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Pan-cancer analysis revealing
that PTPN2 is an indicator of risk
stratification for acute myeloid
leukemia
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Zhuo Zhan?, Zisong Wang?, Xiaoping Liu*** & Li He%?**

The non-receptor protein tyrosine phosphatases gene family (PTPNs) is involved in the tumorigenesis
and development of many cancers, but the role of PTPNs in acute myeloid leukemia (AML) remains
unclear. After a comprehensive evaluation on the expression patterns and immunological effects

of PTPNs using a pan-cancer analysis based on RNA sequencing data obtained from The Cancer
Genome Atlas, the most valuable gene PTPN2 was discovered. Further investigation of the expression
patterns of PTPN2 in different tissues and cells showed a robust correlation with AML. PTPN2 was
then systematically correlated with immunological signatures in the AML tumor microenvironment
and its differential expression was verified using clinical samples. In addition, a prediction model,
being validated and compared with other models, was developed in our research. The systematic
analysis of PTPN family reveals that the effect of PTPNs on cancer may be correlated to mediating cell
cycle-related pathways. It was then found that PTPN2 was highly expressed in hematologic diseases
and bone marrow tissues, and its differential expression in AML patients and normal humans was
verified by clinical samples. Based on its correlation with immune infiltrates, immunomodulators,

and immune checkpoint, PTPN2 was found to be a reliable biomarker in the immunotherapy cohort
and a prognostic predictor of AML. And PTPN2'riskscore can accurately predict the prognosis and
response of cancer immunotherapy. These findings revealed the correlation between PTPNs and
immunophenotype, which may be related to cell cycle. PTPN2 was differentially expressed between
clinical AML patients and normal people. It is a diagnostic biomarker and potentially therapeutic
target, providing targeted guidance for clinical treatment.

Acute myeloid leukemia (AML) is an aggressive and highly heterogeneous disease with different subtypes and
distinct clinical outcomes'. Recent advances have been made in the targeted therapies of AML. In the future,
the combination of targeted drugs with induction chemotherapy will be routine, and targeted drugs will become
the standard approach for induction, consolidation and post-consolidation maintenance therapy?. Therefore,
it is required to identify novel biomarkers and therapeutic targets that are meaningful for the evaluation of the
prognosis and treatment response of patients with AML. At the same time, the 5-year survival rate for patients
with AML remains dishearteningly low at 28.3%. Furthermore, most cases experience frequent relapses after
achieving remission®*. Therefore, a new prognostic model is needed for the risk stratification and treatment
guidance of patients.

Intracellular non-receptor PTPs (PTPNs), the largest cysteine PTP family, play an important role in the
occurrence, development, metastasis and drug resistance of some types of tumors, and PTPNs inhibitors have
significant potential in antitumor therapy’. Previous studies have shown that inhibition of PTPN2 is a potential
therapeutic strategy to improve the effectiveness of cancer immunotherapy®. However, there are still deficien-
cies in the analysis of PTPN2 at the level of pan-carcinoma, especially its role in AML, which should be further
studied.
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In the present study, we demonstrated that the role of PTPNs in cancer may be related to mediating cell cycle
related pathways, confirmed differential expression of PTPN?2 at the clinical level between AML patients and
normal subjects, indicated that AML may be a promising candidate for PTPN2 suppression immunotherapy;,
and constructed a nomogram for risk assessment in AML.

Results

Depicting the pan-cancer expression pattern, prognostic value, immune response, drug ther-
apy, and functional assessment of PTPNs

The expression and prognostic significance of PTPNs in pan-cancer were thoroughly examined. Obvious dif-
ferences could be found in the expression levels of PTPNs in pan-cancer (Fig. S1a). Then, we obtained tran-
scriptomic data of 20 cancers with both tumorous and normal tissues from the TCGA cohort. Moreover, PTPNs
expressions except for PTPN5, PTPN13, and PTPN21 were significantly upregulated in the tumorous compared
with those in normal tissues in 20 cancers in the TCGA pan-cancer (Fig. 1a). Furthermore, the prognostic value
of PTPNs in pan-cancer was studied. PTPNs exhibited remarkable value in predicting OS, DFI, DSS, and PFI
in many tumor types (Fig. S1B). In KIRC, PTPN3 and PTPN7 expression is significantly distinct among patho-
logic stage (from stage I to IV) (Fig. Slc). In BRCA and KIRC, the expression levels of PTPNs were significantly
distinct among subtypes (Fig. S1d).

Single nucleotide variation (SN'V) and copy number variation (CNV) are important variations that lead to
changes in gene expression during tumorigenesis and tumor growth”?. The waterfall plot showed mutations
landscape of PTPNs in 33 types of cancer and the bar chart displays the CNV profile of PTPNs, and provided
the classification of CNV types (Fig. 1c), and PTPN13 was the most frequently mutated gene (Fig. S2a). Then,
survival analysis of mutant and wild types indicated that mutations of PTPN6 and PTPN23 were risk factors for
LIHC, mutations of PTPN1 and PTPN9 were risk factors for AML, and mutations of PTPN 14 were risk factors
for LUSC (Fig. S2g). The CNV percentage in pan-cancer indicated that heterozygous amplification in cancers
were widely found in genes PTPN1, PTPN7, PTPN12 and PTPN14 in most cancers, while heterozygous deletions
were widely found in genes PTPN13, PTPN20, PTPN22 and PTPN23 (Fig. 1b). Further investigation indicated
positive correlations between CNV and mRNA expressions in most cancers (Fig. S2c). Then, the correlation
between CNV and survival time of patients in the pan-cancer was evaluated, which suggested that the most
effective gene of LIHC was PTPNG6 (Fig. S2f.).

