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Pan‑cancer analysis revealing 
that PTPN2 is an indicator of risk 
stratification for acute myeloid 
leukemia
Xuanyu Wang 1,5, Sanyun Wu 2,5, Le Sun 1,5, Peipei Jin 2, Jianmin Zhang 2, Wen Liu 2, 
Zhuo Zhan 2, Zisong Wang 3, Xiaoping Liu 4* & Li He 1,2*

The non‑receptor protein tyrosine phosphatases gene family (PTPNs) is involved in the tumorigenesis 
and development of many cancers, but the role of PTPNs in acute myeloid leukemia (AML) remains 
unclear. After a comprehensive evaluation on the expression patterns and immunological effects 
of PTPNs using a pan‑cancer analysis based on RNA sequencing data obtained from The Cancer 
Genome Atlas, the most valuable gene PTPN2 was discovered. Further investigation of the expression 
patterns of PTPN2 in different tissues and cells showed a robust correlation with AML. PTPN2 was 
then systematically correlated with immunological signatures in the AML tumor microenvironment 
and its differential expression was verified using clinical samples. In addition, a prediction model, 
being validated and compared with other models, was developed in our research. The systematic 
analysis of PTPN family reveals that the effect of PTPNs on cancer may be correlated to mediating cell 
cycle‑related pathways. It was then found that PTPN2 was highly expressed in hematologic diseases 
and bone marrow tissues, and its differential expression in AML patients and normal humans was 
verified by clinical samples. Based on its correlation with immune infiltrates, immunomodulators, 
and immune checkpoint, PTPN2 was found to be a reliable biomarker in the immunotherapy cohort 
and a prognostic predictor of AML. And PTPN2’riskscore can accurately predict the prognosis and 
response of cancer immunotherapy. These findings revealed the correlation between PTPNs and 
immunophenotype, which may be related to cell cycle. PTPN2 was differentially expressed between 
clinical AML patients and normal people. It is a diagnostic biomarker and potentially therapeutic 
target, providing targeted guidance for clinical treatment.

Acute myeloid leukemia (AML) is an aggressive and highly heterogeneous disease with different subtypes and 
distinct clinical  outcomes1. Recent advances have been made in the targeted therapies of AML. In the future, 
the combination of targeted drugs with induction chemotherapy will be routine, and targeted drugs will become 
the standard approach for induction, consolidation and post-consolidation maintenance  therapy2. Therefore, 
it is required to identify novel biomarkers and therapeutic targets that are meaningful for the evaluation of the 
prognosis and treatment response of patients with AML. At the same time, the 5-year survival rate for patients 
with AML remains dishearteningly low at 28.3%. Furthermore, most cases experience frequent relapses after 
achieving  remission3,4. Therefore, a new prognostic model is needed for the risk stratification and treatment 
guidance of patients.

Intracellular non-receptor PTPs (PTPNs), the largest cysteine PTP family, play an important role in the 
occurrence, development, metastasis and drug resistance of some types of tumors, and PTPNs inhibitors have 
significant potential in antitumor  therapy5. Previous studies have shown that inhibition of PTPN2 is a potential 
therapeutic strategy to improve the effectiveness of cancer  immunotherapy6. However, there are still deficien-
cies in the analysis of PTPN2 at the level of pan-carcinoma, especially its role in AML, which should be further 
studied.
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In the present study, we demonstrated that the role of PTPNs in cancer may be related to mediating cell cycle 
related pathways, confirmed differential expression of PTPN2 at the clinical level between AML patients and 
normal subjects, indicated that AML may be a promising candidate for PTPN2 suppression immunotherapy, 
and constructed a nomogram for risk assessment in AML.

Results
Depicting the pan‑cancer expression pattern, prognostic value, immune response, drug ther-
apy, and functional assessment of PTPNs
The expression and prognostic significance of PTPNs in pan-cancer were thoroughly examined. Obvious dif-
ferences could be found in the expression levels of PTPNs in pan-cancer (Fig. S1a). Then, we obtained tran-
scriptomic data of 20 cancers with both tumorous and normal tissues from the TCGA cohort. Moreover, PTPNs 
expressions except for PTPN5, PTPN13, and PTPN21 were significantly upregulated in the tumorous compared 
with those in normal tissues in 20 cancers in the TCGA pan-cancer (Fig. 1a). Furthermore, the prognostic value 
of PTPNs in pan-cancer was studied. PTPNs exhibited remarkable value in predicting OS, DFI, DSS, and PFI 
in many tumor types (Fig. S1B). In KIRC, PTPN3 and PTPN7 expression is significantly distinct among patho-
logic stage (from stage I to IV) (Fig. S1c). In BRCA and KIRC, the expression levels of PTPNs were significantly 
distinct among subtypes (Fig. S1d).

Single nucleotide variation (SNV) and copy number variation (CNV) are important variations that lead to 
changes in gene expression during tumorigenesis and tumor  growth7,8. The waterfall plot showed mutations 
landscape of PTPNs in 33 types of cancer and the bar chart displays the CNV profile of PTPNs, and provided 
the classification of CNV types (Fig. 1c), and PTPN13 was the most frequently mutated gene (Fig. S2a). Then, 
survival analysis of mutant and wild types indicated that mutations of PTPN6 and PTPN23 were risk factors for 
LIHC, mutations of PTPN1 and PTPN9 were risk factors for AML, and mutations of PTPN14 were risk factors 
for LUSC (Fig. S2g). The CNV percentage in pan-cancer indicated that heterozygous amplification in cancers 
were widely found in genes PTPN1, PTPN7, PTPN12 and PTPN14 in most cancers, while heterozygous deletions 
were widely found in genes PTPN13, PTPN20, PTPN22 and PTPN23 (Fig. 1b). Further investigation indicated 
positive correlations between CNV and mRNA expressions in most cancers (Fig. S2c). Then, the correlation 
between CNV and survival time of patients in the pan-cancer was evaluated, which suggested that the most 
effective gene of LIHC was PTPN6 (Fig. S2f.).

