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Exploring immune related gene 
signatures and mechanisms 
linking non alcoholic fatty liver 
disease to atrial fibrillation 
through transcriptome data 
analysis
Keke Wu 1,2,3,4,5, Jiayi Zhu 1,2,3,4,5, Yingxu Ma 1,2,3,4, Yong Zhou 1,2,3,4, Qiuzhen Lin 1,2,3,4, 
Tao Tu 1,2,3,4* & Qiming Liu 1,2,3,4*

Atrial fibrillation (AF) and related cardiovascular complications pose a heavy burden to patients and 
society. Mounting evidence suggests a close association between nonalcoholic fatty liver disease 
(NAFLD) and AF. NAFLD and AF transcriptomic datasets were obtained from GEO database and 
analyzed using several bioinformatics approaches. We established a NAFLD-AF associated gene 
diagnostic signature (NAGDS) using protein–protein interaction analysis and machine learning, which 
was further quantified through RT-qPCR. Potential miRNA targeting NAGDS were predicted. Gene 
modules highly correlated with NAFLD liver pathology or AF occurrence were identified by WGCNA. 
Enrichment analysis of the overlapped genes from key module revealed that T-cell activation plays 
essential roles in NAFLD and AF, which was further confirmed by immune infiltration. Furthermore, 
an integrated SVM-RFE and LASSO algorithm was used to identify CCL4, CD48, ITGB2, and RNASE6 
as NAGDS, all of which were found to be upregulated in NAFLD and AF mouse tissues. Patients with 
higher NAGDS showed augmented T cell and macrophage immunity, more advanced liver pathological 
characteristics, and prolonged AF duration. Additionally, hsa-miR-26a-5p played a central role in 
the regulation of NAGDS. Our findings highlight the central role of T-cell immune response in linking 
NAFLD to AF, and established an accurate NAGDS diagnostic model, which could serve as potential 
targets for immunoregulatory therapy.

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, with a current prevalence ranging 
between 2 and 4%. However, this is expected to increase 2.3-fold due to the aging population and intensified 
screening for undiagnosed  AF1. The rising prevalence of AF can be attributed to numerous risk factors, including 
aging, genetic predisposition, obesity, smoking, diabetes (DM), and inflammatory  diseases2. Nevertheless, not 
all AF cases can be explained by the aforementioned risk factors, underscoring the importance of identifying 
new triggers.

Nonalcoholic fatty liver disease (NAFLD), characterized by excessive hepatic fat accumulation, is the most 
common cause of chronic liver disease in clinical  practice3. The global prevalence of NAFLD accounted for about 
25% in  20184. The number of NAFLD patients even exceeds the population of obesity (650 million) coupled with 
DM (400 million), the 2 key risk factors for  AF5. To date, compelling evidence also indicates a close association 
between the presence of NAFLD and an increased risk of  AF6–8. There must be predisposing factors in NAFLD 
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patients that make them more susceptible to AF. It is well-known that NAFLD is a disease related to systemic 
inflammation and oxidative stress, which may trigger arrhythmogenic injury (i.e., structure, electrical, and 
autonomic remodeling) to the  heart6,9,10. However, the direct evidence is little, and fails to reveal the mechanism 
of AF secondary to NAFLD at the genetic level.

To explore the “trigger point” between NAFLD and AF, we used weighted gene co-expression network analysis 
(WGCNA) to identify correlated and shared gene clusters in NAFLD and AF. Our analysis revealed the presence 
of T cell activation-associated genes within modules most closely related to NAFLD or AF, and there were dif-
ferences in immune infiltration between patients and normal individuals, particularly evident in T cells. These 
results indicate mechanisms of AF secondary to NAFLD may be associated with T cell-mediated immunity. 
In addition, we established a NAFLD-AF gene diagnostic signature (NAGDS) for supplementary diagnosis of 
NAFLD and AF by protein–protein interaction (PPI) analysis and machine learning, and explored the potential 
diagnostic and therapeutic values underlying NAGDS.

Materials and methods
Data collection and preprocessing
The overall workflow of this study is shown in Fig. 1. Two NAFLD and four AF datasets were downloaded from 
the GEO database (http:// www. ncbi. nlm. nih. gov/ geo). Raw probe matrix of GSE41177 (named as AF dataset), 
GSE115574, GSE14975, and GSE63067 were annotated with GPL570 (Affymetrix Human Genome U133 Plus 
2.0 Array) to generate gene expression matrix. Probes annotated to the same gene symbol were merged to their 
average levels. Samples from the left atrium-pulmonary vein junction were excluded in GSE41177. Gene expres-
sions were normalized with the ‘limma’ (version 3.48.3) package in  R11. Gene expression matrix of GSE130970 
(named as NAFLD dataset), based on GPL16791 (Illumina HiSeq 2500), were downloaded as transcripts Per 
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Figure 1.  Study workflow. AF, atrial fibrillation; GSEA, gene set enrichment analysis; LASSO, least absolute 
shrinkage and selection operator; NAFLD, nonalcoholic fatty liver disease; ROC, receiver operating 
characteristic; ssGSEA, single-sample gene set enrichment analysis; SVM-RFE, support vector machine 
recursive feature elimination; WGCNA, weighted gene co-expression network analysis.
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Kilobase per Million mapped reads (TPMs) and were subsequently transferred to gene symbol from Entrez id. 
Liver biopsy samples were categorized into two groups: those with a NAFLD activity score (NAS) ≥ 5, referred 
to as the NAFLD group, and those with NAS < 5, considered as the control  group12. Gene expression data from 
GSE115574, GSE14975, and GSE63067 were used as validation datasets.