The dysregulation of DNA methylation is closely related to the onset of various diseases, including cancer®.
The study on the methylation of PTPNs in pan-cancer might help us to reveal the correlations between PTPNs
and cancer occurrence to a certain extent. Our analysis indicated significant methylation differences between
tumor and normal tissues (Fig. S2d), and negative correlations between DNA methylations and mRNA expres-
sions in most cancers (Fig. S2e). Then, the correlation between methylation and survival index (OS, DSS, DFI,
PES) in pan-cancer was evaluated, and the results indicated that the methylation upregulation of PTPN4 was a
risk factor of UVM (Fig. S2h).

Based on the above analysis, PTPNs were likely to be strongly correlated with immunotherapy and drug
sensitivity. To confirm this conjecture, the correlations of gene level scores of PTPNs with signatures of T-cell
dysfunction, exclusion and CRISPR screen of anticancer immunity were summarized. The results showed that
PTPNs were extensively correlated with T-cell dysfunction levels. Notably, significant negative correlations were
found between PTPN2 and phenotypes in CRISPR screens. Among the cell types that promoted T cell rejection,
both cancer associated fibroblasts (CAFs) and myeloid-derived suppressor cells (MDSC) had significant negative
correlations with PTPN6 expression (Fig. 1e). Correlation analysis between PTPNs expression and drug IC50
based on the CTRP database revealed that PTPNs expressions except for PTPN4 were significantly correlated
with the responsiveness of most drugs (Fig. 1f) and similar findings were found on the GDSC cohort (Fig. S2j).

To investigate potential mechanisms that PTPNs affect immune response and drug sensitivity, GSEA was
performed, and the results indicated that the DEGs were mainly enriched in cell cycle related pathways (Myc
target V1, G2M checkpoint, and E2F_targets) (Fig. S2i). Further studies suggested that PTPN7 significantly
activated apoptosis, and EMT pathway in pan-cancer, PTPN2 significantly activated apoptosis and cell cycle
pathway in pan-cancer, while PTPN21 significantly inhibited apoptosis and cell cycle pathway in pan-cancer
(Fig. 1d). These results suggested that PTPNs primarily activated and inhibited apoptotic and cell cycle pathways
to participate in the process of tumor proliferation.

Depicting the pan-cancer expression pattern and genomic pattern of PTPN2

In the above studies, PTPN2 is widely up-regulated of expression and significantly activates apoptosis and cell
cycle pathways in pan-cancer. In CRISPR screening, PTPN2 was negatively correlated with phenotype!. Con-
sidering the high expression of PTPN2 in hematopoietic cell at the same time, a further study on PTPN2 was
further carried out.

The expression of PTPN2 was significantly up-regulated in several cancers (Fig. 2a), it was significantly
expressed in almost all types of cancer, especially LAML, ESCA, ALL, and CLL (Fig. 2b). Moreover, PTPN2
protein was highly expressed in tumor tissues according to the Clinical Proteomic Tumor Analysis Consortium
(CPTAC) project (Fig. S3a). This reveals the correlation between PTPN2 and cancer occurrence to a certain
extent. Then, The Human Protein Atlas (HPA) database was used to evaluate the RNA and protein expression
of PTPN2 in various organs. The results indicated that PTPN2 was highly expressed in immune-related organs
such as lymph node, tonsil, bone marrow, and thymus (Fig. S3c). This was consistent with Harmonizome data-
base results, suggesting that the link between PTPN2 and the immune system and blood system was robust. In
addition, PTPN2 was almost not expressed in adipose tissue (Fig. S3d).
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Figure 1. Pan-cancer analysis of PTPNs. (a) Differential expression of PTPNs. (b) The constitute of the
Heterozygous/Homozygous CNV of PTPNs in pan-cancer. (¢) The mutation distribution of the top 10
mutated genes in PTPNs and a SNV classification of SNV types. (d) The percentage of cancers in which
PTPNs expression has potential effect (FDR < =0.05) on pathway activity. (e) Priority of PTPNs among four
immunosuppressive indices, including the T-cell dysfunction levels, ICB response outcome, phenotypes in
CRISPR screens, and T-cell exclusion cell types. (f) Correlation between PTPNs expression and drug IC50.

Next, we evaluated the expression of PTPN2 in paired tumorous and normal samples and the results indicated
that PTPN2 was differentially expressed in normal and tumor tissues in 13 types of cancer and was generally
upregulated in tumor tissues (Fig. S3b). By obtaining subcellular localization of PTPN2 in the HPA, PTPN2 was
found in the nucleoplasm and was highly expressed in almost all cancer cell lines including SiHa, U-2 OS, U-251
MG, A-431, and CACO-2 (Fig. S3e). The expression levels of PTPN2 across cell lines and tissues were analyzed
based on the Harmonizome database. The results indicated that PTPN2 was widely expressed in whole body
organs. Notably, PTPN2 expression was highest in lymphocytes and blood (Fig. S3f.). Its expression in differ-
ent tissues of different organs and different systems was analyzed. The results indicated that PTPN2 was widely
expressed in immune system, especially in thymus tissues (Fig. S3g).
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Figure 2. Pan-cancer analysis of PTPN2. (a) Expression of PTPN2 in normal and tumor tissues. (b) Expression
analysis of PTPN2 in pan-cancer. (¢) Alteration frequency of PTPN2. (d—-f) Correlation between PTPN2 and
methyltransferases, modification regulators, stemness score, and tumor heterogeneity. *P <0.05, **P <0.01,
P <0.001, ¥***P <0.0001.