The dysregulation of DNA methylation is closely related to the onset of various diseases, including  cancer9. 
The study on the methylation of PTPNs in pan-cancer might help us to reveal the correlations between PTPNs 
and cancer occurrence to a certain extent. Our analysis indicated significant methylation differences between 
tumor and normal tissues (Fig. S2d), and negative correlations between DNA methylations and mRNA expres-
sions in most cancers (Fig. S2e). Then, the correlation between methylation and survival index (OS, DSS, DFI, 
PFS) in pan-cancer was evaluated, and the results indicated that the methylation upregulation of PTPN4 was a 
risk factor of UVM (Fig. S2h).

Based on the above analysis, PTPNs were likely to be strongly correlated with immunotherapy and drug 
sensitivity. To confirm this conjecture, the correlations of gene level scores of PTPNs with signatures of T-cell 
dysfunction, exclusion and CRISPR screen of anticancer immunity were summarized. The results showed that 
PTPNs were extensively correlated with T-cell dysfunction levels. Notably, significant negative correlations were 
found between PTPN2 and phenotypes in CRISPR screens. Among the cell types that promoted T cell rejection, 
both cancer associated fibroblasts (CAFs) and myeloid-derived suppressor cells (MDSC) had significant negative 
correlations with PTPN6 expression (Fig. 1e). Correlation analysis between PTPNs expression and drug IC50 
based on the CTRP database revealed that PTPNs expressions except for PTPN4 were significantly correlated 
with the responsiveness of most drugs (Fig. 1f) and similar findings were found on the GDSC cohort (Fig. S2j).

To investigate potential mechanisms that PTPNs affect immune response and drug sensitivity, GSEA was 
performed, and the results indicated that the DEGs were mainly enriched in cell cycle related pathways (Myc 
target V1, G2M checkpoint, and E2F_targets) (Fig. S2i). Further studies suggested that PTPN7 significantly 
activated apoptosis, and EMT pathway in pan-cancer, PTPN2 significantly activated apoptosis and cell cycle 
pathway in pan-cancer, while PTPN21 significantly inhibited apoptosis and cell cycle pathway in pan-cancer 
(Fig. 1d). These results suggested that PTPNs primarily activated and inhibited apoptotic and cell cycle pathways 
to participate in the process of tumor proliferation.

Depicting the pan‑cancer expression pattern and genomic pattern of PTPN2
In the above studies, PTPN2 is widely up-regulated of expression and significantly activates apoptosis and cell 
cycle pathways in pan-cancer. In CRISPR screening, PTPN2 was negatively correlated with  phenotype10. Con-
sidering the high expression of PTPN2 in hematopoietic cell at the same time, a further study on PTPN2 was 
further carried out.

The expression of PTPN2 was significantly up-regulated in several cancers (Fig. 2a), it was significantly 
expressed in almost all types of cancer, especially LAML, ESCA, ALL, and CLL (Fig. 2b). Moreover, PTPN2 
protein was highly expressed in tumor tissues according to the Clinical Proteomic Tumor Analysis Consortium 
(CPTAC) project (Fig. S3a). This reveals the correlation between PTPN2 and cancer occurrence to a certain 
extent. Then, The Human Protein Atlas (HPA) database was used to evaluate the RNA and protein expression 
of PTPN2 in various organs. The results indicated that PTPN2 was highly expressed in immune-related organs 
such as lymph node, tonsil, bone marrow, and thymus (Fig. S3c). This was consistent with Harmonizome data-
base results, suggesting that the link between PTPN2 and the immune system and blood system was robust. In 
addition, PTPN2 was almost not expressed in adipose tissue (Fig. S3d).
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Next, we evaluated the expression of PTPN2 in paired tumorous and normal samples and the results indicated 
that PTPN2 was differentially expressed in normal and tumor tissues in 13 types of cancer and was generally 
upregulated in tumor tissues (Fig. S3b). By obtaining subcellular localization of PTPN2 in the HPA, PTPN2 was 
found in the nucleoplasm and was highly expressed in almost all cancer cell lines including SiHa, U-2 OS, U-251 
MG, A-431, and CACO-2 (Fig. S3e). The expression levels of PTPN2 across cell lines and tissues were analyzed 
based on the Harmonizome database. The results indicated that PTPN2 was widely expressed in whole body 
organs. Notably, PTPN2 expression was highest in lymphocytes and blood (Fig. S3f.). Its expression in differ-
ent tissues of different organs and different systems was analyzed. The results indicated that PTPN2 was widely 
expressed in immune system, especially in thymus tissues (Fig. S3g).

Figure 1.  Pan-cancer analysis of PTPNs. (a) Differential expression of PTPNs. (b) The constitute of the 
Heterozygous/Homozygous CNV of PTPNs in pan-cancer. (c) The mutation distribution of the top 10 
mutated genes in PTPNs and a SNV classification of SNV types. (d) The percentage of cancers in which 
PTPNs expression has potential effect (FDR <  = 0.05) on pathway activity. (e) Priority of PTPNs among four 
immunosuppressive indices, including the T-cell dysfunction levels, ICB response outcome, phenotypes in 
CRISPR screens, and T-cell exclusion cell types. (f) Correlation between PTPNs expression and drug IC50.
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Broadly speaking, mutation and amplification are the most common mutation types in PTPN2, accounting 
for all in some cancers (Fig. 2c). Lollipop chart indicated that PTPN2 mutations mainly occurred in Y_phos-
phatase between 0 and 415 amino acids, with missense as the dominant type of mutation. For different Exons, 
mutations mainly occurred in Exon 8, and the mutation site S298C/F/Y had the highest mutation frequency (Fig. 
S4a). Analysis results demonstrated that the type of CNV is correlated with PTPN2 expression. Among these, 
amplification has the highest mRNA expression level (Fig. S4c). PTPN2 variants remained mostly to be shallow 