WGCNA
Weighted gene co-expression network analysis was conducted in the NAFLD and AF datasets with the ‘WGCNA’ 
(version 1.70-3) package in  R13,14. The power values were screened ranging from 1 to 20 using the ‘pickSoft-
Threshold’ function, and the minimum value of the degree of independence over 0.85 was used. Co-expression 
networks were constructed with the ‘blockwiseModules’ function with a merge cut-off height of 0.25. Genes 
inside the same module were considered significantly interconnected. Correlations between all modules and 
clinical traits were visualized with the ‘labeledHeatmap’ function of the ‘WGCNA’ package. We selected modules 
that exhibited the highest correlation with clinical characteristics for further analysis.

Functional enrichment analysis
Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and the REACTOME pathway 
enrichment analysis were applied with the ‘clusterProfiler’ (version 4.0.5) and ‘ReactomePA’ (version 1.36.1) 
packages in  R15–18. Biological processes, cell components, and molecular functions were enriched and investi-
gated individually. The enriched terms with an adjusted P value of less than 0.05 were considered significant.

PPI analysis
PPI networks were acquired from the STRING database (https:// string- db. org/) and visualized using ‘Cytoscape’ 
software (version 3.9.1) with a confidence score greater than 0.4. Hub genes were screened with ‘MCODE’ 
(version 2.0.2)19 or ‘cytoHubba’ (version 0.1)20 plugins. ‘ClueGO’ (version 2.5.9)21 was used to visualize the GO 
terms network based on the similarity of their associated genes with GO terms fusion function and two-sided 
hypergeometric test. The degree of connectivity of each term’s connection was quantified with kappa statistics. 
Functional grouping of the GO terms was also based on the kappa score with a kappa score threshold of 0.4, and 
redundant groups with > 50% overlap were merged.

Immune cell infiltration analysis
The gene expression matrix and a validated cell metagenes signature of 28 immune cell types (Table S3)22,23 
were inputted to calculate immune cell abundance using the single-sample gene set enrichment analysis 
(ssGSEA) method of ‘GSVA’ (version 1.40.1) package in  R24. Cell subsets were compared in each group using 
the Mann–Whitney U-test and visualized via the ‘ggpubr’ (version 0.4.0) package in R. A P value of less than 
0.05 were regarded as significant.

Diagnostic signature screening and construction with machine learning
The support vector machine recursive feature elimination (SVM-RFE) algorithm was utilized in this study via the 
‘rfe’ function of ‘caret’ (version 6.0-91) package in R with tenfold cross-validation for diagnostic gene signatures 
screening. SVM-RFE is a machine learning approach that recursively eliminates features and calculates each fea-
ture’s weight to screen out less important and meaningful information. We then used the least absolute shrinkage 
and selection operator (LASSO) regression with the ‘glmnet’ (version 4.1-4) package in  R25 to further shrink the 
scope of selected features. Combined SVM-RFE and LASSO approach, genes with strong relevance to NAFLD 
and AF were identified with higher accuracy. Finally, NAGDS was constructed according to the expression of 
each significant gene and their respective coefficient from the LASSO regression: NAGDS score = Σ (significant 
gene expression) * (each gene’s coefficient).

Correlation analysis between gene expression and clinical characteristics
Non-parametric Spearman’s correlation was calculated to determine the correlation between gene expression 
and liver pathological features in the NAFLD dataset, AF duration time in the AF dataset, and immune cell 
infiltration abundance in both datasets. Correlations were visualized using ‘ggplot2’ (version 3.3.5), ‘ggpubr’, 
and ‘ggExtra’ (version 0.9) packages in R.

Predictive value of diagnostic signature
We used the receiver operating characteristic (ROC) curve with the ‘pROC’ (version 1.18.0) package in R to 
quantify the diagnostic effectiveness of individual genes or the overall NAGDS  score26. GSE63067, a NAFLD 
dataset, and GSE14975, an AF dataset, were used as external validation sets to further verify the diagnostic 
accuracy of the diagnostic signature.

Validation of immune activation in NAFLD and AF DEGs
Differentially expressed genes (DEGs) were screened using the ‘limma’ package with a P-value < 0.05 defined as 
significant. DEGs from the NAFLD dataset and GSE115574 were intersected to get overlapped DEGs.

Animal models of NAFLD and AF
The animal study is reported in accordance with ARRIVE guidelines 2.027. Male C57BL/6 mice, 8 weeks of age, 
each weighing 20–22 g, were purchased from the Institute of Laboratory Animal Science, Hunan SJA Laboratory 
Animal Co., Ltd. All animal experiments were under the approval of the Animal Care and Use Committee of 
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Second Xiangya Hospital of Central South University and were performed in strict accordance with the recom-
mendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Mice 
were housed in a specific-pathogen-free (SPF) environment with a regular 12/12 h day/night cycle, a temperature 
of 22 °C, and a humidity of 70%. After one week of adaptive feeding in the laboratory environment, the mice were 
then randomly divided into two groups: (1) control group (n = 6): animals treated with the standard chow diet; 
(2) High-fat diet (HFD) group (n = 6): animals given a high-fat Western diet (D12079B), and mice were allocated 
to six mice per cage. Confounders were not controlled in randomisation. Mice of each group were sacrificed at 
12 weeks. Experimental animals were euthanized in advance if they developed irreversible diseases or health 
problems that would cause them severe pain or suffering. No animals were euthanized prior to the planned end 
of experiment. At the end of the experiments, all mice were euthanized by an intraperitoneal injection of sodium 
pentobarbital. Livers and atriums were immediately excised, thoroughly washed with ice-cold phosphate-buffered 
saline (PBS), and stored in liquid nitrogen until further use. For AF murine model, mice were randomly divided 
into two groups: (1) control group (n = 4): daily injection of saline through angular vein; (2) AF group (n = 4): 
daily injection of ACh (66 µg/kg) +  CaCl2 (10 mg/kg) through angular vein, as previous  reported28. The operator 
was blinded from the group allocation at all times. Mice were sacrificed at 3 weeks after the same euthanasia 
method, and hearts were harvested in the same methods mentioned above. An overall of twenty animals were 
used in this experiment, and the animal models and animal sample size were selected based on previous studies.

