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A novel bidirectional LSTM deep 
learning approach for COVID‑19 
forecasting
Nway Nway Aung 1*, Junxiong Pang 2,4, Matthew Chin Heng Chua 3 & Hui Xing Tan 1*

COVID‑19 has resulted in significant morbidity and mortality globally. We develop a model that uses 
data from thirty days before a fixed time point to forecast the daily number of new COVID‑19 cases 
fourteen days later in the early stages of the pandemic. Various time‑dependent factors including the 
number of daily confirmed cases, reproduction number, policy measures, mobility and flight numbers 
were collected. A deep‑learning model using Bidirectional Long‑Short Term Memory (Bi‑LSTM) 
architecture was trained on data from 22nd Jan 2020 to 8 Jan 2021 to forecast the new daily number of 
COVID‑19 cases 14 days in advance across 190 countries, from 9 to 31 Jan 2021. A second model with 
fewer variables but similar architecture was developed. Results were summarised by mean absolute 
error (MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE), and total 
absolute percentage error and compared against results from a classical ARIMA model. Median MAE 
was 157 daily cases (IQR: 26–666) under the first model, and 150 (IQR: 26–716) under the second. 
Countries with more accurate forecasts had more daily cases and experienced more waves of COVID‑
19 infections. Among countries with over 10,000 cases over the prediction period, median total 
absolute percentage error was 33% (IQR: 18–59%) and 34% (IQR: 16–66%) for the first and second 
models respectively. Both models had comparable median total absolute percentage errors but lower 
maximum total absolute percentage errors as compared to the classical ARIMA model. A deep‑
learning approach using Bi‑LSTM architecture and open‑source data was validated on 190 countries to 
forecast the daily number of cases in the early stages of the COVID‑19 outbreak. Fewer variables could 
potentially be used without impacting prediction accuracy.

Coronavirus disease 2019 (COVID-19) is a global public health crisis declared a pandemic by the World Health 
Organization. As of March 2021, the virus had infected over 127.6 million people worldwide and the number of 
deaths had totaled more than 2.7 million 1. Compared to other highly contagious previously identified coronavi-
rus-related diseases, such as Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome 
(MERS), the SARS-CoV-2 virus that resulted in COVID-19 disease appears to be more infectious. It is critical to 
explore novel approaches to monitor and forecast regional outbreaks in the early phase of the pandemic in order 
to facilitate better allocation of resources and containment planning 1–3 by healthcare providers and policymakers.

A crucial part of planning in this scenario is forecasting the daily confirmed cases of COVID-19. In the 
short-term, predictions can be performed by time series analysis 2. With the rapid spread of COVID-19, various 
forecasting, estimation, and modelling approaches are introduced. For instance, to forecast the evolution of con-
firmed infected cases, both epidemiological models of SIR and SER were used. In the early stages of the epidemic, 
a single individual can infect several people before isolation but raising public awareness, health, and stringency 
control, as well as policy controls and movement restrictions, may help control the epidemic. Reproduction 
Number (Rt), which is characterized by the number of people caused by a single individual at each stage of the 
outbreak, can also determine the different stages of the infection outbreak. The effective reproduction number 
of SIR model is used to assess the progress of the  epidemic3. Using the forecast for the number of infected (I), 
recovered (R), and dead (D) individuals, Rt and its temporal evolution are computed. The SIR computes the 
theoretical number of individuals infected with a contagious illness in a closed population over time with three 
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states: Susceptible people S(t), Infected I(t), and Recovered R(t)4. The susceptible exposed infectious recovered 
model (SEIR) models population are classified into four categories: S (Susceptible), E (Exposed), I (Infected), 
and R (Recovered) according to the states of individuals 5,6. In 7, the SIR model outperforms the SEIR model 
in terms of Akaike Information Criteria (AIC) to forecast and predict the confirmed cases data information.