Broadly speaking, mutation and amplification are the most common mutation types in PTPN2, accounting
for all in some cancers (Fig. 2¢). Lollipop chart indicated that PTPN2 mutations mainly occurred in Y_phos-
phatase between 0 and 415 amino acids, with missense as the dominant type of mutation. For different Exons,
mutations mainly occurred in Exon 8, and the mutation site S298C/F/Y had the highest mutation frequency (Fig.
S4a). Analysis results demonstrated that the type of CNV is correlated with PTPN2 expression. Among these,
amplification has the highest mRNA expression level (Fig. S4c). PTPN2 variants remained mostly to be shallow
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deletions, while the peak of mutation count appeared at the endometrial cancer and melanoma (Fig. S4b). Frac-
tion Genome Altered (FGA) of PTPN2 in 30 types of cancer was detected, and the results indicated that shallow
deletions are widespread in many cancer types (Fig. S4d). MMR is an intracellular mismatch repair mechanism,
and the loss of function of key genes in this mechanism will lead to the failure of DNA replication errors to be
repaired, resulting in a higher rate of somatic mutation, and it’s a potential cancer driver''. Therefore, the correla-
tions between the expression of PTPN2 and five important MMRs related genes (MLH1, MSH2, MSH6, PMS2
and EPCAM) in pan-cancer were analyzed, which indicated that PTPN2 was significantly correlated with MMRs
genes in 29 types of cancer. In these tumors, MLH1, MSH2, MSH6 and PMS2 were positively correlated with
PTPN2, suggesting that PTPN2 may play a role in tumors through the regulation of MMRs process (Fig. S4e).

RNA modification can directly affect the chemistry of RNA and thus affect cancer progression’. Therefore,
44 RNA modification regulators of three types of cancer-related RNA modifications were collected, including
N6-methyladenosine (m6A), N1-methyladenosine (m1A), and 5-methylcytosine (m5C), and the correlation with
PTPN2 expression was analyzed. The results showed that the expression of PTPN2 was significantly positively
correlated with RNA modified genes in most cancers. This suggests that PTPN2 expression potentially affects
the RNA modification process in pan-cancer (Fig. 2e). The expression of four methylated transferases (DNMT1,
DNMT2, DNMT3A and DNMT?3B) in various tumor types was significantly correlated with the expression of
PTPN2. Notably, the co-expression coefficients of SKCM and STAD were significantly higher (Fig. 2d).

Then we analyzed the correlation between PTPN2 expression and stemness score, and tumor heterogeneity,
like RNAss (RNA expression-based), EREG.EXPss (epigenetically regulated RNA expression-based), DNAss
(DNA methylation-based), EREG-METHss (epigenetically regulated DNA methylation-based), DMPss (differen-
tially methylated probes-based), ENHss (enhancer Elements/DNA methylation-based), TMB (tumor mutational
burden), MATH, MSI (microsatellite instability), purity, ploidy, HRD, LOH, and NEO. We found significant
correlations between PTPN2 expression and stemness score, and tumor heterogeneity (Fig. 2f).

PTPN2 expression is related to ICP, immunomodulatory genes, and immune infiltration levels
in pan-cancer

To explore the main pathways through which PTPN2 exerts immunomodulatory effects, the samples were
grouped according to the PTPN2 expression. Then DEGs among groups were screened and subjected to GSEA
to analyze the correlation between PTPN2 expression and cancer-related pathways. The results indicated that
the DEGs were mainly enriched in cell cycle-related pathways (MYC, and E2F), Inferon y response, Inflamma-
tory response, epithelial mesenchymal transition, allograft rejection, and oxidative phosphorylation (Fig. 3a).

Previous studies proved that ICPs were important for maintaining self-tolerance and preventing excessive
immune responses that could cause damage to healthy tissues. However, some cancer cells could take advantage
of these checkpoints to evade the immune system’s attack'. Therefore, we investigated the correlations between
the expression level of ICPs and PTPN2 in pan-cancer to characterize the potential role of PTPN2 in immu-
notherapy and the results indicated that the expression of PTPN2 was significantly positively correlated with
ICPs in most cancers (Fig. 3b), which suggested that PTPN2 might coordinate the activity of ICPs in different
pathways and might be considered an ideal immunotherapeutic marker. We also examined the correlations
between the expression of various immunomodulatory genes, such as chemokine receptors, MHC molecules,
immune-inhibitors, and immune-stimulators, and PTPN2 expression. The results showed a significant positive
correlation between PTPN2 expression and immunomodulatory genes in most types of cancer (Fig. S5a).

We used TIMER?2.0 to analyze the correlation between PTPN2 expression and immune cell infiltration in
pan-cancer. The results showed a positive correlation between PTPN2 expression and various immune infil-
trates, including common lymphoid progenitor, T cell follicular helper, myeloid-derived suppressor cells, B cell,
neutrophil, monocyte, macrophage, myeloid dendritic cell, and CD8* T cell, and a negative correlation with
common myeloid progenitor, endothelial cell, hematopoietic stem cell, and NKT cell (Fig. 3¢c). PTPN2 was found
to be involved in immune infiltration and played an important role in immune-tumor interaction. It should
be noted that the trend of this correlation was different in THYM, especially B cell and Macrophage, which
may be correlated to the different tumor microenvironment'’. PTPN2 was also found to be widely correlated
with ESTIMATE score, immune score, and stromal score in pan-cancer (Fig. S5b-d) The findings indicated
that PTPN?2 played a vital role in immune infiltrates in pan-cancer and has the potential to serve as a response
indicator in clinical practice.

Exploring the immunotherapy response, prognostic correlation, drug sensitivity, and predic-
tive power of PTPN2 in pan-cancer

We collected survival data from TCGA and TARGET data portals to evaluate the prognostic value of PTPN2 in
pan-cancer using CoxPH and log-rank test. PTPN2 expression was found to be a reliable biomarker in a wide
range of cancer types, and was significantly correlated with overall survival in AML (Fig. 4a,b; Fig. S6a—c).

