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A modification in Weibull 
parameters to achieve a more 
accurate probability distribution 
function in fatigue applications
H. Fakoor  & J. Alizadeh Kaklar *

Risk evaluation for fatigue failure of the engineering components is an important aspect of the 
engineering design. Weibull distributions are often used in preference to the log-normal distribution to 
analyze probability aspects of fatigue results. This study presents a probabilistic model for calculating 
Weibull distribution parameters to reduce the effect of percentage discretization error of experimental 
fatigue life and R–S–N curves for three reliability levels. By considering any result of standard fatigue 
test as an equivalent Weibull distribution, artificial data are generated and the accuracy of common 
Weibull distribution model can be improved. The results show error reduction in the Kolmogorov–
Smirnov test and R-square values. Also, the Basquin model is used for different reliability levels with 
the same error order for risk evaluation of fatigue failure. The coefficient of variation for fatigue life 
increases at higher stress levels and has a linear relation with stress level for a high-cycle fatigue 
regime.

Fatigue failure is the formation and propagation of cracks due to a repetitive or cyclic load. It has been estimated 
that fatigue contributes to approximately 90% of all mechanical service  failures1. For the first time, the French 
mathematician and engineer Jean-Victor Poncelet used the terminology of “fatigue” in his book in  18412. For 
fatigue base designs, actual fatigue data should be used or, if not available, must be modeled and generated. Many 
models have been developed in the S–N (stress-life) approach of fatigue life estimation to depict S–N curves. The 
earlier models have estimated a median fatigue life, but it is necessary to calculate the risk of fatigue failure for 
a safe and economical design. The fatigue life shall be predetermined by the desired reliability levels referred to 
by the material properties, crack size, environment, and loading condition. In engineering designs, the failure 
of system parts must be considered with a low probability of  occurrence3.

In statistical analyses, probabilistic fatigue S–N curves are widely used to quantify scattered fatigue test data 
and analyze fatigue problems. Usually, for constructing the curves, fatigue tests are performed on some stress 
levels. Then, a distribution model (e.g., Weibull) is applied to predict fatigue life at a specified applied stress level, 
followed by characterizing the S–N relation. The Basquin equation is an S–N relation with a linear relationship 
between applied stress and fatigue life logarithmic scale. This equation can be used to express the stress-life rela-
tion in a certain survival probability confidence level. This probabilistic S–N (R-S–N) curve is an S–N relation 
in some probability confidence  levels4.

This paper focuses on a modification for a common probability distribution model of a physical phenomenon 
when the available number of experimental results is limited. The importance of this idea is that generally, engi-
neering design costs account on average for 5% of total costs in the  projects5 and most of the cost is related to 
conducting experimental tests. Weibull distribution is often used in preference to analyze probability aspects of 
fatigue  results6 and to reduce required number of experimental tests for evaluation of fatigue life distribution. The 
novelty of this paper is making some artificial data by considering any result of the fatigue test as an equivalent 
Weibull distribution with the mean value of the same test fatigue life and cumulative probability of common 
Weibull method. The accuracy of common Weibull distribution model can be improved using this method.

Probability distributions
Probability theory is one of the most important aspects of statistics. A probability distribution is a mathematical 
function that gives the probabilities of occurrence of different possible outcomes for an  experiment7. Table 1 
presents several models that have been proposed to model probability distribution.
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The probability distributions are described with statistical parameters like mean and standard deviation, as 
shown in Table 1. Normal distribution, named Gaussian distribution, is the most frequently used distribution 
function in statistical analysis. The normal distribution, which has a bell-shaped curve, has been used for inde-
pendent, random variables in the survey reports, Technical Stock Market, and scientific study of many observable 
phenomena in nature like human height or IQ distribution. Sinclair and  Dolan8 conducted a comprehensive 
statistical fatigue investigation engaging 174 nominal identical, extremely polished, smooth 7075-T6 aluminum 
alloy specimens. They worked on 6 alternating applied stress levels at the fully reversed test conditions. A nor-
mal distribution in the logarithmic scale for the experimental results at every applied stress amplitude gives 
the impression of being reasonable. Derived from that and the other performed statistical fatigue test results, a 
logarithmic scale normal distribution of failure is usually considered in fatigue analysis. At every applied stress 
range, a group of S–N diagrams at different percentages of failure probabilities are established from the prob-
ability distribution functions.

