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Stingy bots can improve human 
welfare in experimental sharing 
networks
Hirokazu Shirado 1*, Yoyo Tsung‑Yu Hou 2 & Malte F. Jung 2

Machines powered by artificial intelligence increasingly permeate social networks with control over 
resources. However, machine allocation behavior might offer little benefit to human welfare over 
networks when it ignores the specific network mechanism of social exchange. Here, we perform an 
online experiment involving simple networks of humans (496 participants in 120 networks) playing a 
resource‑sharing game to which we sometimes add artificial agents (bots). The experiment examines 
two opposite policies of machine allocation behavior: reciprocal bots, which share all resources 
reciprocally; and stingy bots, which share no resources at all. We also manipulate the bot’s network 
position. We show that reciprocal bots make little changes in unequal resource distribution among 
people. On the other hand, stingy bots balance structural power and improve collective welfare 
in human groups when placed in a specific network position, although they bestow no wealth on 
people. Our findings highlight the need to incorporate the human nature of reciprocity and relational 
interdependence in designing machine behavior in sharing networks. Conscientious machines do not 
always work for human welfare, depending on the network structure where they interact.

Machines powered by artificial intelligence (AI) are increasingly incorporated into various economic and social 
interactions in human  groups1,2, and it is also the case with resource  sharing3,4. For instance, software agents 
exchange financial resources with human  traders5; autonomous cars share roads with human  drivers6,7; robots 
share tasks and roles with human  teammates8–10; and chatbots are increasingly accepted to share time with 
humans to communicate and  coordinate11,12. To improve human welfare in such hybrid systems, researchers 
and developers often unquestioningly seek human-like moral and social preferences in machines and  AI6,13. 
However, what kind of individual behavior provides collective goods can depend on the network structure and 
dynamics where they interact with each  other14,15. People develop social relations and power inequality through 
social exchange with limited resources, e.g. food, space, time, and explicit  commitments16,17. Given the specific 
network mechanism of resource sharing, the machines rewarding immediate partners might neither rectify 
power disparities in a human group nor support welfare  there18. Conversely, even making machines deactivated 
can become an option to improve people’s collective welfare when it balances transaction power among  them19.

We detail the theoretical prediction using a simple graph of five nodes to clarify the efficacy of machine 
behavior in this paper (Fig. 1), although the foundational theory can apply to any topology of networks 
where actors exchange limited resources. In the simple network, we name each node’s position based on its 
geodesic network location; the graph has two nodes of “periphery”, two nodes of “semi-periphery”, and one 
node of “center.” The geodesic locations are correlated with the measures of standard network centrality; e.g. 
eigenvector centrality, which computes the centrality for a node based on the centrality of its neighbors, is 
0.577 for the “center” node, 0.500 for the “semi-periphery” nodes, and 0.289 for the “periphery” nodes (i.e. 
center > semi-periphery > periphery).

However, the “center” node is not the center of resource sharing. Following prior  work20, we quantify such 
structural power in network exchange by the probability of having a mutual exchange, named “sharing centrality”. 
Sharing centrality captures the probability that a focal node will be engaged in a successful mutual selection with 
one of its neighbors. One way to understand how the geodesic position benefits a node is the following simple 
scenario with the model network (Fig. 1). Suppose the “center” node randomly selects one of its neighbors (i.e. 
one “semi-periphery” node) to allocate all its resources; then, if the “semi-periphery” node has also selected the 
“center” node as its unique partner, a symmetric and fully reciprocal relationship can be established, and these 
nodes will stop seeking exchange. Otherwise, the “center” node can proceed and select the other “semi-periphery” 
node as a potential exchange partner. This iterative process continues until a mutual selection is achieved for 
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every possible pair of nodes. Each dyad has a different probability of mutual selection throughout this iterative 
process. Namely, the probability of mutual selection (by concurrent nomination in a repetitive process) is 0.375 
for each “center”- “semi-periphery” edge and 0.625 for each “semi-periphery”- “periphery” edge. In total, this 
means that the “semi-periphery” nodes can find a full reciprocator with probability 1, while the probability is 
0.750 for the “center” node and 0.625 for the “periphery” nodes (i.e. semi-periphery > center > periphery). The 
other centrality measures regarding network exchange show the same rank  order21.