Some preliminary studies for COVID-19 time series forecasting using Autoregressive Integrated Moving 
Average (ARIMA) methods have also been done 8–10. Many types of research based on traditional time series 
forecasting models have been explored to forecast future COVID cases 11–13. Machine learning and deep learning 
have developed as promising research 14–16 in accurately predicting the number of confirmed COVID-19 cases. 
In China, a stacked auto-encoder model is designed to fit the epidemic’s dynamical propagation and real-time 
forecasting of confirmed cases 17. For forecasting using time series analysis, deep-learning using recurrent neu-
ral networks, or RNN, are proposed as promising methods to predict the risk category trend predictions 18,19. 
Overall, there have been many developments in the prediction of COVID-19 cases, including the use of LSTM 
approaches 14,18,20,21 However the analyses are limited to a number of countries (China, India, US, Canada, Aus-
tralia, and European Countries) and no data on external factors such as containment measures are used in the 
forecasts. Furthermore, most of the studies use mean squared error (MSE) or mean absolute error (MAE) as a 
way to evaluate the performance of the models in a single country, which may not be applicable when comparing 
model performance across multiple countries.

Objectives
The US CDC has adopted an ensemble forecasting method 22 to generate 4-week forecasts for the number of 
deaths and confirmed cases and evaluated that accuracy of the model deteriorated at longer prediction horizons 
of up to four weeks. According to the US CDC 23, the number of deaths and confirmed cases is seen to fall within 
30 days after containment measures are taken. We aim to use data from thirty days before a fixed time point 
to forecast the number of daily cases fourteen days later, which would be a reasonable time frame to facilitate 
planning dictions (Fig. 1). As various time-dependent factors including the number of daily confirmed cases, 
reproduction number, containment, and governmental policy measures, mobility and flight data could affect the 
daily number of cases in the future, these data, where available, were included in the analyses.

Methods
Datasets
Data on daily new cases from the earliest date to 22 Jan 2020 to 31 Jan 2021 were collected from the Johns Hop-
kins University research databases (https:// github. com/ CSSEG ISand Data/ COVID- 19) 24. Numerical data on 
twenty-four time-dependent variables of 190 countries were collected from various sources such as the website 
ourworldindata.com 25. Flight data, where available, were collected from the Official Airline Guide (OAG) 26. 
Effective Rt is a well-known parameter to evaluate the propagation of the outbreak and is thus used as one of 
the input variables to predict the daily confirmed cases in this study. The computation of effective Rt is adopted 
from 3. The details of these variables are listed in Table 1.

The dataset is updated daily with new information. For this experiment, all data from 22 January 2020 to 31 
January 2021 were used. Time series points with a missing numbers were replaced with 0.

Overview of approach
This study proposes a deep-learning framework for COVID-19 time-series prediction. The framework is illus-
trated in Fig. 2.

Feature engineering
Data pre-processing is one of the crucial steps in machine learning. The time-series data of 190 countries were 
collected, pre-processed, and analysed for each country. Standard scaling was applied using StandardScaler() in 
Python 3.7 to scale each of the 24 variables to zero mean and unit variance. As the model requires a sequence of 
past observations as input and maps it to the output observation, thirty days of time steps up till the current day 
are used as input, and a one-time step of the target variable fourteen days later is used as output for the one-step 
prediction that is being learned.

Figure 1.  Use of 30 days prior data to predict the number of new cases 14 days later.

https://github.com/CSSEGISandData/COVID-19
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Modelling
Modelling is done individually for each country and has been done in two main stages: the training and testing 
stage. Data for the training stage comprised data from 22 January 2020 to 8 Jan 2021 for a total of 353 days, and 
data for the testing stage span the period from 9 Jan 2021 to 31 Jan 2021. The raw data is pre-processed, stand-
ardized, and then used to build the deep learning model.

BiLSTM
Time series of daily new confirmed COVID-19 cases were used for generating 14-day forecasts using Bidirec-
tional Long-short Term Memory models (BiLSTM). A BiLSTM is an enhanced version of the LSTM algorithm. 
LSTMs were designed to process sequences of data and improved upon traditional RNN by using memory cells 
that can store information in memory for long series and a set of gates to control the flow of this memory infor-
mation. These innovations allow LSTM to learn longer-term dependencies in sequential data. One of the limita-
tions of LSTM is that the current state can only be reconstructed through the backward context. The BiLSTM 
algorithm fuses the ideal functions of bidirectional RNN and LSTM. This is done by combining two hidden states, 

Table 1.  Variables collected for timeseries analysis and their sources.