The Pareto distribution is one of the power-law probability distributions in probability theory and mathemat-
ics. Pareto distribution is usually used in the explanation of data scatter in the many types of scientific studies. 
Particularly applied to describing the distribution of wealth in a society, fitting the trend that a large portion of 
wealth is held by a small fraction of the  population9.

The Gumbel distribution usually has been applied to figure the extremum (Max or Min) distribution of a num-
ber of samples of different statistical societies. Forecasting a temblor, torrent, or other types of natural disaster 
is of great use and value. For instance, if the database of a parameter of a phenomenon like water in the river for 
10 years ago is available, Gumbel distribution can be applied to predetermine the distribution of the variation 
of extremum of water level at a river in the specific time. For the Gumbel distribution, the special importance is 
to predict the extremum distribution according to extreme value  theory10.

John Tukey presented a continuous symmetric probability distribution model in which the Tukey lambda 
distribution function was specified in terms of its quantile function. The Tukey lambda distribution function is 
used to recognize a suitable distribution. Therefore, the Tukey lambda distribution usually has no direct applica-
tion in statistical models. The Tukey lambda distribution has a single shape parameter that can be rearranged 
and defined in terms of the standard distribution.

The exponential distribution is a continuous distribution for modeling events that occur at a constant time 
rate. Two important applications of the exponential distribution are the modeling of radioactive decay in physics 
and the modeling of the posterior default probability for a set of financial assets in  finance11. The exponential 
distribution can be applied to analyze the relationship between the unobservable actual values and measurement 
 values12. In some cases the lifetime of a manufacturing item may fallows a mixed distribution models such as the 
half-normal distribution and the half-exponential  distribution13.

Among the probability distributions used to analyze fatigue  problems14,15, the Weibull distribution is one of 
the most common models in the logarithmical scale. Weibull progressed a new approach and used it to study 
fatigue actual  data16,17. Weibull distributions have 2-parameter and 3-parameter models. The 2-parameter model 
is widely extended in fatigue problems and design. In this approach, the expected fatigue life range starts from 
zero cycles. Indeed, the 2-parameter Weibull distribution is a simplified 3-parameter Weibull distribution with 
a minimum expected life of zero. At the same time, the 3-parameter distribution is characterized by a finite 
minimum life greater than zero. For 3.3 ≤ b ≤ 3.5, the Weibull distribution function is approximately normal or 
Gaussian, while it is exponential for b = 1. The coefficient of variation (standard deviation/mean) is approxi-
mately C = l/b for the two-parameter Weibull distribution. For b values between 3 and 6, (typical of fatigue), the 
error from this approximation is about 10 to 15%6. In modern life testing analysis to obtain information about 
fatigue life of a component, new method of experimental process is conducted, where products are tested under 

Table 1.  Common models representing a probability distribution.
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higher stress than normal to get their failure information. For example, new methods such as adaptive type-I 
progressive hybrid censoring is planned to evaluate the failure parameters assuming that the failure causes are 
independent Weibull  variables18.

In a study of statistical fatigue analysis, Zhao and  Liu4 proposed a Weibull approach to the probabilistic study. 
They investigated stress-life for rolling contact fatigue. The study shows that the 2-parameter and 3-parameter 
Weibull equations have reasonable results. However, the 3-Parameter Weibull model has a lower standard devia-
tion for fatigue life. This standard deviation decreases at higher applied stress levels. These results are consistent 
with those of classic fatigue studies.