Real-time quantitative PCR
Total mRNA was extracted from tissues with GeneJET RNA Purification Kit (Thermo Fisher Scientific). After 
determining RNA concentration and purity, cDNA was synthesized using the High-Capacity cDNA RT Kit with 
RNase Inhibitor (Thermo Fisher Scientific). RT-qPCR was conducted using the Applied Biosystems™ SYBR™ 
Green PCR Mix (Thermo Fisher Scientific) by BIO-RAD Real-Time PCR System. The expression level was 
quantized by  2−ΔΔ CT mode. β-actin was used as reference for quantitative analysis. The primer sequences for 
RT-qPCR are listed in Supplementary Table S1.

Gene set enrichment analysis between high and low NAGDS groups
Samples were regrouped by NAGDS score to the high NAGDS score group and low NAGDS score group. Genes 
were ranked by  log2(Fold change) obtained from ‘limma’ differential analysis. Gene set enrichment analysis 
(GSEA) was applied between high and low NAGDS score groups in both NAFLD and AF datasets via the ‘gseGO’ 
function of ‘clusterProfiler’ package in R.

Construction of therapeutic miRNA-mRNA network
Shared miRNAs that significantly changed in AF and NAFLD were downloaded from the HMDD database 
v3.2 (https:// www. cuilab. cn/ hmdd) that contained experiment-validated diseases-related  miRNAs29. Potential 
miRNA-mRNA pairs were obtained from DIANA-TarBase v8 containing experimentally supported miRNA 
targets to construct a miRNA-mRNA network from NAGDS and NAFLD-AF shared  miRNAs30.

Statistical analysis
Statistical analysis was performed in R (version 4.1.2). Comparisons between the two groups were carried out 
with two-tailed Student’s t-test or Mann–Whitney U-test. The correlations among gene expression and other 
factors are assessed in Spearman’s correlation coefficients. The area under the ROC curve (AUC) represented 
diagnostic performance. For all assessments, a P-value < 0.05 was considered statistically significant, and the 
exact P-value were reported in results section.

Results
Identification of NAFLD and AF relevant key modules
The power value was set to 3 for the NAFLD dataset and 8 for the AF dataset to meet the criteria of scale-free 
topology fit index over 0.85, and the WGCNA network were constructed accordingly (Supplementary Fig. S1). 
All genes of the NAFLD dataset were divided into 25 modules. We assessed the correlation of each module and 
age, sex, and five liver pathological features, namely cytological ballooning grade, fibrosis stage, lobular inflam-
mation grade, NAS, and steatosis grade. Similarly, all genes of the AF dataset were divided into 19 modules, and 
each module was undergone module-trait correlation analysis with AF occurrence. As shown in Fig. 2, the brown 
(MEbrown in Fig. 2A) and yellow (MEyellow in Fig. 2A) modules from the NAFLD dataset and the black module 
(MEblack in Fig. 2B) from the AF dataset had top correlation with clinical traits, therefore were chosen as the 
most relevant modules. GO, KEGG, and REACTOME pathway enrichment analyses of these three modules were 
performed (Supplementary Fig. S2). The GO results showed that in the NAFLD dataset, the brown module was 
significantly enriched in processes related to neutrophil-mediated immunity, response to unfolded protein, and 
neutrophil degranulation. In the same dataset, the yellow module exhibited the highest enrichment in processes 
related to T cell activation, leukocyte cell–cell adhesion, and lymphocyte proliferation. In the AF dataset, the black 
module was most enriched in processes related to T cell activation and filamin binding. Across all three key mod-
ules, the most significantly enriched GO terms were related to lymphocyte and neutrophil-mediated immunity.

Construction and enrichment analysis of NAFLD-AF shared gene set (NASGS)
To investigate the potential biological function of shared genes from NAFLD-related modules and AF-related 
modules, we merged the overlapping genes from two key NAFLD modules, the NAFLD-brown module and 
NAFLD-yellow module, with one key AF module, the AF-black module. This combined set of genes was referred 
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to as NASGS (Fig. 3A). GO enrichment analysis revealed that NASGS predominantly enriched in T cell-mediated 
immunity, such as T cell activation (Fig. 3B). To gain a better understanding of the interactions of GO terms, we 
constructed an integrated GO pathway network from NASGS via ‘ClueGO’ (Supplementary Fig. S3). Consist-
ently, the distribution of functional groups of significantly enriched GO terms suggested that ‘T cell activation’ 
and ‘myeloid leukocyte migration’ were the top majority clusters (Fig. 3C).

Furthermore, we applied GO enrichment analysis to the highly interconnected clusters of NAFLD yellow and 
brown modules and the AF black module. Results revealed that NAFLD yellow module and AF black module are 
significantly enriched to the immune process, especially T cell activation (Fig. 4), indicating these two modules 
are more significantly relevant to the immune process during NAFLD and AF.

To further elucidate the involvement of T cell-mediated immunity in NAFLD and AF, GSE115574, an AF 
dataset with 59 samples and the NAFLD dataset, were chosen to extract DEGs with the criteria of P-value < 0.05. 
There were 311 genes significantly changed during either NAFLD or AF. GO pathway enrichment analysis of 
those genes confirmed that immunity, including T cell activation pathway, was involved in NAFLD-AF shared 
pathophysiological process (Supplementary Fig. S4).