Prior work shows that the balance of exchange advantage among people can affect their  welfare22–24. Note 
that the power inequality shown in Fig. 1 arises as a result of reciprocal altruism within local  interactions17,25,26. 
Thus, even when an intervening machine behaves altruistically toward its human partners, it might not alter the 
status quo. In contrast, deactivating such a machine might make significant changes in the power distribution. A 
field experiment offers a suggestive finding that the people randomly selected to deactivate social media increase 
a sense of welfare with increased time meeting their friends and family  members19, which indicates a negative 
association in time allocation. Moreover, whether it ameliorates or exacerbates the inequality depends on the 
network position of deactivation (shown in the lower half of Fig. 1). When the “center” actor is deactivated in the 
model network, the others equalize the sharing centrality. On the other hand, when one of the “semi-periphery” 
actors is deactivated, the structural power gap increases.

Here, we test the theoretical predictions with a virtual-lab experiment involving simple networks of humans 
playing an established economic game of resource  sharing21,23, to which we sometimes add machine agents 
(“bots”). This experiment examines two opposite policies of machine allocation behavior: reciprocal bots, which 
share all resources reciprocally; and stingy bots, which share no resources at all. We evaluate the effect of each bot 
policy on collective welfare in human groups in the four specific dimensions: wealth, wealth inequality, satisfac-
tion, and satisfaction inequality. Based on network exchange theory, we hypothesize that not reciprocal bots, but 
stingy bots can maintain and even improve collective welfare in human participants by facilitating reciprocity 
between them when located at a specific network position (Fig. 1). Specifically, we test the following hypotheses:

H1: A stingy bot placed at the central node’s position will facilitate reciprocal exchanges between people and 
increase their group-wide satisfaction.
H2: A stingy bot placed at a semi-peripheral node’s position will impede reciprocal exchanges between people 
and decrease their group-wide satisfaction.
H3: A stingy bot placed at a peripheral node’s position will affect people’s reciprocal exchange but their 
group-wide satisfaction.
H4: A reciprocal bot will make no significant improvements in sharing dynamics and group-wide satisfaction 
in humans, regardless of its geodesic position.

These hypotheses, especially H1 in contrast with H4, highlight peculiar network mechanisms in resource 
sharing. Stingy bots will undoubtedly be unsatisfying if we see a human–computer interaction alone. However, 
such a human–computer interaction is a piece of the complete picture, and the human (and the machine) also 

Figure 1.  Sharing centrality in a five-node path graph. Numbers in nodes represents sharing centrality, i.e. the 
probability of having a mutual exchange. In social exchange, advantageous positions can differ from geodesic 
centrality. Moreover, deactivating a node (indicated with dashed outline) affects the structural power of all 
others including indirectly-connected nodes. The network effect varies across deactivated locations. The overall 
values are represented with average ± standard deviation.
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interact with other humans. From the network point of view, the interactions with machine partners can affect 
the interactions with human partners (and further). When machine agents aim for group-wide welfare, we 
might need to consider the chains of interactions in the overall effect of machine behavior. By testing the above 
paradoxical hypotheses, we illustrate the potential in the context of resource sharing, instead of advocating a 
specific policy in machine allocation behavior.

This research was approved by the Cornell University Committee of the Use of Human Subjects. All methods 
were performed in accordance with relevant guidelines and regulations. Informed consent was obtained from 
all participants. Our data include no identifying information of human participants. We conducted this experi-
ment from May to June 2022. We preregistered the hypotheses and experimental procedure using  AsPredicted27.

We recruited 496 human participants via the online labor market Amazon Mechanical  Turk28,29 (see Table S1 
for their demographics). We randomly assigned them to one of seven conditions in a series of 120 sessions (15–19 
sessions per condition; Table S2). Participants were randomly assigned to a node’s position of the five-node path 
network and played a resource-sharing game for ten rounds (see “Methods”). We did not inform them when 
the game would end in order to prevent possible end-game  effects30. Each player was given a certain amount 
of resource capacity, 30 units per round, which they could not spend on themselves. Instead, they could share 
this excess resource (which was useless to them) with their neighbors. In each round, players chose the number 
of resources they wanted to give to each of their neighbors (Fig. S1a). After all players in the network decided 
on their allocation, they were informed of their neighbors’ allocations to themselves. Then, they answered the 
question, “How happy are you with your neighbor(s) at this moment?” using a 5-level rating system with emojis 
(Fig. S1b). They continued the allocation decisions and feeling evaluation with the same network neighbors until 
they completed 10 rounds.