Xionga et al.19 investigated multiaxial fatigue results of magnesium alloy using the modified Smith–Wat-
son–Topper (SWT) theories and the multiaxial Jiang criterion. The results of both theories were acceptable. 
Jiang et al.20 used the Markov chain Monte Carlo method to estimate the parameters of a modified Weibull 
distribution. They suggested the use of Markov chain Monte Carlo estimation instead of maximum-likelihood 
estimation for point estimation when the sample size is less than 100. Canteli et al.21 studied 3 types of fatigue 
models, namely, LCF, HCF, and VHCF, which are usually used in mechanical parts design. The study presented 
the actual results of the stress-based and strain-based approaches in a single methodology.  Strzelecki22 used 2-P 
and 3-P Weibull distribution and presented features of the S–N curve for fatigue limit investigation. The fatigue 
test results were used for rotary bending of S355J2 + C and C45 + C steels, and the S–N curves were specified. 
Acosta et al.23 used measurement techniques based on temperature and magnetics to describe the fatigue behavior 
of metallic materials. Furthermore, they reduced the effort required to generate and provide S–N curves using 
valuable input parameters for short-time fatigue life calculation methods.

S–N Relation
In the S–N approach, many models have been developed for evaluating the S–N relation, with some shown in 
Table 2.  Basquin24 suggested a linear relation in the logarithmical scale between the applied stress (S) and the 
fatigue life (N). Basquin’s equation is generally developed in the standards such as ASTM, ASME, and UNE and 
Guidelines such as FKM, DNV, and GL.  Vidovic25 performed an analytical study of the maximum-likelihood 
estimations for the parameters of a modified Weibull distribution model and indicated that their implementation 
in practice follows a rather simple pattern. Usabiaga et al.26 implemented a model on the NCode2020 software to 
demonstrate the probable implementation in general commercial codes by major applications on fatigue design.

Crack propagation has always been a source of concern in determining inspection routines in different 
industries. Crack propagation at the higher applied stress amplitude can cause great uncertainty in the fatigue 
life estimation. Crack propagation has been studied widely to characterize different types of cracks, including 
edge, surface, subsurface, etc.27–29. Focus on these studies shows the uncertainty and wide data scatter in the 
fatigue life compared to other mechanical properties may be due to diversity in the crack initiation location and 
different crack types.

Stromeyer30 published the empirical relation for the mathematical description of fatigue. Basquin, in his 
fatigue relation, had not considered the idea of the fatigue limit.  Stromeyer30 studied Wöhler’s fatigue test data. To 
verify the existence of the fatigue limit concept, they conducted advanced rotating-beam fatigue tests on several 
materials to verify the existence of a definite fatigue limit. The Stromeyer law represents the Stress-Life curve by 
truncating the Basquin relation at the fatigue limit by plotting the load and fatigue life. In addition, Stromeyer 
presented a relation between fatigue samples temperature increase and fatigue limit. However, the knee point 
(Nknee)31 was not specified explicitly.

Palmgren32 presented a new theory resembling the Basquin method and the Stromeyer method. The equation 
in Table 2 presents the results of the fatigue test of rolling bearings. The fundamental relation of this method 
involves the stressed volume of material in the rolling bearing raceway sub surfaces as the main parameter. 
“This volume of material is simplistically determined to have a nearly rectangular subsurface cross-sectional 
area bounded by the length of the maximum contact area ellipse and the depth at which the maximum failure-
causing stress occurs”.

In fatigue design, an adequate quantification of ISO 12107 inherent variation is one of the essential parameters 
for calculating the fatigue property in the various mechanical parts of systems and components. Also, it is essen-
tial to compare materials in fatigue properties, including their variation in engineering design. In this respect, 
statistical methods have been used widely to compare material properties. This International Standard includes 
a full methodology for the application of the Bastenaire model as well as other more sophisticated relationships. 

Table 2.  Common methods to estimate the S–N  curves24.
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It also addresses the analysis of runout (censored)  data33. Ling and  Pan34 presented a new method to determine 
R–S–N curves to minimize the cost and the number of samples needed for laboratory testing. The stress-life 
curves were considered in a 3-parameter form.