Immune cell infiltration analysis of AF and NAFLD datasets
Enrichment analysis indicated that immune process plays essential roles in both NAFLD and AF. Furthermore, 
the ssGSEA method was applied to the NAFLD dataset and AF dataset to analyze immune cell abundance in 
each sample. After dividing liver samples into ‘NAFLD group’ and ‘control group’ by NAS at the cut-off value of 
5, we compared the abundance of each immune cell between the two groups. Activated  CD4+ T cell, activated 
 CD8+ T cell, type 1 helper T cell  (TH1), regulatory T cell, central memory  CD4+ T cell, central memory  CD8+ 
T cell, effector memory  CD4+ T cell, effector memory  CD8+ T cell, activated dendritic cell, immature dendritic 
cell, natural killer T cell, γδT cell, T follicular helper cell, myeloid-derived suppressor cell, monocyte, and mast 
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cell are significantly higher in NAFLD group (P < 0.05) (Fig. 5A). In the AF dataset, activated  CD4+ T cell, 
activated  CD8+ T cell,  TH1, regulatory T cell, central memory  CD8+ T cell, effector memory  CD4+ T cell, γδT 
cell, effector memory  CD8+ T cell, myeloid-derived suppressor cell, activated dendritic cell, immature dendritic 
cell, natural killer cell, macrophage, monocyte, mast cell, and neutrophil are significantly higher in AF group 
(P < 0.05) (Fig. 5B).

Identification of NAGDS from PPI analysis and machine learning
To establish NAGDS from are modules that most significantly enriched to immune process, the NAFLD yellow 
module and AF black module were intersected, of which the PPI network were visualized from the STRING 
database (Fig. 6A). The top 20 hub genes were identified through the maximal clique centrality algorithm 
(Fig. 6B). SVM-RFE (Fig. 6C) and LASSO regression analysis (Fig. 6D,E) were integrated to increase diagnostic 
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effectiveness while reducing noise information. Four genes were selected by both machine learning algorithms, 
namely C–C motif chemokine 4 (CCL4), CD48 antigen (CD48), integrin beta-2 (ITGB2), and ribonuclease K6 
(RNASE6) (Fig. 6F). A regression model derived from machine learning was used to calculate NAGDS score for 
each sample with the formula: NAGDS score = 0.870 * CCL4 + 0.306 * CD48 + 0.693 * ITGB2 + 0.250 * RNASE6 
− 6.390.

Verification of NAGDS in NAFLD and AF datasets
The expression of each NAGDS was higher than control groups in NAFLD and AF (Fig. 7A,B) dataset (P < 0.05). 
ROC analysis revealed the potential diagnostic performance of each NAGDS reflected by AUC. AUC of CCL4, 
CD48, ITGB2, and RNASE6 were 78.92%, 78.15%, 75.15%, and 75.77% in NAFLD dataset (Fig. 7C), and 87.50%, 
95.83%, 100%, and 100% in AF dataset (Fig. 7D), indicating the relatively high diagnostic value of the four genes 
in NAGDS. Next, we evaluated the levels of the NAGDS score and its diagnostic value in the NAFLD and AF 
datasets. Consistently, the NAGDS score was higher in NAFLD and AF datasets (Fig. 7E,F), and the AUC of the 
overall NAGDS score was not lower than individual NAGDS (Fig. 7G). To further validate the stability of the 
NAGDS score, we investigated its ROC curve in two external datasets. The AUC of NAGDS score was 71.4% in 
GSE63067 NAFLD dataset and 84.0% in GSE14975 AF dataset.

RNASE6

LYZ

CR1

CD93

FPR1

EOMES

BTLA

WAS

BTK

FYB

LAPTM5

FERMT3

FLT3

ICOS

PLEK
FYN

RGS18

INPP5D

GZMK

CD300LF

SELPLG

HCST

NCF4

IGSF6

S100A12

ALOX5AP

WDFY4
ZAP70

CD226

CD8B

DOCK2

RGS1

LYN

PARVG

MS4A6A

CYTH4

HK3

NKG7
LILRB1

FUT4

CLEC10A

HLA-E

CD244
IL16CD53

BP
C

C
M

F

0 5 10

positive regulation of leukocyte cell−cell adhesion
leukocyte proliferation

positive regulation of leukocyte activation
mononuclear cell proliferation

lymphocyte proliferation
positive regulation of cell activation

leukocyte cell−cell adhesion
T cell activation

cytoplasmic side of plasma membrane
specific granule

postsynaptic specialization, intracellular component
ficolin−1−rich granule membrane

extrinsic component of cytoplasmic side of plasma membrane
tertiary granule

membrane microdomain
membrane raft

immune receptor activity
RAGE receptor binding

CD4 receptor binding
protein tyrosine kinase activity

non−membrane spanning protein tyrosine kinase activity
MHC protein binding

T cell receptor binding
MHC class I protein binding

0.006

0.004

0.002

p.adjust

BCL2A1

SASH3

ARHGAP9

FCER1G

MYO1F

LAPTM5

NCKAP1L

IFI30

HCST

DOCK2

C1QC

TREM1

ITGB2

RNASE6

CD300A

HCLS1

VAV1

CD48

CD86

LCP2

CD300LF

BP
C

C
M

F

0 2 4 6 8

regulation of cell−cell adhesion
T cell differentiation

phagocytosis
positive regulation of immune effector process

leukocyte cell−cell adhesion
regulation of phagocytosis

regulation of leukocyte cell−cell adhesion
T cell activation

integrin alphaM−beta2 complex
integrin alphaL−beta2 complex

TCR signalosome
secretory granule membrane

tertiary granule membrane
ficolin−1−rich granule

tertiary granule
ficolin−1−rich granule membrane

molecular sequestering activity
protein sequestering activity

ICAM−3 receptor activity
interleukin−4 receptor binding

GTPase activator activity
phosphatidylserine binding

GTPase regulator activity
IgE receptor activity

0.03

0.02

0.01

p.adjust

(A) (B)