Figure 2.  Pan-cancer analysis of PTPN2. (a) Expression of PTPN2 in normal and tumor tissues. (b) Expression 
analysis of PTPN2 in pan-cancer. (c) Alteration frequency of PTPN2. (d–f) Correlation between PTPN2 and 
methyltransferases, modification regulators, stemness score, and tumor heterogeneity. *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001.
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deletions, while the peak of mutation count appeared at the endometrial cancer and melanoma (Fig. S4b). Frac-
tion Genome Altered (FGA) of PTPN2 in 30 types of cancer was detected, and the results indicated that shallow 
deletions are widespread in many cancer types (Fig. S4d). MMR is an intracellular mismatch repair mechanism, 
and the loss of function of key genes in this mechanism will lead to the failure of DNA replication errors to be 
repaired, resulting in a higher rate of somatic mutation, and it’s a potential cancer  driver11. Therefore, the correla-
tions between the expression of PTPN2 and five important MMRs related genes (MLH1, MSH2, MSH6, PMS2 
and EPCAM) in pan-cancer were analyzed, which indicated that PTPN2 was significantly correlated with MMRs 
genes in 29 types of cancer. In these tumors, MLH1, MSH2, MSH6 and PMS2 were positively correlated with 
PTPN2, suggesting that PTPN2 may play a role in tumors through the regulation of MMRs process (Fig. S4e).

RNA modification can directly affect the chemistry of RNA and thus affect cancer  progression9. Therefore, 
44 RNA modification regulators of three types of cancer-related RNA modifications were collected, including 
N6-methyladenosine (m6A), N1-methyladenosine (m1A), and 5-methylcytosine (m5C), and the correlation with 
PTPN2 expression was analyzed. The results showed that the expression of PTPN2 was significantly positively 
correlated with RNA modified genes in most cancers. This suggests that PTPN2 expression potentially affects 
the RNA modification process in pan-cancer (Fig. 2e). The expression of four methylated transferases (DNMT1, 
DNMT2, DNMT3A and DNMT3B) in various tumor types was significantly correlated with the expression of 
PTPN2. Notably, the co-expression coefficients of SKCM and STAD were significantly higher (Fig. 2d).

Then we analyzed the correlation between PTPN2 expression and stemness score, and tumor heterogeneity, 
like RNAss (RNA expression-based), EREG.EXPss (epigenetically regulated RNA expression-based), DNAss 
(DNA methylation-based), EREG-METHss (epigenetically regulated DNA methylation-based), DMPss (differen-
tially methylated probes-based), ENHss (enhancer Elements/DNA methylation-based), TMB (tumor mutational 
burden), MATH, MSI (microsatellite instability), purity, ploidy, HRD, LOH, and NEO. We found significant 
correlations between PTPN2 expression and stemness score, and tumor heterogeneity (Fig. 2f).

PTPN2 expression is related to ICP, immunomodulatory genes, and immune infiltration levels 
in pan‑cancer
To explore the main pathways through which PTPN2 exerts immunomodulatory effects, the samples were 
grouped according to the PTPN2 expression. Then DEGs among groups were screened and subjected to GSEA 
to analyze the correlation between PTPN2 expression and cancer-related pathways. The results indicated that 
the DEGs were mainly enriched in cell cycle-related pathways (MYC, and E2F), Inferon γ response, Inflamma-
tory response, epithelial mesenchymal transition, allograft rejection, and oxidative phosphorylation (Fig. 3a).

Previous studies proved that ICPs were important for maintaining self-tolerance and preventing excessive 
immune responses that could cause damage to healthy tissues. However, some cancer cells could take advantage 
of these checkpoints to evade the immune system’s  attack12. Therefore, we investigated the correlations between 
the expression level of ICPs and PTPN2 in pan-cancer to characterize the potential role of PTPN2 in immu-
notherapy and the results indicated that the expression of PTPN2 was significantly positively correlated with 
ICPs in most cancers (Fig. 3b), which suggested that PTPN2 might coordinate the activity of ICPs in different 
pathways and might be considered an ideal immunotherapeutic marker. We also examined the correlations 
between the expression of various immunomodulatory genes, such as chemokine receptors, MHC molecules, 
immune-inhibitors, and immune-stimulators, and PTPN2 expression. The results showed a significant positive 
correlation between PTPN2 expression and immunomodulatory genes in most types of cancer (Fig. S5a).

We used TIMER2.0 to analyze the correlation between PTPN2 expression and immune cell infiltration in 
pan-cancer. The results showed a positive correlation between PTPN2 expression and various immune infil-
trates, including common lymphoid progenitor, T cell follicular helper, myeloid-derived suppressor cells, B cell, 
neutrophil, monocyte, macrophage, myeloid dendritic cell, and  CD8+ T cell, and a negative correlation with 
common myeloid progenitor, endothelial cell, hematopoietic stem cell, and NKT cell (Fig. 3c). PTPN2 was found 
to be involved in immune infiltration and played an important role in immune-tumor interaction. It should 
be noted that the trend of this correlation was different in THYM, especially B cell and Macrophage, which 
may be correlated to the different tumor  microenvironment13. PTPN2 was also found to be widely correlated 
with ESTIMATE score, immune score, and stromal score in pan-cancer (Fig. S5b–d) The findings indicated 
that PTPN2 played a vital role in immune infiltrates in pan-cancer and has the potential to serve as a response 
indicator in clinical practice.

Exploring the immunotherapy response, prognostic correlation, drug sensitivity, and predic-
tive power of PTPN2 in pan‑cancer
We collected survival data from TCGA and TARGET data portals to evaluate the prognostic value of PTPN2 in 
pan-cancer using CoxPH and log-rank test. PTPN2 expression was found to be a reliable biomarker in a wide 
range of cancer types, and was significantly correlated with overall survival in AML (Fig. 4a,b; Fig. S6a–c).