Description Frequency of refresh Data source

Infected covid cases

Daily COVID tracking data from Johns Hopkins Coronavirus Resource CenterDead covid cases

Recovered covid cases

Derived data on the effective reproduction number, Rt Daily "Country-wise forecast model for the effective reproduction number Rt of 
coronavirus disease," Frontiers in Physics, vol. 8, p. 304, 2020

Flight data for 12 countries
 -United states
 -United Kingdom
 -UAE
 -Germany
 -Spain
 -France
 -Japan
 -Korea South
 -China
 -Brazil
 -Sweden
 -Singapore

Weekly Flight Data from Official Airline guide (OAG) website

Covid test data, total tests, and per thousand population Daily Testing data from ourworldindata.com

Level of containment policies (international travel controls, contact tracing, 
facial coverings, stay-home requirements) adopted by each country across 
the time

Daily Containment policies from ourworldindata.com

Mobility data - This new dataset from Google measures visitor numbers 
to specific categories of location (e.g. grocery stores; parks; train stations) 
every day and compares this change relative to the baseline day before the 
pandemic outbreak. Baseline days represent a normal value for that day of the 
week, given as the median value over the five-week period from January 3rd 
to February 6th, 2020. Measuring it relative to a normal value for that day of 
the week is helpful because people obviously often have different routines on 
weekends versus weekdays

Daily Google mobility data from ourworldindata.com

Figure 2.  Conceptual framework of the proposed forecasting methods.
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which allow information to come from the backward layer and the forward layer. The BiLSTMs were trained on 
varying sizes of input sequences—sequence sizes of 128, 64, and 20. Detailed modelling can be seen in Fig. 3.

Hyper‑parameter tuning
Hyper-parameter tuning is conducted with trial and error during the training. In the experiments, rmsprop 
optimizer with a learning rate of 0.1 was used for training the LSTM models, and the mean absolute error was 
used as the loss function. After that, the models with the selected hyper-parameters were used to forecast the 
number of COVID cases in the testing stage. The model’s accuracy was verified by comparing the measured data 
with real data via different statistical indicators, including Root Mean Square Error (RMSE), Mean Absolute Error 
(MAE), Mean Absolute Percentage Error (MAPE) and total absolute percentage error (see evaluation metric).

Features used
Two sets of input features were used for each model as shown in Fig. 4. The first model (Model 1) used all features 
except for the computed Rt moving average. The second model (Model 2) used all features except the confirmed 
and recovered cases (as the information was partially captured in daily new cases), estimated Rt (as the informa-
tion was partially captured in Rt moving average), number of new tests done each day, as well as international 
travel controls (as the information was partially captured in flight data).

Evaluation metric
In addition to RMSE, MAE and MAPE, total absolute percentage error was used for evaluating the performance 
of the models as shown.

where TotalActual and TotalPredicted refer to the actual and predicted sum of total new cases over the testing 
period, respectively. A sub-analysis was performed in 84 countries with more than 10,000 cases over the predicted 
period (or an average of 434 new cases a day) as percentage error could be inflated for models with very few cases 
and projections would be more useful for capacity planning for countries with a large number of cases. The top 
five countries with the best and worst performance were analysed in terms of the number of cases per day, phase 
of infection and number of infections waves experienced.

Comparison with classical ARIMA model
To test the effectiveness of the new method, an Autoregressive Integrated Moving Average (ARIMA) model was 
used to generate predictions over the same period using only daily new cases as inputs. Results from the classical 
model were summarised using the same evaluation metrics as the other two models.

Ethics approval
This study is supported by NUS-IRB-2020-812 under National University of Singapore.

Results
Summary by MAE, RMSE, MAPE, percentage error
Median MAE was 157 new daily cases (IQR: 26–666) under the first model, 150 (IQR: 26–716) under the second 
model, and 130 (IQR: 22–475) under the ARIMA model (Table 2). The countries and their respective perfor-
mance with Models 1 and 2 are listed in Supplementary Material 1. However, the effectiveness of the model is 

Total absolute percentage error = |TotalActual− TotalPredicted| ÷ TotalActual× 100%

Figure 3.  Modelling with Bidirectional long short-term memory networks.
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hard to gauge with MAE and RMSE alone as some countries may report thousands of daily infections, while some 
others only a handful of cases a day. As seen in Table 3, the worst-performing countries are countries with large 
numbers reported. For over half of the countries, the percentage error in terms of the total number of cases over 
the predicted period was at most 51% for the first model, 53% for the second model, and 41% for the ARIMA 
model However, the maximum error was higher under the ARIMA model as compared to models 1 and 2.