(C) (D)

Hub genes of NAFLD yellow module

Hub genes of AF black module

Figure 4.  PPI networks and pathway enrichment analysis of highly interconnected clusters from selected 
NAFLD and AF relevant modules. (A) PPI network of hub genes from NAFLD yellow module by MCODE. 
(B) GO enrichment analysis of hub genes from NAFLD yellow module. (C) PPI network of hub genes from 
AF black module by MCODE. (D) GO enrichment analysis of hub genes from AF black module. PPI, protein–
protein interaction.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17548  | https://doi.org/10.1038/s41598-023-44884-z

www.nature.com/scientificreports/

Verification of NAGDS in liver and atrium of a NAFLD murine model
The expression of each NAGDS was validated in the liver and atrium tissue of NAFLD murine model (n = 12) and 
the atrium tissue of AF murine model (n = 8) by qRT-PCR. Consistent with results in NAFLD and AF datasets, 
mRNAs of each NAGDS were significantly upregulated in NAFLD (Fig. 7H–O) and AF (Fig. 7P–S) (P < 0.05).

Biological significance and clinical relevance of NAGDS
To investigate the biological significance of NAGDS, we regrouped the samples by NAGDS score. GSEA indi-
cated that macrophage- and T cell-related GO terms, such as T cell activation and macrophage activation, were 
significantly enriched when comparing the high NAGDS score group to the low NAGDS score group in both 
NAFLD and AF datasets (Fig. 8A,B). Correlation analysis among the NAGDS score and the abundance of 28 
immune cells demonstrated that activated T cells and macrophages were significantly positively correlated with 
NAGDS score in both NAFLD and AF datasets (Fig. 8C). NAFLD and AF datasets were attached with clinical 
traits, including liver pathological characteristics and AF duration time. Correlation analysis suggested that 
NAGDS were positively related to liver NAFLD activity score, fibrosis stage, lobular inflammation grade, steatosis 
grade, and cytological ballooning grade in the NAFLD dataset (Fig. 8D), as well as AF duration time in the AF 
dataset (Fig. 8E). Correlation analysis of each individual NAGDS and the variables above were shown in detail 
in Supplementary Fig. S5. We observed that both overall NAGDS score and individual NAGDS were strongly 
correlated with immune cells such as T cell and macrophage, liver pathological characteristics, and AF duration 
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time. Therefore, we intend to investigate the potential therapeutic regulatory network targeting NAGDS. NAFLD 
and AF shared a total of 15 miRNAs from the HMDD database, seven of which were found to target NAGDS 

CD300A

AMICA1

NFKBIE

CD48
CCL5

PRF1 NLRP3

HCST

VSIG4CSF3R

RNASE6

FCER1G

CD33

PVRIG

CFP

LEF1

C1QC

IRS1

CCL4

THEMIS2

CD86

GNA15

CYBB

MAP3K8

LY86

DOK3

SPI1

RIPK3

BCL2A1

HLA-DMA

HCLS1
HLA-DMB

COTL1

IFI30

ARPC1B

CD8B

FGD3

PIK3R5

SASH3

ZAP70LAPTM5

CLEC10A

NCKAP1L

CD300LF

DOCK2

LILRB4

RAC2

PARVG

LCP2

CD72

ARHGAP9

PILRA

ITGB2

RAC2

LCP2

C1QC

SPI1

HCST

CD48

SASH3

RNASE6 CCL4

PARVG

LAPTM5

CD300A

HCLS1

CD86

FCER1G

NCKAP1L
CYBB

ITGB2

DOCK2

LY86

5 10 15 20

0.42

0.44

0.46

0.48

Variables

R
M

SE
 (C

ro
ss

−V
al

id
at

io
n)

N=18

−6 −5 −4 −3 −2 −1

−5
0

5
10

Log Lambda

C
oe

ffi
ci

en
ts

20 16 11 6 3 0

14 0

CCL4
CD48
ITGB2

RNASE6

SVM-RFE LASSO

−6 −5 −4 −3 −2 −1

2
4

6
8

Log(Lambda)

Bi
no

m
ia

l D
ev

ia
nc

e

18 16 15 12 10 6 6 4 4 4 3 2 0 0 0

lambda.1se = 0.055
number = 4

(A) (B)

(C) (D)

(E) (F)

Top 20 hub genes NAFLD yellow module ∩ AF black module

NAGDS

Figure 6.  Construction of NAGDS by LASSO regression and SVM-RFE algorithm. (A) PPI network of 
NAFLD-yellow and AF-black modules intersection. (B) Top 20 hub genes calculated with MCC of the PPI 
network. (C) SVM-RFE results of the intersected genes. (D–E) LASSO screening results of the intersected genes. 
(F) Venn diagram shows genes screened by LASSO and SVM-RFE as NAGDS.NAGDS, NAFLD-AF associated 
gene diagnostic signature.



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17548  | https://doi.org/10.1038/s41598-023-44884-z

www.nature.com/scientificreports/

(Fig. 8F). We proposed that hsa-miR-26a-5p could be of more clinical relevance for the fact that it targeted three 
of the NAGDS, and played a central role in the posttranscriptional regulatory miRNA-mRNA network.
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Discussion
NAFLD and AF are two different diseases with a high global prevalence, sharing several common risk fac-
tors. Many epidemiological evidence, whether cross-sectional or longitudinal, have suggested that NAFLD is 