To explore the promising value of PTPN2 as a novel immune target, the immunotherapy response and
sensitive drugs among different PTPN2 expression were compared. The results revealed that there were sig-
nificant differences in PTPN2 expression among 12 murine immunotherapy cohorts (Fig. S6d). Among them,
IFN-y or TNF-a treated mice were more likely to have elevated PTPN2 levels, while TGF-p1 treated mice were
more likely to have low expression of PTPN2. The results also revealed that PTPN2 could significantly predict
immunotherapy response in 5 murine immunotherapy cohorts, which responders were more likely to have
elevated PTPN2 levels (Fig. 4c). Additionally, PTPN2 was closely correlated to the efficacy of immunotherapy
such as CAR-T, PD-L1, Anti-PD-1 and Anti-CTLA-4, indicating the potential of PTPN as an immunotherapy
biomarker (Fig. S7).
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Figure 3. Association of PTPN2 with cancer pathways and immune processes. (a) Inmunophenotypes
Enrichment analysis for metabolism pathway and cancer signaling between high and low PTPN2 expression. (b)
Correlation between PTPN2 and ICP. (c) Correlation between PTPN2 expression and immune infiltration in
pan-cancer. *P <0.05.

Then, comparisons between PTPN2 expression and other published biomarkers based on their predictive
power of immunotherapy response were performed, it was found that PTPN2 had an AUC of more than 0.5
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Figure 4. Prognostic value and biomarker potential of PTPN2. (a) Effect of PTPN2 on cancer prognosis.

(b) Correlation between PTPN2 expression and overall survival in the TCGA and TARGET cohort. (c) A
Comparison of PTPN2 expression before and after ICB treatments across different tumor models in vivo. (d)
Ability of PTPN2 to predict response outcome and overall survival in immunotherapy cohorts. (e) The top 12
drugs positively correlated with PTPN2 expression in the CellMiner database.

in 12 of the 25 immunotherapy cohorts (Fig. 4d). Compared with TMB (AUC> 0.5 in 8 cohorts), T.Clonality
(AUC>0.5 in 9 cohorts), and B.Clonality (AUC> 0.5 in 7 cohorts), PTPN2 exhibited a higher predictive value.
These results demonstrated the promising value of PTPN2 as a biomarker.

The positive (Fig. 4e) and negative (Fig. S6e) correlation between drug sensitivity and PTPN2 expression was
analyzed. The data suggested that PTPN2 might be correlated with chemical resistance to some commonly used
antitumor drugs in clinical practice, such as Nelarabine, Fludarabine and Hydroxyurea. Among them, Nelarabine
and Fludarabine can have certain curative effect on leukemia, suggesting that PTPN2 is closely correlated to drug
resistance in patients with hematologic tumors.
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Elucidating the correlation between PTPN2 and microenvironment in AML

In the above studies, potential correlations between PTPN2 and hematological diseases were found, thus, it is
necessary to further explore the expression pattern of PTPN2 in AML. PTPN2 was differentially expressed in
different cell species in GSE116256 (Fig. 5a, b), GSE135851, and GSE154109 (Fig. S9). The results indicated that
PTPN2 was highly expressed in CD8* Tex cell, plasma cell, monocyte and promonocyte, and low expressed in
CD4" T cell and hepatic stellate cell. Moreover, PTPN2 was strongly correlated with Immune response (Fig. S8a).
Results of QRT-PCR confirmed the expression level of PTPN2 in the bone marrow samples of 21 AML patients
was significantly higher than that of 10 normal donors (Fig. 5¢). The prognostic role of PTPN2 in the TCGA-
LAML cohort was also investigated, suggesting that PTPN?2 is a diagnostic biomarker for AML and may also be
a prognostic marker (Fig. 5d). We collected 87 signatures related to TME and tumor phenotypes from the IOBR
package and analyzed the correlation between PTPN2 expression and these signatures. The results showed that
PTPN2 expression had extensive and consistent positive or negative correlations with the signatures in TCGA
(Fig. S8b,c) and beat AML (Fig. 5e,f) cohorts, indicating its close association with TME.

Drug discovery of PTPN2 in AML

The drug sensitivity of data, obtained from CCLE in CTRP and the PRISM, indicated that patients with low
PTPN2 expression were highly sensitive to three CTRP-derived compounds and six PRISM-derived compounds
(Fig. 6a), high PTPN2 expression were highly sensitive to five CTRP-derived compounds (panobinostat, ouabain,
neuronal differentiation inducer III, BRD-K61166597 and B02) and three PRISM-derived compounds (romidep-
sin, RGFP966, and imidapril) (Fig. S10). After that, the difference between high and low PTPN2 expression
groups was analyzed to obtain the molecular characteristics of the disease for cMAP analysis. Results showed
five compounds were identified to be mostly correlated with PTPN2 expression characteristics (Fig. 6b). Among
them, mercaptopurine was often used as a therapeutic agent for leukemia, indicating that the correlation between
PTPN2 and hematological cancers was robust.

Derivation, construction and validation and characterization of PTPRS

The study found that PTPN2 expression in AML had a significant effect on biological characteristics and clinical
outcomes. Due to the complexity of PTPN2 expression, a PTPRS was constructed to approximate and simplify it.
We formed metaX cohorts (n=953) and metaY cohorts (n="771) as mentioned above, and then 953 samples in
the metaX cohort were randomly grouped into training set (n =669) and validation set (n=284) in a ratio of 7:3.
Using Cor.test function, 8667 PTPN2 related genes in metaX and 5081 genes in metaY were screened, and 1824
genes were obtained by intersection. Then, in the training set, 826 prognostic related genes were screened out by
Kaplan-Meier analysis, 30 of which were selected as effective candidate genes by univariate and LASSO CoxPH
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Figure 5. Prognostic value and biomarker potential of PTPN2. (a, b) The expression of PTPN2 in different cell
types. (c) Expression level of PTPN2 in the bone marrow samples of AML patients and normal donors. (d) The
prognostic role of PTPN2 in the TCGA-LAML cohort. (e, f) Correlation between PTPN2 expression and cancer
microenvironment-related signatures in TCGA-LAML. *P <0.05, **P <0.01, ***P <0.001.
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Figure 6. Drug discovery of PTPN2 in AML. (a) Drug screening in patients with high PTPN2 expression in
CTRP and PRISM. (b) CMAP analysis between high and low PTPN2 expression groups.