Figure 4.  Input features used for prediction. Key: flights—daily number of flights; deaths—cumulative number 
of COVID-19 deaths, confirmed—cumulative number of confirmed cases; recovery—cumulative number of 
recovered cases; E0_movil—daily reproduction number, Rt, smoothed; E0_estimated—daily reproduction 
number, Rt; new_tests_smoothed—daily test numbers; new_tests_smoothed_per_thousand—daily test 
numbers per thousand population; retail_and_recreation, grocery_and_pharmacy, parks, transit_stations. 
workplaces, residential—mobility data from Google contact_tracing—level of contact tracing (3 levels); 
restrictions_internal_movements—restrictions on internal movement during the COVID-19 pandemic 
(3 levels); containment_index—Containment and Health Index, a composite measure of eleven response 
metrics; stringency index—Government Stringency Index, a composite measure of nine response metrics; 
international_travel_controls—government policies on restrictions on international travel controls. (5 levels); 
facial_coverings—use of face coverings outside-of-the-home; stay_home_requirements—government policies 
on stay-at-home requirements or household lockdowns; cancel_public_events—government policies on the 
cancellation of public events; school_closures—government policies on school closures.

Table 2.  Summary by MAE, MSE, percentage error.

Model 1 (more variables) Model 2 (fewer variables) Classical model (ARIMA)

MAPE MAE RMSE Percentage error (%) MAE RMSE Percentage error (%) MAE RMSE Percentage error (%)

Min 0 0 0 0 0 0 0 0 0 0

25P 0 26 35 22 26 37 24 22 32 15

Median 1 157 209 51 150 192 53 130 161 41

75P 4.47E+15 666 752 87 716 863 92 475 532 69

Max 1.81E+19 44,250 52,940 16,928 47,506 55,796 16,633 88,363 98,098 1296



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17953  | https://doi.org/10.1038/s41598-023-44924-8

www.nature.com/scientificreports/

Table 3.  Top 5 countries with best and worst performance for each model.

MSE MAE Percentage error

Best performance Model 1

1. Vanuatu
2. Marshall Islands
3. Solomon Islands
4. Western Sahara
5. MS Zaandam

1. Vanuatu
2. Marshall Islands
3. Solomon Islands
4. Western Sahara
5. Micronesia

1. Singapore
2. Montenegro
3. Belgium
4. Congo Kinshasa
5. Slovakia

 Best performance Model 2

1. Solomon Islands
2. Vanuatu
3. Marshall Islands
4. Western Sahara
5. MS Zaandam

1. Vanuatu
2. Marshall Islands
3. Western Sahara
4. Solomon Islands
5. Micronesia

1. Pakistan
2. Germany
3. Bhutan
4. Estonia
5. Slovakia

Worst performance Model 1

1. United States
2. Spain
3. United King-
dom
4. Brazil
5. France

1. United States
2. United King-
dom
3. Spain
4. Brazil
5. Turkey

1. Tajikistan
2. Central African Republic
3. Uganda
4. Cyprus
5. Australia

 Worst performance Model 2

1. United States
2. Spain
3. Brazil
4. United King-
dom
5. France

1. United States
2. Spain
3. Brazil
4. United King-
dom
5. France

1. Tajikistan
2. Azerbaijan
3. Trinidad and Tobago
4. Switzerland
5. Iceland

Table 4.  Top 5 countries with the best and worst performance by percentage error with Models 1 and 2.

Model 1

Top 5 countries with best results
Average cases per day during prediction 
period In or out of infection wave Part of infection wave

Number of infection 
waves

1 Singapore 30 Out NA 2

2 Montenegro 438 In Increasing 4

3 Belgium 2150 Out NA 2

4 Congo Kinhasa 165 In Declining 2

5 Slovakia 2120 In Declining 2

Top 5 countries with worst results
Average cases per day during prediction 
period In or out of infection wave Part of infection wave

Number of Infection 
waves

1 Tajikistan 0 Out NA 1

2 Central African Republic 1 Out NA 1

3 Uganda 99 In Declining 2

4 Cyprus 183 In Declining 2

5 Australia 10 Out NA 2

Model 2

Top 5 countries with best results
Average cases per day during prediction 
period In or out of infection wave Part of infection wave