0.0

0.2

0.4

0.6

0.8

R
un

ni
ng

 E
nr

ic
hm

en
t S

co
re

macrophage activation

macrophage cytokine production

regulation of T cell mediated immunity

T cell activation

T cell activation involved in immune response

T cell cytokine production

−1

0

1

5000 10000 15000
Rank in Ordered Dataset

R
an

ke
d 

Li
st

 M
et

ric
−0.1

0.0

0.1

0.2

0.3

0.4

0.5

R
un

ni
ng

 E
nr

ic
hm

en
t S

co
re

lymphocyte activation

macrophage activation

myeloid leukocyte activation

T cell activation

T cell cytokine production

T cell mediated immunity

−1

0

1

2

5000 10000 15000 20000
Rank in Ordered Dataset

R
an

ke
d 

Li
st

 M
et

ric
abs(cor)

0.1
0.2
0.3
0.4

Age

Sex

Cytological ballooning grade

Steatosis grade

Lobular inflammation grade

Fibrosis stage

NAS

0.605

0.064

0.003

0.002

0.002

2.5e-05

8.3e-06

−0.4 −0.2 0.0 0.2 0.4
Correlation Coefficient(r)

(A) (B)

(C) (D)

R = 0.71, P = 6e-04   

−50

0

50

100

150

8 9 10 11 12

NAGDS score

AF
 d

ur
at

io
n

(E) (F)

hsa-miR-1226-3p

CD48

hsa-miR-212-3phsa-miR-20a-5p

hsa-miR-17-5p

hsa-miR-10b-5p

CCL4
RNASE6

hsa-miR-17-3p

ITGB2
hsa-miR-26a-5p

Type 17 T helper cell
Eosinophil

Type 2 T helper cell
CD56dim natural killer cell

Neutrophil
Memory B cell

CD56bright natural killer cell
Effector memeory CD4 T cell

Plasmacytoid dendritic cell
Natural killer cell

Immature dendritic cell
Immature  B cell
Activated B cell

Monocyte
Mast cell

Central memory CD8 T cell
Natural killer T cell

Macrophage
T follicular helper cell
Activated CD8 T cell
Type 1 T helper cell
Gamma delta T cell

Central memory CD4 T cell
Regulatory T cell

Effector memeory CD8 T cell
Activated dendritic cell

Activated CD4 T cell
MDSC

0.045

0.819

0.390

0.165

0.108

0.037

0.029

0.006

0.002

6.2e-06

3.8e-06

1.2e-06

4.8e-07

0.0e00

1.4e-10

9.4e-12

4.3e-12

2.7e-12

6.1e-15

1.8e-16

2.7e-17

0.0e00

2.0e-19

1.5e-19

5.2e-21

1.5e-22

1.0e-22

0.0e00

−0.5 0.0 0.5

Correlation Coefficient(r) Correlation Coefficient(r)

Eosinophil
Effector memeory CD4 T cell

Type 17 T helper cell
Type 2 T helper cell

CD56bright natural killer cell
Immature dendritic cell

Gamma delta T cell
CD56dim natural killer cell

Memory B cell
Monocyte

Plasmacytoid dendritic cell
Central memory CD4 T cell

Activated CD4 T cell
Neutrophil

Immature  B cell
Mast cell

Natural killer cell
T follicular helper cell

Natural killer T cell
Central memory CD8 T cell

Type 1 T helper cell
Regulatory T cell

Activated B cell
Activated CD8 T cell

Effector memeory CD8 T cell
Macrophage

Activated dendritic cell
MDSC

0.503

0.781

0.963

0.449

0.385

0.161

0.152

0.105

0.088

0.061

0.047

0.037

0.037

0.031

0.012

0.011

0.009

0.008

0.007

9.7e-04

6.6e-04

6.0e-04

2.6e-04

1.1e-04

7.1e-05

6.4e-06

0.0e00

1.4e-06

−0.5 0.0 0.5

abs(cor)
0.2
0.4
0.6
0.8

NAGDS scores in NAFLD dataset NAGDS scores in AF dataset

Figure 8.  Biological significance and clinical relevance of NAGDS. (A) GO GSEA analysis between low and 
high NAGDS score group in NAFLD dataset. (B) GO GSEA analysis between low and high NAGDS score group 
in AF dataset. (C) Correlation analysis between NAGDS scores and immune cell abundance in NAFLD and AF 
dataset. (D) Correlation analysis between NAGDS scores and liver pathological characteristics. (E) Correlation 
analysis between NAGDS scores and AF duration time. (F) Therapeutic miRNA-mRNA network derived from 
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associated with an increased risk of prevalent  AF8,31,32. However, there appears to be limited research exploring 
the predisposing aspects of AF in NAFLD from the genetic perspective. As shown in Fig. 9, we explored the 
common mechanisms of NAFLD and AF using bioinformatic methods, such as WGCNA, GO enrichment analy-
sis, and ssGSEA immune cell infiltration, all of which revealed T cell-associated immunity may act as a bridge 
from NAFLD to AF. Based on machine learning and PPI analysis, we established a NAGDS model composed of 
four hub genes with precise diagnostic accuracy and the potential to characterize common biological features 
in NAFLD and AF. The NAGDS model may also alert doctors to the high risks of AF occurrence in NAFLD 
patients. We also constructed a miRNA-mRNA network targeting the four hub genes, which may be a potential 
therapy option.

In this study, the gene clusters in AF black module were mainly related to biological processes involved 
in the immune response, especially T cell activation. Consistent with the above result, we detected that many 
immune cells were highly infiltrated in the AF atrium, including all kinds of T cell subtypes. T cell is thought to 
be pivotal in cell-mediated immunity. Previous studies have demonstrated that the number of  CD3+ T cells was 
increased in the atrial tissue of AF patients compared to individuals with sinus  rhythm33. T cells can upregulate 
hypertrophic genes and induce atrial hypertrophy during  AF34. Distinct helper T(TH) cell subsets, differentiated 
from naive  CD4+ T cell, is mainly characterized by the cytokines they produce.  TH1 cells can produce IFN-γ, 
which was proved to be markedly elevated in plasma of AF  patients35,36. IFN-γ exerts various biological effects 
that are predicted to promote atrial remodeling through macrophages by stimulating cytokines secretion. A 
recent study found that IL-17A, produced by the type 17 T helper cell  (TH17, differentiated from  CD4+ T cell 
in response to inflammatory stimuli), leads to the development of AF by promoting inflammation and cardiac 
 fibrosis37. These results suggested a link between immune response and AF, and T cell activation may be pivotal 
in the immunological pathogenesis of AF.