To explore the promising value of PTPN2 as a novel immune target, the immunotherapy response and 
sensitive drugs among different PTPN2 expression were compared. The results revealed that there were sig-
nificant differences in PTPN2 expression among 12 murine immunotherapy cohorts (Fig. S6d). Among them, 
IFN-γ or TNF-α treated mice were more likely to have elevated PTPN2 levels, while TGF-β1 treated mice were 
more likely to have low expression of PTPN2. The results also revealed that PTPN2 could significantly predict 
immunotherapy response in 5 murine immunotherapy cohorts, which responders were more likely to have 
elevated PTPN2 levels (Fig. 4c). Additionally, PTPN2 was closely correlated to the efficacy of immunotherapy 
such as CAR-T, PD-L1, Anti-PD-1 and Anti-CTLA-4, indicating the potential of PTPN as an immunotherapy 
biomarker (Fig. S7).
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Then, comparisons between PTPN2 expression and other published biomarkers based on their predictive 
power of immunotherapy response were performed, it was found that PTPN2 had an AUC of more than 0.5 

Figure 3.  Association of PTPN2 with cancer pathways and immune processes. (a) Immunophenotypes 
Enrichment analysis for metabolism pathway and cancer signaling between high and low PTPN2 expression. (b) 
Correlation between PTPN2 and ICP. (c) Correlation between PTPN2 expression and immune infiltration in 
pan-cancer. *P < 0.05.
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in 12 of the 25 immunotherapy cohorts (Fig. 4d). Compared with TMB (AUC > 0.5 in 8 cohorts), T.Clonality 
(AUC > 0.5 in 9 cohorts), and B.Clonality (AUC > 0.5 in 7 cohorts), PTPN2 exhibited a higher predictive value. 
These results demonstrated the promising value of PTPN2 as a biomarker.

The positive (Fig. 4e) and negative (Fig. S6e) correlation between drug sensitivity and PTPN2 expression was 
analyzed. The data suggested that PTPN2 might be correlated with chemical resistance to some commonly used 
antitumor drugs in clinical practice, such as Nelarabine, Fludarabine and Hydroxyurea. Among them, Nelarabine 
and Fludarabine can have certain curative effect on leukemia, suggesting that PTPN2 is closely correlated to drug 
resistance in patients with hematologic tumors.

Figure 4.  Prognostic value and biomarker potential of PTPN2. (a) Effect of PTPN2 on cancer prognosis. 
(b) Correlation between PTPN2 expression and overall survival in the TCGA and TARGET cohort. (c) A 
Comparison of PTPN2 expression before and after ICB treatments across different tumor models in vivo. (d) 
Ability of PTPN2 to predict response outcome and overall survival in immunotherapy cohorts. (e) The top 12 
drugs positively correlated with PTPN2 expression in the CellMiner database.
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Elucidating the correlation between PTPN2 and microenvironment in AML
In the above studies, potential correlations between PTPN2 and hematological diseases were found, thus, it is 
necessary to further explore the expression pattern of PTPN2 in AML. PTPN2 was differentially expressed in 
different cell species in GSE116256 (Fig. 5a, b), GSE135851, and GSE154109 (Fig. S9). The results indicated that 
PTPN2 was highly expressed in  CD8+ Tex cell, plasma cell, monocyte and promonocyte, and low expressed in 
 CD4+ T cell and hepatic stellate cell. Moreover, PTPN2 was strongly correlated with Immune response (Fig. S8a). 
Results of qRT-PCR confirmed the expression level of PTPN2 in the bone marrow samples of 21 AML patients 
was significantly higher than that of 10 normal donors (Fig. 5c). The prognostic role of PTPN2 in the TCGA-
LAML cohort was also investigated, suggesting that PTPN2 is a diagnostic biomarker for AML and may also be 
a prognostic marker (Fig. 5d). We collected 87 signatures related to TME and tumor phenotypes from the IOBR 
package and analyzed the correlation between PTPN2 expression and these signatures. The results showed that 
PTPN2 expression had extensive and consistent positive or negative correlations with the signatures in TCGA 
(Fig. S8b,c) and beatAML (Fig. 5e,f) cohorts, indicating its close association with TME.

Drug discovery of PTPN2 in AML
The drug sensitivity of data, obtained from CCLE in CTRP and the PRISM, indicated that patients with low 
PTPN2 expression were highly sensitive to three CTRP-derived compounds and six PRISM-derived compounds 
(Fig. 6a), high PTPN2 expression were highly sensitive to five CTRP-derived compounds (panobinostat, ouabain, 
neuronal differentiation inducer III, BRD-K61166597 and B02) and three PRISM-derived compounds (romidep-
sin, RGFP966, and imidapril) (Fig. S10). After that, the difference between high and low PTPN2 expression 
groups was analyzed to obtain the molecular characteristics of the disease for cMAP analysis. Results showed 
five compounds were identified to be mostly correlated with PTPN2 expression characteristics (Fig. 6b). Among 
them, mercaptopurine was often used as a therapeutic agent for leukemia, indicating that the correlation between 
PTPN2 and hematological cancers was robust.

Derivation, construction and validation and characterization of PTPRS
The study found that PTPN2 expression in AML had a significant effect on biological characteristics and clinical 
outcomes. Due to the complexity of PTPN2 expression, a PTPRS was constructed to approximate and simplify it. 
We formed metaX cohorts (n = 953) and metaY cohorts (n = 771) as mentioned above, and then 953 samples in 
the metaX cohort were randomly grouped into training set (n = 669) and validation set (n = 284) in a ratio of 7:3. 
Using Cor.test function, 8667 PTPN2 related genes in metaX and 5081 genes in metaY were screened, and 1824 
genes were obtained by intersection. Then, in the training set, 826 prognostic related genes were screened out by 
Kaplan–Meier analysis, 30 of which were selected as effective candidate genes by univariate and LASSO CoxPH 

