significant value for early clinical detection and timely intervention. Nomograms, 
which have been widely used to represent predictive models in cancer prognosis, are incredibly useful tools 
for clinical decision-making and are extremely valuable to both clinicians and patients. Nomograms can also 
facilitate personalized treatment based on the total score of significant variables. The allocation of proportions 
for different elements was determined based on the correlation coefficient in a rational manner. Furthermore, 
nomograms maximize the translation of complex regression equations into graphs, and the outcomes of predic-
tive models are easier for patients to comprehend28–30.

Our research had some limitations. First, this investigation was conducted in an endemic region and a single 
hospital without external validation. Owing to the retrospective design of the study and a single data source, 
multicenter studies having larger cohorts with external validation are required to verify our results and improve 
the reliability of our radiomics study, thus enhancing the clinical application of prognostic signatures31. Second, 
our model still has scope for further improvement. The predictive model may perform better if the present model 
is integrated with genomics, thus expanding its knowledge so that it does not rely solely on spatial information. 
In addition, our algorithm may have scope for further enhancement by deep learning techniques. Finally, clinic 
personnel were relatively unfamiliar with the radiomics model and statistical analysis algorithms and found them 
to be quite complex. Practical tools, such as applications, should be developed in the future.

Conclusion
In conclusion, we constructed a radiomics–clinical nomogram to predict local recurrence of NPC in patients by 
integrating radiomics features. Our model exhibited good prediction accuracy and independent discriminatory 
capacity in local recurrence-free survival. It may assist in personalized risk classification, facilitate individualized 
treatment strategies, and monitor clinical processes.

Data availability
Data are available upon reasonable request. The data sets generated during and analyzed during the current study 
are available from the corresponding author on reasonable request.
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