T cell activation and its associated immune response are believed to be essential features in NAFLD, consist-
ent with our GO analysis result of the NAFLD yellow module. Our ssGSEA results also showed that the number 
of  CD4+ and  CD8+ T cells was elevated in the liver tissue of NAFLD patients (Fig. 5). In different experimental 
models of NASH,  CD4+ and  CD8+ T cells activation and infiltration in the liver are evident and closely related 
to worsening liver injury and  inflammation37–42. IFN-γ-producing  TH1 cells and IL-17-producing  TH17 cells are 
recruited to the liver at the onset of  steatohepatitis43–46. Luo, X. Y. et al. found that the steatohepatitis and fibrosis 
in IFN-γ deficient mice are less severe than wild type mice when fed with a methionine-choline-deficient (MCD) 
high-fat  diet47.  TH17 cells can produce IL-17 and, to a lesser extent, IL-21, IL-22, IFN-γ, and  TNF46. Several 
studies have shown that the activated IL-17 axis contributes to the development and progression of NAFLD to 
 steatohepatitis38,48. In addition, cytotoxic  CD8+ T cells are also increased and activated in the development of 
 NAFLD38,39,43, which is associated with IFN-γ and LIGHT (Homologous to Lymphotoxin, belongs to the TNF 
superfamily of proinflammatory molecules)  production39. The network of cytokines produced by  TH1,  TH17, and 
 CD8+ cells not only has a direct proinflammatory effect but also strongly stimulates M1 hepatic macrophages, 
which are thought to be significant instigators of liver damage in NAFLD.

AF has a high prevalence in NAFLD, suggesting that some predisposing factors in NAFLD may trigger the 
onset and development of AF. In our WGCNA analysis, whether in the NAFLD or AF, the function of gene 
clusters in both highly related modules was mainly enriched in adaptive immunity, especially T cell activation 
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Figure 9.  Schematic depicture of T cell and macrophage mediated immunity as shared pathophysiological 
process of NAFLD and AF.
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(Supplementary Fig. S2). The function of NASGS in positivity-related modules of NAFLD and AF was also mainly 
enriched in T cell activation. Thus, activated T cell-mediated adaptive immunity may be a common feature in 
the pathophysiology of NAFLD and AF. In NAFLD, as commonly acknowledged, oxidative stress, together 
with metabolic stress and ER stress, leads to cell death and the release of danger-associated molecular patterns 
(DAMPs), initiating innate immune responses and further inducing hepatic adaptive  immunity49.  CD4+ and 
 CD8+ T cells actively participate in this complex process and release proinflammatory cytokines and chemokines, 
which can potently stimulate the M1 hepatic macrophage, leading to liver  inflammation50,51.

Similarly, our analysis shows that the hub genes of yellow modules in NAFLD also include several proinflam-
matory mediators, such as TNF, CCL3, CCL4, IL-18, etc. Importantly, these inflammatory-related mediators and 
DAMPs can circulate from the liver into the systemic bloodstream, potentially fostering systemic  inflammation52, 
which could impact extrahepatic tissues such as the heart. Once the DAMPs and inflammation mediators reach 
atrial tissue, they can contribute to local inflammation and its associated immune response, such as the activa-
tion of T cells, B cells, and  macrophages49, which is consistent with our function enrichment analysis in AF 
black module (Fig. 5).

Inflammation and its associated immune response are involved in the initiation and maintenance of AF. 
Many inflammatory cytokines, including TNF-α, IFN-γ, IL-1β, IL-2, IL-6, and IL-18, have found te be elevated 
in AF  patients35,36,53,54. Moreover, several proinflammatory cytokines, such as TNF-α, IL-1β, and IL-17, have been 
shown to induce cardiac arrhythmias in various animal  models55–57. Mechanistically, increased proinflammatory 
mediators observed in NAFLD can potentially cause structural and electrical atrial remodeling, promoting the 
development of AF.  TH1 cells, for instance, can secrete IFN-γ, which provides a potent stimulus for atrial mac-
rophages. The TNF-α secreted by activated macrophages is thought to be more than an inflammatory mediator in 
AF patients but also inflicts proarrhythmic remodeling. Firstly, TNF-α had a pathological effect on atrial fibrosis 
and changed the expression or distribution of Cx40 (connexin-40) and  Cx4358,59, leading to heterogeneous con-
duction. Secondly, TNF-α has been shown to induce  Ca2+ handling dysfunction by decreasing the expression 
of SERCA (sarco-endoplasmic reticulum  Ca2+ ATPase) 2α60. Thirdly, TNF-α enhances myocardial apoptosis 
and myolysis, which are associated with atrial dilatation and conduction  heterogeneity61. Once AF initiates, it 
may in turn lead to calcium overload in atrial myocytes, resulting in cell death, DAMPs release, and triggering 
a subsequent low-grade inflammatory response activation. This phenomenon is commonly referred to as ’AF 
begets AF’. Based on our analysis results and existing theories, inflammation and immune response play an 
irreplaceable role in the mechanisms of AF secondary to NAFLD, especially T cell-mediated adaptive immunity.