Figure 5.  Prognostic value and biomarker potential of PTPN2. (a, b) The expression of PTPN2 in different cell 
types. (c) Expression level of PTPN2 in the bone marrow samples of AML patients and normal donors. (d) The 
prognostic role of PTPN2 in the TCGA-LAML cohort. (e, f) Correlation between PTPN2 expression and cancer 
microenvironment-related signatures in TCGA-LAML. *P < 0.05, **P < 0.01, ***P < 0.001.
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model, and finally 24 robust genes were screened out by stepwise multivariate CoxPH to construct PTPRS (Fig. 
S11a,b; Table S3). In the training group, patients in the training set, validation set, and other external validation 
cohorts were grouped into high-risk and low-risk groups based on the median of score. Patients in the low-risk 
groups had longer survival time than those in the high-risk groups, suggesting that PTPRS is a reliable prog-
nostic indicator in all AML cohorts (Fig. 7a). To test the reliability of the PTPRS, patients in TARGET-AML and 
TCGA-LAML were combined into overall CP cohort (n = 516) and the prediction abilities of the PTPRS and five 
existing prediction systems were compared, and the results suggested that PTPRS has better prediction ability 
(Fig. 7b,c). In addition, results of univariate (Fig. S11c) and multivariate CoxPH (Fig. S11d) in the TCGA-LAML 
and TARGET-AML cohort suggested that PTPRS remained a significantly and independently prognostic factor 
after adjusting for other clinical factors. Taken together, these results validated the good prognostic efficiency 
of PTPRS.

75 immunomodulatory genes were collected to analyze their expression, methylation and mutation char-
acteristics in high-risk and low-risk groups. In the high-risk group, immunomodulatory genes expression had 
a more significant positive correlation with methylation level; and in the low-risk group, immunomodulatory 
genes amplification and deletion frequency was higher (Fig. S11e). At the same time, it was found that the 
high-risk group had higher immune checkpoint target-related gene expression, immune score, and immune 
cell infiltration levels (Fig. S11f.). Based on different immune cell algorithms, the high-risk and low-risk group 
had different immune infiltration conditions, indicating that the high-risk and low-risk group may had different 
immune microenvironments (Fig. 7d). We analyzed infiltration levels in 27 cells in the high-risk and low-risk 
group. The result indicated that high-risk group had significantly higher levels of immune cell infiltration (Fig. 
S11g). The high and low risk groups had different mutation frequencies. Except for RUNX1, IDH2, and KRAS, 
the high-risk group had lower mutation frequencies than the low-risk group (Fig. S11h).

By applying GO and KEGG pathway enrichment analysis, the results indicated that biological processes 
(Fig. 7e) were mainly enriched in cell migration and cell cycle related pathways, cellular components (Fig. S11i) 
were mainly enriched in ribosome, lysosome and respiratory chain related pathways, and molecular function 
(Fig. S11j) was mainly enriched in cytokine and immune receptor related pathways. DEGs were significantly 
enriched in four KEGG terms (Graft-versus-host disease, Viral protein interaction with cytokine and cytokine 
receptor, ECM-receptor interaction, and Cytokine-cytokine receptor interaction) (Fig. 7f). To further investigate 
the potential differences between high-risk and low-risk groups, GSEA enrichment analysis was performed for 
differential genes. The results indicated that the high-risk group was significantly enriched in cancer-related 
signaling pathways (Fig. 7g).

Clinical values of PTPRS and construction of nomogram
The risk category in the high-risk group tended to be Poor (p < 0.001), generally older (p < 0.001), and had a 
worse prognosis (p < 0.001), while there was no statistical difference in cytogenetic abnormality. And there were 
significant differences in pathological stage between the high-risk and low-risk group (Fig. 8a, S12a). Among 37 
cancer drugs, the high-risk group had a lower IC50 value, indicating a higher sensitivity to the drug (Fig. S12b).

Figure 6.  Drug discovery of PTPN2 in AML. (a) Drug screening in patients with high PTPN2 expression in 
CTRP and PRISM. (b) CMAP analysis between high and low PTPN2 expression groups.
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Figure 7.  Construction and characterization of PTPRS. (a) Development of PTPRS in metaX training set 
and the predictive accuracy of PTPRS for survival. Validation of the PTPRS in metaX validation set and five 
external independent sets, including GSE71014, GSE37642, GSE106291, GSE12417 and GSE10358. (b, c) ROC-
AUC value and C-index in different risk scoring systems. (d) Heatmap for infiltration of immune based on 
CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC algorithms among high-
risk and low-risk group. (e–g) Functional and signaling pathway analysis of these differential genes in AML 
according to GO, Hallmarks, and KEGG pathway. *P < 0.05, **P < 0.01, ***P < 0.001.
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To further optimize the prediction effect of PTPRS, a nomogram containing important predictors in CoxPH 
was established to predict the prognosis of AML (Fig. 8b). For example, patients with AML had a risk category 
of favorable (0 points), an age of 66 years old (28 points), no cytogenetic abnormalities (0 points), and a PTPRS 
of 4 (20 points). Therefore, with a total score of 48, the 1-year survival rate is about 49%, 2-year survival rate 
is about 31%, and 3-year survival rate is about 7%, respectively. Calibration curves showed good agreement 
between the predicted and observed OS at 1-, 2-, and 3-year in the training and validation cohorts (Fig. 8c). 
DCA was performed to compare the clinical applicability of the nomogram with PTPRS. Result indicated that 
the nomogram could better predict OS at 1-, 2-, and 3-year because it added more net clinical benefit compared 
to PTPRS and other pooled models (Fig. 8d,e). The time dependent AUC curve of OS state was plotted. Changes 
in AUC over time indicated that nomogram was slightly better than PTPRS in predicting prognosis (Fig. 8f).