Number of infection 
waves

1 Pakistan 2,040 In Declining 2

2 Germany 13,914 In Declining 2

3 Slovakia 2120 In Declining 2

4 Estonia 507 In Declining 2

5 Bhutan 4 In Declining 3

Top 5 countries with worst results
Average cases per day during prediction 
period In or out of infection wave Part of infection wave

Number of Infection 
waves

1 Tajikistan 0 Out NA 1

2 Azerbaijan 296 In Declining 2

3 Trinidad and Tobago 15 Out NA 2

4 Switzerland 1884 In Declining 2

5 Iceland 6 Out NA 3
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Analysis of the countries with the best and worst results in terms of percentage error shows that countries with 
better performing results typically had more cases per day and had witnessed more waves of COVID outbreaks 
over the training period (Table 4). Countries that fared more poorly had fewer daily cases and were usually not 
in the middle of any covid wave. This is because smaller daily cases would lead to larger percentage errors due 
to low base effects.

Sub‑analysis in countries with more than 10,000 cases
A sub-analysis was performed in 84 countries with more than 10,000 cases over the predicted period (or an 
average of 434 new cases a day). The median percentage error in terms of the total number of cases over the 
predicted period was lower when limited to these countries—at 33% for the first model with more variables, 
and 34% for the second model with fewer variables (Table 5). The percentage error was 16% or less in a quarter 
of cases in the first model, while the maximum error was 166% for the first model and 191% for the second. 
While the median percentage error was similar in the ARIMA model (32%, IQR 11–53%), Model 1 (33%, IQR 
18–59%), and Model 2 (34%, IQR 16–66%), the maximum error was greater under the classical ARIMA model 
(462%) than under the other two models (166%, 192%).

Top 5 countries with best and worst model performance
Table 6 summarises the characteristics of the top 5 countries with the best and worst model performance. After 
limiting the analysis to countries with more than 10,000 cases over the prediction period, both the sets of top-
performing and worst-performing models comprised countries from various regions, and most countries in 
the declining phase of an infection wave. However, the countries which fared better under models 1 and 2 had 
experienced a greater number of infection waves by the time of prediction and still had a slightly greater number 
of cases per day. In addition, model 2 appeared to have better performance in countries with a greater number 
of daily cases per day. As model 2 excluded the use of variables such as the number of tests done, it might appear 
that such variables are less useful and could introduce noise when the number of cases was relatively high. Model 
1 appeared to produce better predictions over a greater variety of trends in daily cases (increasing, out of COVID 
wave, declining cases), which could suggest better generalizability across country profiles.

Figures 5 and 6 show the scatter plot of ranking in terms of percentage error, and absolute percentage error 
respectively. There were some countries in which Model 1 performed better (Moldova, Jordan, Croatia, Switzer-
land), and which Model 2 performed better (Czechia, UK, Turkey, Germany). The charts showing the predictions 
and actual cases for these seven countries are in Supplementary Material 2. In both cases, the poorer-performing 
model tended to overpredict the number of cases. However, Models 1 and 2 performed more poorly under differ-
ent scenarios. Model 1 wrongly predicted that the rise in cases would continue when cases were at the peak and 
about to decline (Czechia, UK), while Model 2 provided higher estimates during a declining phase of infections 
(Moldovia, Jordan, Croatia, Switzerland).

Limitations and strengths
The models’ limitations are their restricted applicability only on some outbreak stages and with the availability 
of enough data. During model development, it was assumed that the intensity and coverage of surveillance and 
testing were consistent throughout the whole period as well as across the different countries, which realistically 
may not be possible due to a potential shortage of resources. With the roll-out of vaccination programmes, daily 
number of new cases is expected to decrease with the same input variables. Therefore, the validation was only 
performed using data collected before 31 January 2021, when the vaccination campaign has just started globally. 
On the other hand, the emergence of new virus variants with different transmissibility could also impact the 
performance of the models. The Omicron variant had become the dominant strain of the virus and is known to 
be more transmissible but less deadly. Nevertheless, the availability of open-source data and previous training 
of the model developed may make it useful in forecasting for outbreaks of a similar nature, especially during 
the early stages of an outbreak. The model with fewer inputs performed reasonably well compared to the model 
with more inputs, suggesting that in the case of fewer data available, a reasonable forecast could still be obtained. 
Nevertheless, given the varying results, it is recommended that individual models with individual sets of variables 
be trained specifically in those countries, using all variables as a starting point.