Kohout and  Vechet35 presented a different method to define S–N curves in the whole cyclic load domain in 
fatigue problems. This method incorporates all the fatigue-affected regions from ultimate strength of material to 
fatigue endurance limit, which is generally expressed by the Palmgren function. For every region, this method 
is similar to one of the previous theories, i.e., when the applied load is approximately large, the Kohout and 
Vechet model converts into the Basquin model. On the other hand, when the applied load is smaller than the 
fatigue endurance limit, this model converts to the Stromeyer function for almost infinite life and high-cycle 
fatigue region. Compared to the models specified above, the Kohout and Vechet model has some precedence. 
This method has a better curve fitting of fatigue test results, and this coefficient has unambiguous technical and 
geometrical meaning, which can be calculated with higher accuracy. In addition, this model is more appropriate 
for extrapolation and interpolation for fitted curves in the low-cycle and very-high-cycle regions.

The present work tries to develop the probabilistic S–N relationships for existing fatigue data in the follow-
ing three steps: (1) collecting the fatigue test data; (2) estimating the probabilistic curves for every specified test 
condition (the key task in the present work is to determine the Weibull equation coefficient for scattered test 
data); and (3) evaluating the Basquin equation’s coefficient from the previous step’s data (to this end, a regression 
analysis will be done on the estimated fatigue life from the previous step).

Formulation of modified Weibull approach
Life distribution
Tolerance limits
Fatigue data are subjected to considerable scatter. In statistical analysis, a sample with a random data set is chosen. 
Obtaining data from the entire population is usually impossible or has very high undue costs. Due to sample 
size limitations, the sample statistical parameters, including mean median or variance values, are different from 
the source population. Designating a confidence level assigns a quantitative value of uncertainty or confidence. 
Lower and upper tolerance limits in a Weibull distributed model can be calculated using Eq. (1a) and (1b)6:

where k is a function of the sample size.
Replacement of sample statistical properties with source population properties involves some degree of 

uncertainty. This uncertainty is determined using the percent error. If the sample average is  x1, the percent error 
will  be4:

where X1 is the sample logarithmical average life, n is the sample size, ϑ is the degree of freedom, α2 is the degree 
of confidence, and confidence is equal to (1− α ), S1 is the logarithmical standard deviation of sample life. Note 
that the value of t statistics is available in standard tables.

The present study reviewed the effect of stress level on the data scatter and coefficient of variation.  S1 and X1 
values were evaluated in the linear scale.

Probability distributions of samples
For the evaluation of the distribution of each sample data set, two-parameter and three-parameter Weibull 
distribution functions can be established  as6:

where F
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)

 is the failure fraction in the test data set Nf  , Nf0 is the minimum expected fatigue life, θ = ∅− Nf0 
is characteristic fatigue life (cycles when 63.2% have failed), and b is the Weibull slope or shape parameter. The 
terms Nf0 , θ , and b are 3-parameter Weibull model, and for the 2-parameter Weibull model, the parameter of 
Nf0 is zero, Nf0 = 0.

To determine the Weibull equation coefficient for scattered test data (which is the key task in the present 
work), a step function, i.e., (i − 0.3)/(n+ 0.4) is commonly used as a percent of failure. In the present work, every 
failure life of Nfi in test results is considered as a Weibull distribution with a median value of Nfi and cumulative 
probability of (i − 0.3)/(n+ 0.4) . The failure fraction for median value of Nfi in Eq. (3) will be 50%, so charac-
teristic fatigue life, θi , the minimum expected fatigue life, γ and the Weibull slope, b for any failure life, Ni will be:
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The Weibull equation for every test result from Eq. (4b) is:

where Pi(N@Sca) is the expected failure fraction for fatigue life N at applied stress level of Sca . By applying Eq. (4c) 
and weight factor, the modified Weibull function is derived:

Weibull equation coefficients are determined based on the flowchart in Fig. 1. First, Weibull parameters will 
be calculated by the common Weibull model (Stages 1 to 3 in the flowchart). Then, for every single test data, an 
equivalent Weibull distribution with the mean value of the same test fatigue life and cumulative probability of 
common Weibull method and modified Weibull parameters will be calculated using Eqs. (4a), (4b), (4c) and 
(5) (Stages 4 and 5 in the flowchart). Finally, test data were compared with calculated parameters and presented 
probability distribution model using the Kolmogorov–Smirnov test (K–S test), as follows (Stages 6 and 7):

This process will be repeated until the error valve becomes acceptable.