Figure 8.  Clinical association of PTPRS and construction of nomogram. (a) The difference in clinicopathologic 
features and pathological stages of AML between high-risk and low-risk group. (b) Nomogram predicting the 
1-, 2-, and 3-year OS in patients with AML. (c) The calibration curves for predicting patient OS at a 1-, 2-, and 
3-year. (d, e) DCA curves of the nomogram, PTPRS and other pooled models for predicting 1-, 2-, and 3-year 
OS. (f) Time-dependent AUC values of nomogram and PTPRS for the prediction of OS.
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Discussion
Intracellular non-receptor PTPs, the largest of the cysteine PTP family, are critical for the regulation of a variety 
of biological processes, including but not limited to hematopoietic, inflammatory response, immune system and 
glucose homeostasis, and play an important role in the occurrence, development, metastasis and drug resist-
ance of  tumors5. However, comprehensive analysis of PTPNs is still missing at the pan-cancer level, especially 
in AML, and most studies focus on proving the clinical value of PTPN1 expression and PTPN11 mutation in 
 AML14,15. It was found that PTPN2 is highly expressed in hematopoietic cells and plays a negative signaling 
 role16. Noteworthily, the PTPN2 catalytic domain shared 74% sequence homology and similar enzyme kinetics 
with another family member,  PTPN16. These results suggest that PTPN2 may play an important role in AML. 
In this study, the expression and mutation status of PTPNs in pan-cancer were analyzed, finding that PTPN2 is 
working as a driver of AML. The study also revealed a strong effect of PTPNs on cell cycle and verified PTPN2 
as a diagnostic biomarker for patients with AML at clinic level. Finally, PTPRS was developed to predict the 
prognosis and response of cancer immunotherapy, and a nomogram with better efficacy was constructed com-
bined with clinical indicators.

Targeting PTPNs has always been a crucial approach for treating diseases. According to reports, PTPN1 is 
involved in the development of many diseases, including obesity, diabetes, cancer, and cardiovascular  disease17. 
PTPN1 and PTPN2 inhibitors have been developed and have become emerging means to enhance T cell anti-
tumor  immunity18. PTPN3 is a potential immune checkpoint inhibitor target that may mediate T cells, while 
PTPN5 and PTPN7 can specifically inactivate MAPKs, so the developed inhibitors may have therapeutic potential 
for treating neurodegenerative diseases in AML  patients19,20. Targeting PTPN6 is an effective treatment for com-
bating  diabetes21. PTPN11 has always been a focus of attention in the field of human diseases, especially cancer, 
and can bind to multiple immune inhibitory receptors and inhibit the activation of immune  cells22. PTPN11 
regulates numerous cascade pathways, such as RAS-RAF-ERK, JAK-STAT, JAK-STAT, and is closely associated 
with immunotherapy  response23. PTPN12 is considered a promising therapeutic target for critical diseases such as 
cancer, diabetes, metabolic diseases, and autoimmune diseases and has been used for therapeutic intervention in 
acute myocardial  infarction24,25. PTPN13 and PTPN23 act as tumor suppressors in various  tumors26–29. PTPN22 
inhibitors have enormous potential to enhance the efficacy of current immunotherapy  strategies30. However, 
there are still gaps in the development of targeted drugs for PTPN13, PTPN14, PTPN18, PTPN21, and PTPN23.

Immunotherapy was first identified as an effective treatment for tumors by Wilhelm Bush and Friedrich 
Fehleisen in the nineteenth  century31. In recent years, monoclonal antibodies targeting specific targets on tumor 
cells have been widely used to treat hematological malignancies, either in combination with chemotherapy or 
as a single  agent32. PTPN11 is an effective target for the treatment of hematological malignancies and can also 
bind to various immune inhibitory  receptors22,33. Considering that PTPN2 and PTPN11 belong to the same 
family of PTPs, the combination of PTPN2 inhibitors with immune therapy is a promising strategy. The role of 
PTPN2 as a biomarker in tumor microenvironments was systematically studied. It was found that PTPN2 was 
strongly correlated to six tumor stemness indexes in many cancers. PTPN2 and RNA modification regulators, 
ICP, immunomodulatory genes, and mismatch repair related genes were positively correlated.

But in some studies, the absence of PTPN2 in B16 tumours does not produce significant differences in bone 
marrow cell  infiltration10. This may be related to the different tumor microenvironments of melanoma and 
AML, suggesting that PTPN2 may not act as a therapeutic target in all hematologic tumors, but its role in AML 
is indispensable.

The use of public databases and computational models to identify optimal personalized therapeutic agents and 
drug combinations has become increasingly  popular34. In this research, the biomarker correlation and predic-
tive power of PTPN2 in 25 immunotherapy cohorts were analyzed. At the same time, predictions for sensitive 
drugs have been made based on PTPN2 expression in multiple databases. We found that in 12 immunotherapy 
cohorts, PTPN2 alone had an AUC of over 0.5, with a higher predictive value than TMB, T.lonality, and B.lonality 
in the immunotherapy cohort. More importantly, the differential expression of PTPN2 was verified in the bone 
marrow of patients and normal subjects using clinical samples, and a series of targeted small molecule drugs 
with good therapeutic effects are predicted in this paper, providing guidance for clinical drug use. Noteworthily, 
PTPN2 inhibitors have been successfully  developed6, so the application of PTPN2 inhibitors combined with 
Immunotherapy in AML has promising potential.

Finally, PTPRS was developed and validated, which is common-used and productive in external validation 
queues. It has the advantage of combining multiple AML high-throughput sequencing cohorts, and clinical 
indicators were combined with PTPRS to establish a nomogram with better predictive power.

There are still some limitations to the study. First, although this study largely corrected batch effect across 
multiple cohorts, the implications for genomic analysis should be further analyzed using larger data sets from 
multiple databases. Secondly, it is still required to verify the effect of PTPNs on the cell cycle by further experi-
ments. Finally, the predictive effectiveness of PTPRS is not validated in self-tested cohorts.