The strength of the models is that they draw upon readily available data on a country’s national, healthcare, 
social and economic status to generate predictions, and have been validated on 84 countries with more than 

Table 5.  Summary by MAE, MSE, Percentage Error (countries with more than 10,000 total cases over 
predicted period).

Model 1 (more variables) Model 2 (fewer variables) Classical Model (ARIMA)

MAPE MAE RMSE Percentage error (%) MAE RMSE Percentage error (%) MAE RMSE Percentage error (%)

Min 0 56 68 0 66 78 0 50 65 0

25P 0 422 486 18 403 478 16 290 363 11

Median 1 710 881 33 865 969 34 581 696 32

75P 1 2085 2580 59 2412 2786 66 2625 3423 53

Max 1.81E+19 44,250 52,940 166 47,506 55,796 191 88,363 98,098 462
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10,000 total cases over the prediction period that are different geographically, politically, and culturally. By run-
ning the model on 84 countries, an estimate of the maximum possible error is obtained, allowing for planning of 
best and worst case scenarios. An additional strength of the models is the ability to generate predictions fourteen 
days in advance, without knowledge of the number of cases or changes in the upcoming thirteen days. As such, 
these predictions would be useful for facilitating the better allocation of resources and containment planning 
by healthcare providers and policymakers over a longer time horizon.

Discussion
Previous work has been done on COVID-19 forecasting using both classical and machine learning methods. 
Miralles-Pechuán et al. compared the performance of state-of-the-art machine learning algorithms, such as 
long-short-term memory networks, against that of online incremental machine learning algorithms to predict 
the coronavirus cases for the 50 countries with the most cases during 2020 27. Kasilingam et al. used exponential 
growth modelling studies to understand the spreading patterns of SARS-CoV-2 and identify countries that 
showed early signs of containment until March 26, 2020 28. Saba et al. applied time-series and machine learning 
models to forecast daily confirmed infected cases and deaths due to COVID-19 for countries under various types 
of lockdown (partial, herd, complete) 29. While these studies used machine learning and acknowledged the impact 
of containment measures on the daily case numbers, our study is novel in terms of the variates used and approach.

To our best knowledge, this study is the first that leverages open-source data including flight data to perform 
COVID-19 time series forecasting on 190 countries using a machine learning approach. Only data up to 31 
January 2021 could be accessed at the time the analysis was conducted. The model was able to predict the total 
number of cases across a period of 14 days in advance from 9 Jan 2021 to 31 Jan 2021 with a median of 35% 
error amongst countries with more than 10,000 cases over the predicted period, or an average of 434 new cases 
per day. When tested on countries with more than 10,000 cases over the predicted period, maximum error was 
much smaller for the Bi-LSTM model than a classical ARIMA model, suggesting that using more variables and 
machine learning methods could help to minimise the maximum error.

The model was developed in 190 countries but validated over 84 countries with more daily cases. Further 
fine-tuning of the models to create a country-specific model is warranted given the varying results across dif-
ferent countries.

Table 6.  Top 5 countries (more than 10,000 total cases over prediction period) with best and worst 
performance by percentage error with Models 1 and 2.

Model 1

Top 5 countries with best results
Average cases per day during prediction 
period In or out of infection wave Part of infection wave

Number of infection 
waves

1 Montenegro 438 In Increasing 4

2 Belgium 2150 Out NA 3

3 Slovakia 2120 In Declining 2

4 Paraguay 836 In Increasing 2

5 Estonia 507 In Declining 2

Top 5 countries with worst results
Average cases per day during prediction 
period In or out of infection wave Part of infection wave

Number of Infection 
waves

1 Turkey 7386 Out NA 1

2 Denmark 869 In Declining 2

3 Malawi 697 In Increasing-peak-declining 1

4 Ghana 502 In Increasing 2

5 Mozambique 790 In Increasing 2

Model 2

Top 5 countries with best results
Average cases per day during prediction 
period In or out of infection wave Part of infection wave

Number of infection 
waves

1 Pakistan 2040 In Declining 2

2 Germany 13,914 In Declining 2

3 Estonia 507 In Declining 2

4 Slovakia 2120 In Declining 2

5 United Kingdom 37,476 In Declining 3

Top 5 countries with worst results
Average cases per day during prediction 
period In or out of infection wave Part of infection wave

Number of infection 
waves

1 Switzerland 1884 In Declining 2

2 Croatia 630 In Declining 1

3 Denmark 869 In Declining 2

4 Georgia 960 In Declining 1

5 Jordan 943 In Declining 1
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Figure 5.  Ranking scatterplot of 84 countries.