R–S–N relation
In Basquin power law, a log–log straight linear relationship is considered between the applied stress cycles and 
the number of cycles to failure. R–S–N curves are depicted by determining the fatigue life using the Weibull 
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Figure 1.  Flowchart of parameters calculation for Modified Weibull distribution.
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equation of every data set for each reliability at every specified stress level. Then, regression analysis is done to 
fit a linear curve to the S–N data.

In statistical theory, regression analysis is a process of identifying data trends. Regression analysis commonly 
uses regression analysis to evaluate relationships between some factors, including a dependent factor and other 
independent factors (variables). This process shows which variable is essential and which f variable can be 
ignored. It also shows how these variables affect each other. Linear regression is usually applied to estimate data 
trends. This method depends on the problem and determines one or more lines to fit the data with minimum 
error according to a specific mathematical calculation like ordinary least squares. This technique calculates a 
unique line with a minimum difference between the true data and that line compared to the sum of squared dif-
ferences. In the statistical analysis of fatigue problem, selecting the best curve fitting method sometimes become 
very complicated. To avoid uncertainty about a divergent solution, we applied the K–S test to the presented 
sequences method at the final step.

Results and discussion
The test data used to evaluate the modified Weibull probability distribution parameters are extracted from the 
 literature4,36–39 and presented as six grouped sets of fatigue life data in Table 3. Every data set is a set of fatigue 
life experimentally measured at same condition and every data group is some data set at different stress levels. 
C and F data groups have been accomplished only in a single stress level and thus in this study only are applied 
to modify Weibull parameters. The other data groups in Table 3 are fatigue life scatter at different applied stress 
levels and are used to modify Weibull parameters and also evaluate stress-life relation for various reliability levels. 
For numerical solution of the mentioned procedure, a simple M-File code was written in Matlab and Matlab 
curve fitting tool was applied for regression analysis.

Survival probabilities of test data
The statistical parameters can be determined by repeating the steps of flowchart in Fig. 1. Also, the P-Nf (survival 
probability-fatigue life) relation and Weibull parameters can be evaluated using Eqs. (3), (4c), and (5). Applying 
regression analysis and curve fitting, Weibull parameters of b , θ , and Nf0 can be determined in terms of the least 
square method (Fig. 2). The difference between test results and the distribution model shows good compliance 
in the modified Weibull model. The effect of sample size and deviation from Weibull distribution was reduced 
in the test points.

Further, by applying Eqs. (3), (4c), and (5), curve fitting, and determining Weibull parameters, the error 
between curves and test data sets can be obtained using Eq. (6) for the K–S test and R-square value, respectively. 
The results of the present modeling are given in Table 4. Here, the value of θ in Weibull parameters is almost 
constant. All the K–S test and R-square values show less error in the modified Weibull model, which complies 
with curves and test data in Fig. 2.

As shown in Table 4, using the modified method, the error values of the K–S test declined, and the R-square 
value approached 1. In all cases, the Weibull slope or shape parameter (b) decreased. The characteristic life θ 
has changed from 1.5 to 14%, but the minimum time or cycles to failure Nf0 has changed considerably up to 10 

(7)log(N) = A− B log(�σ); �σ ≥ �σ∞

Table 3.  Test data used to evaluate the modified Weibull parameters.