Methods
Data retrieval, collection, and preprocessing
Firstly, The pan-cancer RNA sequencing (RNA-seq) data (FPKM value) and the corresponding survival informa-
tion of The Cancer Genome Atlas (TCGA)35 were extracted from the UCSC Xena Browser (https:// xena. ucsc. 
edu/)36. Full names and abbreviations of all cancers are listed in Table S1.

Next, transcriptome information of 151 patients in the TCGA-LAML cohort, 187 patients in the TARGET-
AML37, 450 patients in the  beatAML38 cohort (FPKM and Counts value), accompanied by corresponding phe-
notype and DNA methylation data, were simultaneously downloaded. The copy number variation (CNV) of 

https://xena.ucsc.edu/
https://xena.ucsc.edu/
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TCGA-LAML was gathered and processed using the GISTIC 2.0  algorithm39, and somatic mutation profiles 
(Varscan) was obtained as the mutation annotation format (MAF) format by the R package “maftools”40.

Then, gene expression profiles and clinical information of  GSE1035841,  GSE1241742,  GSE2331243,  GSE3224644, 
 GSE3764245,  GSE7101446, and  GSE10629147 were downloaded from gene expression omnibus (GEO)48. Addi-
tionally, the expression data of PTPNs in normal cell lines or tissues were retrieved from the BioGPS data 
portal (http:// biogps. org/# goto= welco me)49 and Genotype-Tissue Expression (GTEx: https:// www. gtexp ortal. 
org/ home/)  project50, while expression data of PTPNs in cancer cell lines were downloaded from BioGPS and 
Cancer Cell Line Encyclopedia (CCLE: https:// sites. broad insti tute. org/ ccle/)  project51.

For the TCGA-LAML, TARGET-AML, and beatAML cohorts, the FPKM values were converted into TPM val-
ues for consistency, and further subjected to log2(x + 1) transformation for normalization. For all cohorts obtained 
from the GEO, “normalizeBetweenArrays” function in the R package “limma” was used for  normalization52.

Next, the abovementioned cohorts were integrated into two AML meta cohorts after excluding patients whose 
survival information was not available: metaX (n = 953: GSE106291, TARGET, TCGA-LAML, beatAML), metaY 
(n = 771: GSE12417, GSE23312, GSE32246, GSE37642, GSE71014).

Then, the batch effect was corrected with the “removeBatchEffect” function in “limma”52, and their gene 
expression data was ultimately standardized via Min–Max normalization for downstream multi-database analysis.

Deciphering pan‑cancer expression pattern of PTPNs
We systematically analyzed the expression levels of PTPNs (protein tyrosine phosphatases) between tumorous 
and adjacent normal tissues at the pan-cancer level using the  ONCOMINE53,  TIMER54 and the TCGA-Pan-
Cancer atlas.

Furthermore, we conducted further analysis of the expression of PTPN2 protein at the pan-cancer level using 
the UALCAN platform (http:// ualcan. path. uab. edu/ index. html), with the Clinical Proteomic Tumor Analysis 
Consortium (CPTAC: https:// prote omics. cancer. gov/ progr ams/ cptac) database as a  resource55,56.

Additionally, we investigated the mRNA and protein levels of PTPN2 expression in normal or tumor tissues 
and normal or tumor cell lines using the CCLE, Human Protein Atlas (HPA: https:// www. prote inatl as. org/), 
harmonizome (https:// maaya nlab. cloud/ Harmo nizome/), and BioGPS  portal57,58. Furthermore, we deciphered 
the pan-cancer expression pattern of PTPN2 in the single-cell level using  TISCH59,60. We utilized the cBioPortal 
(https:// www. cbiop ortal. org/) to depict the pan-cancer genomic landscape of PTPNs in terms of CNV and single 
nucleotide polymorphisms (SNPs)61. The role of PTPNs in diseases, systematic drug-target identification and 
prioritization was analyzed preliminarily based on underlying evidence through the Open Targets Platform 
(https:// www. opent argets. org/)62. Thanks to GSCA platform for visualizing and demystifying the pan-cancer 
phenotypic characteristics of PTPNs, this study analyzed the correlation between PTPNs and prognosis or 
clinical subtypes at the pan-cancer  level63. Additionally, the relationship between PTPN2 expression and clini-
cal outcomes, including overall survival (OS), progression-free interval (PFI), disease-free interval (DFI) and 
disease-specific survival (DSS), was analyzed and visualized at the pan-cancer level with the help of  Sangerbox64 
Platform (https:// vip. sange rbox. com/ home. html)64.

Illustrating pan‑cancer biological mechanisms, immunological features, and predictive effect 
of PTPN2
We performed various analysis to characterize the correlations between PTPN2 expression and multiple molecu-
lar features in pans-cancers. These included estimating tumor mutation burden (TMB) and mutant-allele tumor 
heterogeneity (MATH) using the "maftools" R  package10, obtaining microsatellite instability (MSI), neoantigen, 
purity, ploidy, homologous recombination deficiency (HRD), and loss of heterozygosity (LOH)  scores65,66 and 
tumor stemness  indexes67 (RNAss, Ereg. EXPSS, DNAss, EREG-METHss, DMPss, ENHss) from previous studies, 
and analyzing correlations between PTPN2 and RNA modifier regulators, MMRs related genes, methyltrans-
ferases, ICP inhibitors, immunomodulators, and tumor-related signatures at the pan-cancer transcriptome level 
using Spearman’s correlation. Gene set enrichment analysis (GSEA) were performed based on PTPN2 expression 
(top 30% and bottom 30%) to predict the potential cancer hallmarks related with  PTPN268,69. Immunological fea-
tures of each sample were evaluated using ESTIMATE and immunedeconv  algorithms70,71. Correlations between 
PTPN2 and 60 ICPs (24 inhibitory, 36 stimulatory), 150 immunomodulators (41 chemokines, 18 chemokine 
receptors, 21 MHC molecules, 24 immuno-inhibitors, 46 immuno-stimulators) were illustrated at the pan-
cancer transcriptome level (Spearman’s Correlation). Tumor immune dysfunction and exclusion (TIDE) and 
tumor immune syngeneic mouse (TISMO) databases were used to predict immunotherapy and gene treatment 
 responses72,73. Correlations between 87 tumor-related signatures and PTPN2 were illustrated using “IOBR” 
 package74. Moreover, the intratumoral mutation landscape between the high and low PTPN2 expression groups 
in the TCGA-LAML cohort was delineated, and Over Representation Analysis and GSEA on KEGG pathways 
and GO terms were  performed75,76.