model, and finally 24 robust genes were screened out by stepwise multivariate CoxPH to construct PTPRS (Fig.
S1la,b; Table S3). In the training group, patients in the training set, validation set, and other external validation
cohorts were grouped into high-risk and low-risk groups based on the median of score. Patients in the low-risk
groups had longer survival time than those in the high-risk groups, suggesting that PTPRS is a reliable prog-
nostic indicator in all AML cohorts (Fig. 7a). To test the reliability of the PTPRS, patients in TARGET-AML and
TCGA-LAML were combined into overall CP cohort (n=516) and the prediction abilities of the PTPRS and five
existing prediction systems were compared, and the results suggested that PTPRS has better prediction ability
(Fig. 7b,c). In addition, results of univariate (Fig. S11c) and multivariate CoxPH (Fig. S11d) in the TCGA-LAML
and TARGET-AML cohort suggested that PTPRS remained a significantly and independently prognostic factor
after adjusting for other clinical factors. Taken together, these results validated the good prognostic efficiency
of PTPRS.

75 immunomodulatory genes were collected to analyze their expression, methylation and mutation char-
acteristics in high-risk and low-risk groups. In the high-risk group, immunomodulatory genes expression had
a more significant positive correlation with methylation level; and in the low-risk group, immunomodulatory
genes amplification and deletion frequency was higher (Fig. S11e). At the same time, it was found that the
high-risk group had higher immune checkpoint target-related gene expression, immune score, and immune
cell infiltration levels (Fig. S11f.). Based on different immune cell algorithms, the high-risk and low-risk group
had different immune infiltration conditions, indicating that the high-risk and low-risk group may had different
immune microenvironments (Fig. 7d). We analyzed infiltration levels in 27 cells in the high-risk and low-risk
group. The result indicated that high-risk group had significantly higher levels of immune cell infiltration (Fig.
S11g). The high and low risk groups had different mutation frequencies. Except for RUNX1, IDH2, and KRAS,
the high-risk group had lower mutation frequencies than the low-risk group (Fig. S11h).

By applying GO and KEGG pathway enrichment analysis, the results indicated that biological processes
(Fig. 7e) were mainly enriched in cell migration and cell cycle related pathways, cellular components (Fig. S11i)
were mainly enriched in ribosome, lysosome and respiratory chain related pathways, and molecular function
(Fig. S11j) was mainly enriched in cytokine and immune receptor related pathways. DEGs were significantly
enriched in four KEGG terms (Graft-versus-host disease, Viral protein interaction with cytokine and cytokine
receptor, ECM-receptor interaction, and Cytokine-cytokine receptor interaction) (Fig. 7f). To further investigate
the potential differences between high-risk and low-risk groups, GSEA enrichment analysis was performed for
differential genes. The results indicated that the high-risk group was significantly enriched in cancer-related
signaling pathways (Fig. 7g).

Clinical values of PTPRS and construction of nomogram

The risk category in the high-risk group tended to be Poor (p <0.001), generally older (p <0.001), and had a
worse prognosis (p <0.001), while there was no statistical difference in cytogenetic abnormality. And there were
significant differences in pathological stage between the high-risk and low-risk group (Fig. 8a, S12a). Among 37
cancer drugs, the high-risk group had a lower IC50 value, indicating a higher sensitivity to the drug (Fig. S12b).
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Figure 7. Construction and characterization of PTPRS. (a) Development of PTPRS in metaX training set

and the predictive accuracy of PTPRS for survival. Validation of the PTPRS in metaX validation set and five
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risk and low-risk group. (e-g) Functional and signaling pathway analysis of these differential genes in AML
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Scientific Reports|  (2023)13:18372 | https://doi.org/10.1038/541598-023-44892-z nature portfolio



www.nature.com/scientificreports/

PTPRS

High
(n = 65)

Risk_category Cytogenetic Status

»

«f &

p=16e-13

p = 0.00029

Favorable <65 YES Alive
mIntermediate/Normal m>=65 NO mDead MO M1 ©M2 mM3 mM4 M5 mM6 mM7
mPoor

) 0 2 20 w© 0 0 . %0 . 100 ° L T Y TN T AT
Points C 21— tvear
— 2-year
. Intermediate/Normal/Poor 3-year
risk_category
Favorable
«©
age >=65 o
" " YES
cytogenetic_abnormality —_—
x 5 =
L 9
< o
PTPRS 8
2 4 6 8 10 12 14 16 18 20 o
:
Total Points 2
10 20 30 40 50 60 70 80 20 100 110 120 130 g ; 1
Linear Predictor
-15 -1 -05 0 05 1 15 2 25 3
) - o
1-year survival Probabilit c 7
0. 9, 08 0.7 0.6 05 04 03 02 0.1
2-year survival Probability
08 0.7 06 05 04 03 0.2 0.1
o
=

3-year survival Probability o

06 05 04 03 02 0.1 T

d

03 04

Net benefit
0.1

0.0

— None
— Al

— nomogram o

—— PTPRS#risk_category -

PTPRS+cytogenetic_abnormality
TPRS

- — PTPRS
—— nomogram

— nomogram
—— PTPRS+isk_category

PTPRS+cytogenetic_abnormality
— PTPRS

25
1

09

10 15
1 1
AUC
0.7 0.8
1 1

Net reduction in interventions per 100 patients m
0.6
1

00 01 02 03 04 05 ! ! ! ! !
0 500 1000 1500 2000

Threshold probability Threshold probability time

Figure 8. Clinical association of PTPRS and construction of nomogram. (a) The difference in clinicopathologic
features and pathological stages of AML between high-risk and low-risk group. (b) Nomogram predicting the
1-, 2-, and 3-year OS in patients with AML. (c) The calibration curves for predicting patient OS at a 1-, 2-, and
3-year. (d, e) DCA curves of the nomogram, PTPRS and other pooled models for predicting 1-, 2-, and 3-year
OS. (f) Time-dependent AUC values of nomogram and PTPRS for the prediction of OS.