Figure 6.  Percentage error scatterplot of 84 countries.
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Upon analysis of the key characteristics of the top five countries with best and worst performance found that 
countries with the best performance in terms of percentage error had experienced more waves of COVID-19 
infections prior, such that the prediction method would be more suitable for countries who had more historical 
data for training on. Cases were on the decline for most countries, and thus the model might be better in pre-
diction when the trend in daily cases is stable and less accurate in predicting sudden surges 14 days in advance.

The models in our study were trained and tested in isolation on each country, that is, model weights obtained 
from training on one country were not used for prediction on another country. Given that the models performed 
relatively well on countries which had experienced earlier of outbreaks, one area for future work would be to 
investigate if pre-training the model on countries with more cases and fine-tuning it on another country with 
fewer would produce better results. Model 1 appeared to generate more reliable estimates across a variety of 
stages of COVID infections, suggesting that generally Model 1 should be used as a default model for all countries 
first. However, Model 2 seemed to generate better predictions for countries with higher daily cases, suggesting 
a more parsimonious model could be used instead to achieve better accuracy.

In addition, given the tendency of Model 1 to predict sharp increases when cases were on the decline, any 
sharp increases predicted by Model 1 should be further substantiated with information on the current situation 
in the country. As Model 2 tended to overpredict the number of cases during a decline, predictions from model 
2 may be taken as an upper bound prediction, rather than the actual number when cases are starting to decline.

As discussed, there are some limitations of this study due to limitations in data availability. Underlying factors 
may have been missed when data were obtained, adding a degree of uncertainty in the predictions. An example 
of this is that daily case counts may be drastically high during the forecast phase with the ease of restrictive 
measures, and these pieces of information may not be present in historical data. It is also unrealistic to fully 
account for these potential uncertainties, which directly affect the performance of predictive models and cause 
inaccurate predictions of future cases.

Forecasts can provide potentially useful information to facilitate better allocation of resources and contain-
ment planning by healthcare providers and help policymakers manage the consequences of COVID-19 over a 
longer time horizon. For future work, an ensembling approach to combine both models and potentially other 
time-series candidate models can be explored. This stems from our observation that a single model might not be 
able to capture and predict the complex nature of the virus transmission, and a combination of different models 
will be able to account for the inherent weaknesses of each candidate model. Additionally, for future pandemics 
involving new variants or viruses, there is potential to apply transfer learning to model them, utilizing the pre-
trained bidirectional LSTM developed in this work. This may be able to speed up prediction efforts in a bid to 
curb the viral spread effectively.

The approach of our study is both model-driven and data driven. While input variables had been selected 
after literature review on the factors affecting COVID-19 transmission, the data-driven aspect came from the 
daily data that were provided for each country that was used to fine-tune the model. We believe the data science 
approach presented in this paper can be generalised for other time-series forecasting applications which use 
multivariate data.

Conclusion
A deep-learning approach using Bi-LSTM architecture and open-source data was developed to forecast the new 
daily number of COVID-19 cases 14 days in advance across 190 countries during the early phase of a pandemic 
and evaluated using absolute percentage error. The model with fewer variables performed reasonably well com-
pared to the model with more inputs. A deep-learning approach using Bi-LSTM architecture and open-source 
data can be used as a starting point for forecasting the new daily number of COVID-19 cases 14 days in advance 
and fewer variables could potentially be used without impacting prediction accuracy.

Data availability
The datasets generated during and/or analysed during the current study are available from the Johns Hopkins 
University research database (github.com/CSSEGISandData/COVID-19), Our World in Data (ourworldindata.
com) and OAG (oag.com).

Code availability
Software application or custom code: The code that support the findings of this study are available from the 
corresponding author upon reasonable request.
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