Integrated cell line datasets with drug sensitivity information were extracted from the Genomics of Drug 
Sensitivity in Cancer (GDSC)77, and predicted sensitivity of chemotherapeutic treatment was inferred using 
 oncoPredict78. The Cancer Therapeutics Response Portal (CTRP)79 and profiling of relative inhibition simultane-
ously in mixtures (PRISM)  database80 were used to analyze drug sensitivity relationships between PTPN2 and 
chemotherapeutic agents. Special thanks are given to Chen Yang for his support with R-script design and splendid 
analysis  methodologies81, and Paul Geeleher for development of the R package “pRRophetic”82.

Correlation between PTPN2 and drug sensitivity was also analyzed using CellMiner, and CMap score was 
calculated to predict potential drugs reversing the molecular features of the  disease83–85.Additionally, PTPN2 
expression was analyzed between response and non-response groups in cohorts receiving immunotherapy.

http://biogps.org/#goto=welcome
https://www.gtexportal.org/home/
https://www.gtexportal.org/home/
https://sites.broadinstitute.org/ccle/
http://ualcan.path.uab.edu/index.html
https://proteomics.cancer.gov/programs/cptac
https://www.proteinatlas.org/
https://maayanlab.cloud/Harmonizome/
https://www.cbioportal.org/
https://www.opentargets.org/
https://vip.sangerbox.com/home.html
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RNA extraction and qRT‑PCR
Total RNA was extracted from bone marrow samples from AML patients and normal individuals using Trizol 
reagent (Invitrogen, Carlsbad, CA, U.S.A.) according to the manufacturer’s protocol. Superscript II reverse 
transcriptase and random primers were used to synthesize cDNA. Quantitative real-time PCR (qRT-PCR) was 
performed on the ABI 7900HT Sequence Detection System with SYBR-Green dye (Applied Biosystems, Fos-
ter City, CA, U.S.A.). All primers are listed in Table S2. Expression levels of PTPN2 were calculated using the 
2-ΔΔCT method.

Construction and validation of the prediction model
Least absolute shrinkage and selection operator (LASSO) penalized Cox proportional hazards regression model 
(CoxPH)86 with tenfold cross-validation was used to construct a PTPRS for the prognostication of  patients87. 
The PTPRS for individual patients was calculated as follows: (gene’s expression × coefficient). Univariate and 
multivariate CoxPHs were used to evaluate the prognostic value of PTPRS. To further unravel the underlying 
biological mechanisms relating to the PTPRS, differentially expressed genes (DEGs) between different risk groups 
was screened using DESeq2  package88. Functional enrichment analyses (GO and KEGG pathways) as well as 
GSEA on the DEGs were conducted and visualized via the R package "clusterProfiler 4.0"89 and “GOplot”90. 
Kaplan–Meier curves, time-dependent receiver operating characteristic curve (ROC) analysis, decision curve 
analysis (DCA) and concordance index (C-index) curves were used to evaluate the prognostic role the DEGs 
by the R package “pROC” and “pec”91. Finally, we compared the prediction ability of the PTPRS with other five 
 prognostic92–96 models, but also confirmed as an independent prognostic factor in contrast to other clinical 
biomarkers via multivariate CoxPH.

Underlying microenvironment between samples in high‑ and low‑risk group
The immune profile was visualized via heatmap, displaying expression of ICP, abundance of 24 immunocyte 
infiltration, immune score, stromal score and DNA methylation of tumor-infiltrating lymphocytes (MeTILs)97.

Then, the differences of 75 immunomodulators between two subtypes were further analyzed at the multi-
omics level: mRNA expression, gene expression correlation with DNA-methylation beta-value, amplification 
frequency (the difference between the fraction of samples in which an immunomodulator was amplified in a 
particular subtype and the amplification fraction in all samples) and deletion frequency.

Finally, ssGSEA algorithm, which enabled us to quantify the absolute enrichment of various TME infiltration 
cells via the immune deconvolution analyses, was implemented to investigate the differences of 34 immunocytes 
in distinct subtypes.

Establishment, superiority and validation of a nomogram speculating prognosis
To further quantify the predictive performance of PTPRS, we constructed a nomogram based on the training set 
and integrated the PTPRS and other clinical features of patients using the R package “rms” and the performance 
of the nomogram was validated and calibrated using DCA, and time-independent ROC analysis in the training, 
validation and metaX cohorts.

Statistical analysis
Group differences were evaluated using Mann–Whitney U test. Correlations between variables were analyzed 
with Pearson’s or Spearman’s correlation analysis as appropriate. Outcomes with P < 0.05 were defined to be 
statistically significant in comparisons between groups. The R (version: 4.1.3) was used for data processing and 
statistical analyses.

Ethics approval and consent to participate
The study was conducted in accordance with the Declaration of Helsinki, and approved by Medical Ethics Com-
mittee, Zhongnan Hospital, Wuhan University.

Consent for publication
This research project has applied for exemption of patient informed consent to Medical Ethics Committee, 
Zhongnan Hospital, Wuhan University.

Conclusions
In the present study, we demonstrated that the role of PTPNs in cancer may be related to mediating cell cycle 
related pathways, confirmed differential expression of PTPN2 at the clinical level between AML patients and 
normal subjects, indicated that AML may be a promising candidate for PTPN2 suppression immunotherapy, 
and constructed a nomogram for risk assessment in AML.

Data availability
All database generated/analyzed for this study are included/have their accession numbers included in the article.
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