Data group Data set Fatigue life  (106 cycles)

A4

Data set 1 (S = 4900 MPa) 22.5, 38.8, 64.2, 141, 141, 170, 185, 210, 361, 416, 421, 486, 829, 1390

Data set 2 (S = 5500 MPa) 8.77, 15, 24.8, 54, 64.9, 65.2, 70.7, 80.2, 137, 158, 160, 184, 312, 520

Data set 3 (S = 6100 MPa) 5.88, 9.43, 14.6, 29, 34.1, 34.2, 36.7, 41, 65.7, 74.2, 75.1, 85, 135, 211

Data set 4 (S = 6500 MPa) 1.63, 2.88, 3.72, 4.38, 5.98, 7.99, 13.9, 18.3, 50.7, 57.3, 66.1, 70.7, 103, 179

B36

Data set 5 (S = 126 MPa) 0.766126, 0.775688, 1.084235, 1.236622, 1.272766, 1.313096, 1.333748, 1.334498, 1.401002, 1.514865, 
1.689579, 1.882968, 1.904087, 1.964597

Data set 6 (S = 144 MPa) 0.28268, 0.30957, 0.3551, 0.398319, 0.45602, 0.45648, 0.496652, 0.5232, 0.554726, 0.647726, 0.66155, 
0.683264, 0.739415, 0.827473, 0.8856, 0.897183, 0.989, 1.20064

Data set 7 (S = 180 MPa) 0.112302, 0.1278, 0.1335, 0.13371, 0.13384, 0.138322, 0.142491, 0.235782, 0.2898, 0.302732, 0.3303

C37 Data set 8 (S = 67.62 MPa) 0.128657, 0.398586, 0.656841, 0.799445

D38

Data set 9 (L = 140 mm, S = 46.14 MPa) 8.704, 10.7, 13.17, 13.23, 22.13

Data set 10 (L = 140 mm, S = 76.96 MPa) 2.33, 2.156, 2.091, 1.25, 1.695

Data set 11 (L = 140 mm, S = 114.66 MPa) 0.467, 1.16, 0.693, 0.759, 5.67

Data set 12 (L = 140 mm, S = 160.53 MPa) 0.28, 0.202, 0.214, 0.769

E39

Data set 13 (L = 19 mm, S = 53 MPa) 49.2, 49.6, 45, 44.1

Data set 14 (L = 19 mm, S = 62.5 MPa) 9.3, 13.2, 14, 15.7

Data set 15 (L = 19 mm, S = 89.5 MPa) 3.87, 3.950, 2.42, 2.82

Data set 16 (L = 19 mm, S = 132 MPa) 1.22, 1.66, 2.39, 2.66

F39 Data set 17 (concrete with steel fiber, V = 1%, S = 0.8 MPa) 0.040135, 0.050139, 0.058141, 0.082345, 0.0984, 0.12862, 0.146544, 0.23916, 0.292488, 0.460482
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times. The values of minimum expected cycles to failure obtained from Weibull Distribution in this approach 
should not be used directly for design.

For the set of rolling contact fatigue life (i.e., data set 1), the smaller fatigue life will have a larger survival 
probability. Survival probability data can be evaluated using Eqs. (4a) and (5). Figure 2 shows the results of 
regression analysis and curve fitting. For the test data, reliability of fatigue life is calculated based on the modified 
and common Weibull distributions. As indicated in Fig. 2, modified Weibull parameters have better compliance 

Figure 2.  Calculated reliability for (a) Common Weibull distribution, (b) Modified Weibull distribution and (c) 
Modified Weibull distribution with artificially increase of test data.
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between the Weibull model and test results, in the both cases of equal and artificially increased sample size. 
Here, the effect of the step function for percent of failure and deviation from the Weibull probability distribution 
function has been eliminated.

Figure 3 shows the R-Square values of common Weibull and presented model with respect to sample size. It 
can be seen that as the sample size increases, the error of the common Weibull model becomes negligible. Small 
sample size cases had a greater jump in the percent failure function, leading to higher error values.

The effect of normalized stress level (with respect to the maximum stress in each data set) on the fatigue 
life scatter is presented in Fig. 4. As can be seen from Fig. 4, the lower applied stress amplitudes have less data 
scattering.