To further optimize the prediction effect of PTPRS, a nomogram containing important predictors in CoxPH
was established to predict the prognosis of AML (Fig. 8b). For example, patients with AML had a risk category
of favorable (0 points), an age of 66 years old (28 points), no cytogenetic abnormalities (0 points), and a PTPRS
of 4 (20 points). Therefore, with a total score of 48, the 1-year survival rate is about 49%, 2-year survival rate
is about 31%, and 3-year survival rate is about 7%, respectively. Calibration curves showed good agreement
between the predicted and observed OS at 1-, 2-, and 3-year in the training and validation cohorts (Fig. 8c).
DCA was performed to compare the clinical applicability of the nomogram with PTPRS. Result indicated that
the nomogram could better predict OS at 1-, 2-, and 3-year because it added more net clinical benefit compared
to PTPRS and other pooled models (Fig. 8d,e). The time dependent AUC curve of OS state was plotted. Changes
in AUC over time indicated that nomogram was slightly better than PTPRS in predicting prognosis (Fig. 8f).
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Discussion

Intracellular non-receptor PTPs, the largest of the cysteine PTP family, are critical for the regulation of a variety
of biological processes, including but not limited to hematopoietic, inflammatory response, immune system and
glucose homeostasis, and play an important role in the occurrence, development, metastasis and drug resist-
ance of tumors®. However, comprehensive analysis of PTPNss is still missing at the pan-cancer level, especially
in AML, and most studies focus on proving the clinical value of PTPN1 expression and PTPN11 mutation in
AML!!5 Tt was found that PTPN2 is highly expressed in hematopoietic cells and plays a negative signaling
role'®. Noteworthily, the PTPN2 catalytic domain shared 74% sequence homology and similar enzyme kinetics
with another family member, PTPN1°. These results suggest that PTPN2 may play an important role in AML.
In this study, the expression and mutation status of PTPNs in pan-cancer were analyzed, finding that PTPN2 is
working as a driver of AML. The study also revealed a strong effect of PTPNs on cell cycle and verified PTPN2
as a diagnostic biomarker for patients with AML at clinic level. Finally, PTPRS was developed to predict the
prognosis and response of cancer immunotherapy, and a nomogram with better efficacy was constructed com-
bined with clinical indicators.

Targeting PTPNs has always been a crucial approach for treating diseases. According to reports, PTPN1 is
involved in the development of many diseases, including obesity, diabetes, cancer, and cardiovascular disease!”.
PTPN1 and PTPN2 inhibitors have been developed and have become emerging means to enhance T cell anti-
tumor immunity'®. PTPN3 is a potential immune checkpoint inhibitor target that may mediate T cells, while
PTPNS5 and PTPNY can specifically inactivate MAPKs, so the developed inhibitors may have therapeutic potential
for treating neurodegenerative diseases in AML patients'>*’. Targeting PTPNG6 is an effective treatment for com-
bating diabetes®'. PTPN11 has always been a focus of attention in the field of human diseases, especially cancer,
and can bind to multiple immune inhibitory receptors and inhibit the activation of immune cells*>. PTPN11
regulates numerous cascade pathways, such as RAS-RAF-ERK, JAK-STAT, JAK-STAT, and is closely associated
with immunotherapy response*. PTPN12 is considered a promising therapeutic target for critical diseases such as
cancer, diabetes, metabolic diseases, and autoimmune diseases and has been used for therapeutic intervention in
acute myocardial infarction**?*. PTPN13 and PTPN23 act as tumor suppressors in various tumors*-2°. PTPN22
inhibitors have enormous potential to enhance the efficacy of current immunotherapy strategies®’. However,
there are still gaps in the development of targeted drugs for PTPN13, PTPN14, PTPN18, PTPN21, and PTPN23.

Immunotherapy was first identified as an effective treatment for tumors by Wilhelm Bush and Friedrich
Fehleisen in the nineteenth century®'. In recent years, monoclonal antibodies targeting specific targets on tumor
cells have been widely used to treat hematological malignancies, either in combination with chemotherapy or
as a single agent®?. PTPN11 is an effective target for the treatment of hematological malignancies and can also
bind to various immune inhibitory receptors?>*. Considering that PTPN2 and PTPN11 belong to the same
family of PTPs, the combination of PTPN2 inhibitors with immune therapy is a promising strategy. The role of
PTPN2 as a biomarker in tumor microenvironments was systematically studied. It was found that PTPN2 was
strongly correlated to six tumor stemness indexes in many cancers. PTPN2 and RNA modification regulators,
ICP, immunomodulatory genes, and mismatch repair related genes were positively correlated.

But in some studies, the absence of PTPN2 in B16 tumours does not produce significant differences in bone
marrow cell infiltration!®. This may be related to the different tumor microenvironments of melanoma and
AML, suggesting that PTPN2 may not act as a therapeutic target in all hematologic tumors, but its role in AML
is indispensable.

The use of public databases and computational models to identify optimal personalized therapeutic agents and
drug combinations has become increasingly popular®*. In this research, the biomarker correlation and predic-
tive power of PTPN2 in 25 immunotherapy cohorts were analyzed. At the same time, predictions for sensitive
drugs have been made based on PTPN2 expression in multiple databases. We found that in 12 immunotherapy
cohorts, PTPN2 alone had an AUC of over 0.5, with a higher predictive value than TMB, T.lonality, and B.lonality
in the immunotherapy cohort. More importantly, the differential expression of PTPN2 was verified in the bone
marrow of patients and normal subjects using clinical samples, and a series of targeted small molecule drugs
with good therapeutic effects are predicted in this paper, providing guidance for clinical drug use. Noteworthily,
PTPN?2 inhibitors have been successfully developed®, so the application of PTPN2 inhibitors combined with
Immunotherapy in AML has promising potential.