To find novel diagnostic targets with significant biological functions and diagnostic applications, we used 
machine learning to further screen NAFLD-AF-related genes from the hub genes in immune-related gene mod-
ules. Four overlapping genes (CCL4, CD48, ITGB2, and RNASE6) were selected to establish the NAGDS. Accord-
ing to the bioinformatics analysis result and previous research, it’s evident that these four hub genes interact with 
one another and are intimately associated with immune responses. CCL4 (previously known as macrophage 
inflammatory protein (MIP)-1beta, MIP-1β) is an important proinflammatory chemokine for the recruitment of 
T cells and  macrophages62. CCL4 has been reported to be elevated in both NAFLD and AF  patients63,64, a finding 
consistent with our results (Fig. 7). CCL4 can interact with its specific receptor, CCR5, which can promote fibrosis 
by activating hepatic stellate cells and recruiting  macrophages65,66. These facts further indicate that CCL4 may 
promote atrial remodeling through macrophages by stimulating cytokines secretion. CD48 is a lipid-anchored 
protein expressed on the membrane surface of all antigen-presenting cells and T cells. It participates in T-cell 
signaling transduction by interacting with CD2, a key player in T-cell activation, making CD48 an important 
component of T-cell activation  pathways67. ITGB2, also known as CD18, is a receptor located on the surface of 
T lymphocytes, neutrophils, and  monocytes68,69. It plays a role in facilitating their adhesion, transmigration, and 
infiltration into injured  tissue70. In the context of early NASH, CD18 deficiency has been shown to limit hepatic 
injury by inhibiting the activation and infiltration of immune cells in MCD-fed  mice71. Friedrichs et al. showed 
that CD11b/CD18 mediated polymorphonuclear neutrophils infiltration contributed to the atrial fibrosis, which 
increased the susceptibility of AF in angiotensin II treated  mice72. Given these findings, CD18 can conceivably 
play a significant role in the AF secondary to NAFLD by promoting the infiltration of immune cells. RNASE6 
belongs to the secreted protein of the Ribonuclease A superfamily and is associated with many physiological 
functions, including immunity, cytotoxicity, and  angiogenesis73–75. There have been reports linking promoter 
methylation of Rnase6 to processes like cell proliferation, migration, oxidative stress, and inflammation in mouse 
aortic smooth muscle  cells76. However, the precise role of RNASE6 in both NAFLD and AF is poorly studied 
and needs further investigation.

The current diagnosis of NAFLD relies on liver enzymes and imaging  methods77, which do not provide doc-
tors with insights into the elevated risks of AF occurrence in NAFLD patients. Thus, we established a diagnostic 
model consisting of the above four key genes (NAGDS), which showed higher accuracy and stability, and might 
cover the above shortage of traditional diagnosis methods in the following ways: (a) NAFLD patients diagnosed 
by the NAGDS model may also have co-existed AF; (b) A high NAGDS score is indicative of more severe 
pathological lesions and a increased risk of AF persistence in NAFLD-AF patients (Fig. 8); (c) for NAFLD-AF 
patients, a high NAGDS score signifies a heightened activation of T cell and macrophage, potentially indicating 
unfavorable biological modifications that require closer monitoring or prompt therapeutic intervention. Overall, 
NAGDS not only aids in the precise diagnosis of NAFLD but also serves as a reminder to healthcare professionals 
that diagnosed patients may also have concurrent AF.

The function of post-transcriptional regulation of miRNA has been widely demonstrated to be associated 
with the onset of various  diseases78. Therefore, we took advantage of the HMDD database and the miRTarbase 
to construct the common miRNAs-shared genes network targeting the NAGDS. Among these miRNAs, miR-
26a targeted the most genes in NAGDS, including CCL4, CD48, and RNASE6. MiR-26a is broadly expressed at 
high levels in human tissues but was found reduced in the liver of NAFLD patients compared with non-steatosis 
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 individuals79–82. MiR-26a can increase insulin sensitivity and attenuate obesity-related metabolic dysfunction in 
the  liver80. Mounting evidence has shown that miR-26a modulated immunological functions in different experi-
mental mouse models, such as promoting regulatory T cell  expansion83–85. A recent study also demonstrated that 
miR-26a might prevent NAFLD via an immune-regulatory axis consisting of IL-6 and IL-1786. Thus, it is possible 
that the multifunctional roles of miR-26a collectively contribute to attenuating the development of NAFLD. The 
expression of miR-26 was also reported to be decreased in atrial samples from AF patients and animals, and this 
downregulation may promote AF-related electrical remodeling by controlling the expression of  KCNJ287. Our 
study also found that the NAGDS genes targeted by miR-26a are closely related to the development of AF. Taken 
together, miR-26a might be an important potential target for the treatment of NAFLD and AF.

There are limitations in our present study. Firstly, the establishment and authentication of the NAGDS model 
were carried out on publicly available datasets with a limited number of samples; a larger validation cohort and 
identification of optimal cutoff values are needed before translated to clinical practice. Besides, observation of 
AF induction rate in HFD-induced NAFLD murine and its correlation with NAGDS expression would provide 
more direct evidence of causal relationship between NAFLD and AF. However, we couldn’t detect AF inducibil-
ity in NAFLD mice due to the lack of murine electrophysiological device. Finally, a further investigation of the 
biological interaction between miR-26a and its target genes in an experimental model remains to be carried out.

Conclusions
In summary, our work proposed an immune-regulatory network between NAFLD and AF, firstly revealing the 
T cell activation mediated immune response in NAFLD might be an essential predisposed factor for AF, and 
establishing the NAGDS model, which could be used to diagnose NAFLD and AF accurately. These NAGDS 
genes may also be potential targets for immunoregulatory therapy.

Data availability
The datasets GSE41177, GSE130970, GSE115574, GSE14975, and GSE63067 for this study can be found in 
online repositories (http:// www. ncbi. nlm. nih. gov/ geo). Basic information of the datasets was listed in detail in 
Supplementary Table S2.
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