R–S–N relation
By applying Eq. (7), Weibull parameters of datasets 5–7 from Table 3, and using regression analysis, Basquin 
parameters A and B can be determined in terms of the least square method. The S–N curves in Fig. 5 show that 
for the higher survival probability, the expected fatigue life would decrease at every stress level. Engineering 
designs usually are in the 0.01 percent probability of failure  range6. Therefore, extrapolation is required. By 
extrapolating these curves to the helpful percent probability of failure range, the curves would intersect, which is 
unreasonable. Also, Table 4 shows that the value of least fatigue life has not reasonable behavior with an increase 
in the stress level.

The deviation from the linear relation in the logarithmic scale is calculated considering the Basquin S–N 
relation and using regression analysis. Figure 6 shows the curve fitting error in the 3 reliability levels. As can be 
seen, the error increased at a higher reliability level.

Table 4.  Results of modified Weibull parameters.

Test  data4,37–39 Distribution function

Weibull parameters Error

b θ Nf0 K–S test (%) R-square

Data set 1
Step function 0.89 349,600,000 5,497,000 8 0.986

Modified Weibull 0.62 344,000,000 9,050,000 6 0.999

Data set 2
Step function 0.90 132,806,849 4,384,680 10.2 0.967

Modified Weibull 0.62 137,984,686 4,019,219 5.4 0.999

Data set 3
Step function 1 63,647,140 2,938,570 8.7 0.969

Modified Weibull 0.7 65,883,507 2,160,990 5.2 0.999

Data set 4
Step function 0.58 32,506,615 1,479,600 11.6 0.963

Modified Weibull 0.4 37,336,316 2,574,857 9.2 0.997

Data set 6
Step function 1.59 602,100 117,100 9.3 0.93

Modified Weibull 0.86 592,300 79,200 5 1

Data set 8
Step function 0.85 169,100 61,130 16 0.976

Modified Weibull 0.69 176,000 140,000 2 1

Data set 16
Step function 1.1 179,400 1647 10.2 0.980

Modified Weibull 0.7 168,000 15,938 5.8 0.993
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Figure 3.  Effect of sample size on the R-Square value for Weibull distribution (data sets 5, 6, 7 and 8).
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Figure 4.  Effect of stress level on the coefficient of variation of fatigue life.
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Figure 5.  R–S–N curves for 50%, 80%, and 90% reliability.

Reliability 50% Reliability 80% Reliability 90%
Modified Weibull error 0.31% 0.67% 1.60%
Common Weibull error 0.30% 1.52% 1.60%
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Figure 6.  Curve fitting error (1 minus R-Square) in R–S–N curves.
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Conclusion
A general method for estimating the parameters of Weibull distribution for modeling general fatigue life data 
scatter for every applied load and stress region was developed in this study. By considering any result of fatigue 
test as an equivalent Weibull distribution, artificial data are generated and the accuracy of common Weibull 
distribution model can be improved. Next, the corresponding fatigue life was evaluated at any reliability using 
the determined distribution model for any specified stress level. Using Basquin Stress-Life relation and fitting 
the S–N curves, R–S–N curves were obtained at any reliability level. Overall, the major results of this study can 
be outlined as follows:

1. The presented method causes the failure percent of test data to increase smoothly and be close to the Weibull 
distribution curve.

2. Modified coefficients of the distribution function have an acceptable error in the K–S test and R-square value. 
Also, the difference between test results and probability distribution function was decreased.

3. The effect of discretizing of percent of failure in the sample fatigue life results was decreased, and this 
approach can be used in all the other small sample size test data. Modifying Weibull parameters has a greater 
effect on the decreasing error.

4. The fatigue life scatters increase in the higher stress levels.
5. R–S–N curves were obtained using the Basquin Stress-Life relation.
6. The results show the curves cannot be extrapolated to minimum expected life and very high levels of reli-

ability.

Future research(es) may involve using neutrosophic statistics to extend this study. Neutrosophic statistics is 
the extension of classical statistics and is applied when the data is coming from an uncertain environment like 
new pandemic or from a complex process like fatigue problems in  engineering40–43.

Data availability
All data generated or analyzed during this study are included in this published article.
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