Finally, PTPRS was developed and validated, which is common-used and productive in external validation
queues. It has the advantage of combining multiple AML high-throughput sequencing cohorts, and clinical
indicators were combined with PTPRS to establish a nomogram with better predictive power.

There are still some limitations to the study. First, although this study largely corrected batch effect across
multiple cohorts, the implications for genomic analysis should be further analyzed using larger data sets from
multiple databases. Secondly, it is still required to verify the effect of PTPNs on the cell cycle by further experi-
ments. Finally, the predictive effectiveness of PTPRS is not validated in self-tested cohorts.

Methods
Data retrieval, collection, and preprocessing
Firstly, The pan-cancer RNA sequencing (RNA-seq) data (FPKM value) and the corresponding survival informa-
tion of The Cancer Genome Atlas (TCGA)?*® were extracted from the UCSC Xena Browser (https://xena.ucsc.
edu/)*. Full names and abbreviations of all cancers are listed in Table S1.

Next, transcriptome information of 151 patients in the TCGA-LAML cohort, 187 patients in the TARGET-
AMLY, 450 patients in the beatAML?® cohort (FPKM and Counts value), accompanied by corresponding phe-
notype and DNA methylation data, were simultaneously downloaded. The copy number variation (CNV) of
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TCGA-LAML was gathered and processed using the GISTIC 2.0 algorithm®, and somatic mutation profiles
(Varscan) was obtained as the mutation annotation format (MAF) format by the R package “maftools™.

Then, gene expression profiles and clinical information of GSE10358*', GSE12417%, GSE23312%, GSE32246",
GSE37642%, GSE71014%, and GSE106291*” were downloaded from gene expression omnibus (GEO)*. Addi-
tionally, the expression data of PTPNs in normal cell lines or tissues were retrieved from the BioGPS data
portal (http://biogps.org/#goto=welcome)* and Genotype-Tissue Expression (GTEx: https://www.gtexportal.
org/home/) project®, while expression data of PTPNs in cancer cell lines were downloaded from BioGPS and
Cancer Cell Line Encyclopedia (CCLE: https://sites.broadinstitute.org/ccle/) project™.

For the TCGA-LAML, TARGET-AML, and beatAML cohorts, the FPKM values were converted into TPM val-
ues for consistency, and further subjected to log2(x + 1) transformation for normalization. For all cohorts obtained
from the GEO, “normalizeBetweenArrays” function in the R package “limma” was used for normalization.

Next, the abovementioned cohorts were integrated into two AML meta cohorts after excluding patients whose
survival information was not available: metaX (n=953: GSE106291, TARGET, TCGA-LAML, beatAML), metaY
(n=771: GSE12417, GSE23312, GSE32246, GSE37642, GSE71014).

Then, the batch effect was corrected with the “removeBatchEffect” function in “limma”>2, and their gene
expression data was ultimately standardized via Min—-Max normalization for downstream multi-database analysis.

Deciphering pan-cancer expression pattern of PTPNs

We systematically analyzed the expression levels of PTPNs (protein tyrosine phosphatases) between tumorous
and adjacent normal tissues at the pan-cancer level using the ONCOMINE®, TIMER* and the TCGA-Pan-
Cancer atlas.

Furthermore, we conducted further analysis of the expression of PTPN2 protein at the pan-cancer level using
the UALCAN platform (http://ualcan.path.uab.edu/index.html), with the Clinical Proteomic Tumor Analysis
Consortium (CPTAC: https://proteomics.cancer.gov/programs/cptac) database as a resource®*.

Additionally, we investigated the mRNA and protein levels of PTPN2 expression in normal or tumor tissues
and normal or tumor cell lines using the CCLE, Human Protein Atlas (HPA: https://www.proteinatlas.org/),
harmonizome (https://maayanlab.cloud/Harmonizome/), and BioGPS portal®”*%. Furthermore, we deciphered
the pan-cancer expression pattern of PTPN2 in the single-cell level using TISCH>*%°. We utilized the cBioPortal
(https://www.cbioportal.org/) to depict the pan-cancer genomic landscape of PTPNs in terms of CNV and single
nucleotide polymorphisms (SNPs)®!. The role of PTPNs in diseases, systematic drug-target identification and
prioritization was analyzed preliminarily based on underlying evidence through the Open Targets Platform
(https://www.opentargets.org/)®2. Thanks to GSCA platform for visualizing and demystifying the pan-cancer
phenotypic characteristics of PTPNS, this study analyzed the correlation between PTPNs and prognosis or
clinical subtypes at the pan-cancer level®®. Additionally, the relationship between PTPN2 expression and clini-
cal outcomes, including overall survival (OS), progression-free interval (PFI), disease-free interval (DFI) and
disease-specific survival (DSS), was analyzed and visualized at the pan-cancer level with the help of Sangerbox**
Platform (https://vip.sangerbox.com/home.html)®.

Illustrating pan-cancer biological mechanisms, immunological features, and predictive effect
of PTPN2

We performed various analysis to characterize the correlations between PTPN2 expression and multiple molecu-
lar features in pans-cancers. These included estimating tumor mutation burden (TMB) and mutant-allele tumor
heterogeneity (MATH) using the "maftools" R package!’, obtaining microsatellite instability (MSI), neoantigen,
purity, ploidy, homologous recombination deficiency (HRD), and loss of heterozygosity (LOH) scores®>*® and
tumor stemness indexes®” (RNAss, Ereg. EXPSS, DNAss, EREG-METHSss, DMPss, ENHss) from previous studies,
and analyzing correlations between PTPN2 and RNA modifier regulators, MMRs related genes, methyltrans-
ferases, ICP inhibitors, immunomodulators, and tumor-related signatures at the pan-cancer transcriptome level
using Spearman’s correlation. Gene set enrichment analysis (GSEA) were performed based on PTPN2 expression
(top 30% and bottom 30%) to predict the potential cancer hallmarks related with PTPN2%¢°. Immunological fea-
tures of each sample were evaluated using ESTIMATE and immunedeconv algorithms™®”". Correlations between
PTPN2 and 60 ICPs (24 inhibitory, 36 stimulatory), 150 immunomodulators (41 chemokines, 18 chemokine
receptors, 21 MHC molecules, 24 immuno-inhibitors, 46 immuno-stimulators) were illustrated at the pan-
cancer transcriptome level (Spearman’s Correlation). Tumor immune dysfunction and exclusion (TIDE) and
tumor immune syngeneic mouse (TISMO) databases were used to predict immunotherapy and gene treatment
responses’>”?. Correlations between 87 tumor-related signatures and PTPN2 were illustrated using “IOBR”
package”. Moreover, the intratumoral mutation landscape between the high and low PTPN2 expression groups
in the TCGA-LAML cohort was delineated, and Over Representation Analysis and GSEA on KEGG pathways
and GO terms were performed’>’¢,

Integrated cell line datasets with drug sensitivity information were extracted from the Genomics of Drug
Sensitivity in Cancer (GDSC)”’, and predicted sensitivity of chemotherapeutic treatment was inferred using
oncoPredict’®. The Cancer Therapeutics Response Portal (CTRP)” and profiling of relative inhibition simultane-
ously in mixtures (PRISM) database® were used to analyze drug sensitivity relationships between PTPN2 and
chemotherapeutic agents. Special thanks are given to Chen Yang for his support with R-script design and splendid
analysis methodologies®!, and Paul Geeleher for development of the R package “pRRophetic”®.

Correlation between PTPN2 and drug sensitivity was also analyzed using CellMiner, and CMap score was
calculated to predict potential drugs reversing the molecular features of the disease®*-*. Additionally, PTPN2
expression was analyzed between response and non-response groups in cohorts receiving immunotherapy.
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RNA extraction and qRT-PCR

Total RNA was extracted from bone marrow samples from AML patients and normal individuals using Trizol
reagent (Invitrogen, Carlsbad, CA, U.S.A.) according to the manufacturer’s protocol. Superscript II reverse
transcriptase and random primers were used to synthesize cDNA. Quantitative real-time PCR (qRT-PCR) was
performed on the ABI 7900HT Sequence Detection System with SYBR-Green dye (Applied Biosystems, Fos-
ter City, CA, U.S.A.). All primers are listed in Table S2. Expression levels of PTPN2 were calculated using the
2-AACT method.

Construction and validation of the prediction model

Least absolute shrinkage and selection operator (LASSO) penalized Cox proportional hazards regression model
(CoxPH)® with tenfold cross-validation was used to construct a PTPRS for the prognostication of patients®.
The PTPRS for individual patients was calculated as follows: (gene’s expression x coefficient). Univariate and
multivariate CoxPHs were used to evaluate the prognostic value of PTPRS. To further unravel the underlying
biological mechanisms relating to the PTPRS, differentially expressed genes (DEGs) between different risk groups
was screened using DESeq2 package®®. Functional enrichment analyses (GO and KEGG pathways) as well as
GSEA on the DEGs were conducted and visualized via the R package "clusterProfiler 4.0" and “GOplot™°.
Kaplan—Meier curves, time-dependent receiver operating characteristic curve (ROC) analysis, decision curve
analysis (DCA) and concordance index (C-index) curves were used to evaluate the prognostic role the DEGs
by the R package “pROC” and “pec”'. Finally, we compared the prediction ability of the PTPRS with other five
prognostic®~*® models, but also confirmed as an independent prognostic factor in contrast to other clinical
biomarkers via multivariate CoxPH.

Underlying microenvironment between samples in high- and low-risk group
The immune profile was visualized via heatmap, displaying expression of ICP, abundance of 24 immunocyte
infiltration, immune score, stromal score and DNA methylation of tumor-infiltrating lymphocytes (MeTILs)*”.
Then, the differences of 75 immunomodulators between two subtypes were further analyzed at the multi-
omics level: mRNA expression, gene expression correlation with DNA-methylation beta-value, amplification
frequency (the difference between the fraction of samples in which an immunomodulator was amplified in a
particular subtype and the amplification fraction in all samples) and deletion frequency.
Finally, ssGSEA algorithm, which enabled us to quantify the absolute enrichment of various TME infiltration
cells via the immune deconvolution analyses, was implemented to investigate the differences of 34 immunocytes
in distinct subtypes.

Establishment, superiority and validation of a nomogram speculating prognosis

To further quantify the predictive performance of PTPRS, we constructed a nomogram based on the training set
and integrated the PTPRS and other clinical features of patients using the R package “rms” and the performance
of the nomogram was validated and calibrated using DCA, and time-independent ROC analysis in the training,
validation and metaX cohorts.

Statistical analysis

Group differences were evaluated using Mann-Whitney U test. Correlations between variables were analyzed
with Pearson’s or Spearman’s correlation analysis as appropriate. Outcomes with P < 0.05 were defined to be
statistically significant in comparisons between groups. The R (version: 4.1.3) was used for data processing and
statistical analyses.

Ethics approval and consent to participate
The study was conducted in accordance with the Declaration of Helsinki, and approved by Medical Ethics Com-
mittee, Zhongnan Hospital, Wuhan University.

Consent for publication
This research project has applied for exemption of patient informed consent to Medical Ethics Committee,
Zhongnan Hospital, Wuhan University.

Conclusions

In the present study, we demonstrated that the role of PTPNs in cancer may be related to mediating cell cycle
related pathways, confirmed differential expression of PTPN2 at the clinical level between AML patients and
normal subjects, indicated that AML may be a promising candidate for PTPN2 suppression immunotherapy,
and constructed a nomogram for risk assessment in AML.
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