While making their decisions and evaluations, players were given information regarding their own resources 
and transactions. They were also informed about their own and neighbors’ total earnings until then (i.e. wealth). 
On the other hand, they were not informed about the entire network structure, the exchanges of their neigh-
bors with the other players, the amount of their neighbors’ shareable resources, and their feeling evaluation. 
They could give their neighbors different amounts of the resource across the rounds, possibly recognizing past 
exchanges of their own or anticipating future ones, and they did not have to allocate their entire capacity. The 
non-allocated capacity neither carried over to the next round nor counted towards their wealth (hence, it was 
a wasted resource). Each player’s final wealth depended only on the units received from neighbors across the 
rounds, which were converted to actual monetary compensation at the end of the experiment ($1.00 = 200 units).

Following the 10-round game play, participants were asked about their satisfaction related to the game. 
They answered whether they agreed or disagreed, using a 7-level rating system, with the following 5 sentences: 
“In most ways, my outcome of the game was close to my ideal.” “My neighborhood situation in the game was 
excellent.” “I was satisfied with how the game went.” “I got a sufficient amount of resources from my neighbor(s) 
in the game.” “If I could play the game again, I would change almost nothing.” These questions were modified 
from an established satisfaction-with-life  scale31 and used to evaluate the collective welfare of resource sharing 
in prior  work23. With responses to the five items averaged, the resulting scale had high reliability (Cronbach’s 
alpha = 0.93), and the highest eigenvalue was 3.96. Therefore, we used the average score as a measure of the 
player’s satisfaction. We treated the satisfaction score as a more comprehensive evaluation of welfare than wealth 
because participants counted their eventual wealth in the post-game survey. We also confirmed that the satisfac-
tion score was highly correlated with the average value of per-round feeling evaluation (by the five-level emojis) 
in individuals (Person’s correlation coefficient = 0.726; p < 0.001).

Within this basic setup, we introduced one bot into the network in exchange for one human player (no bots 
were placed in the control sessions). Participants were not informed that there was a bot in the game (except for 
supplementary sessions to examine the effect of bot identity; see below).

We manipulated the bot’s allocation policy as follows: In the “reciprocal bot” condition, the bots shared 
resources equally in the first round. After that, they allocated 30 units to each neighbor based on the neighbor’s 
percentage of total receiving units in the last round (see “Methods”). This bot policy yields a fair division of 
resources for their immediate  neighbors32,33. In the “stingy bot” condition, the bots shared no resources at all 
with their neighbors. Thus, the bot’s neighbors received zero from it, regardless of how much they gave to the 
bot. This bot policy is seemingly antisocial and inefficient at both individual and collective levels. The bots solely 
wasted resources, reducing the wealth of the entire group.

Independent of the bots’ allocation policy, we also manipulate their network location based on geodesic 
centrality. A bot was assigned to the node of the “center,” “semi-periphery,” or “periphery” of a five-node path 
graph, as shown in Fig. 1.

In summary, we evaluated 7 conditions: 1 control condition not involving any bots; 6 treatment combinations 
of the allocation policy and network location of bots (2 types of allocation policy—reciprocal and stingy—with 
3 types of network location —center, semi-periphery, and periphery). We preregistered the experiment to have 
15–20 complete sessions for each  condition27. As a result, we collected 120 completed sessions involving 496 
participants (Table S2).

Results
Human wealth and satisfaction with bots
Each player’s wealth and satisfaction depended on the behaviors of all players (including themselves and bots) in 
the resource sharing. Figure 2 shows two sample sessions’ structure and sharing snapshots at the first and final 
rounds. In the control session without bots, people exchanged their resources in the chains of interactions. Dif-
ferent network positions provided different magnitudes of benefits regarding wealth and satisfaction (respectively 
indicated as node size and color in Fig. 2). The structural inequality remained relatively steady across the rounds 
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in the control session. On the other hand, players varied greatly in satisfaction over time in the session with a 
stingy bot located at the central node’s position. The treatment session had a similar imbalance in resource shar-
ing in the first round. At the end of the game, however, human players held mutual exchanges with each other, 
whereas the bot did not receive any resources. In the session, the bot changed the sharing outcomes of not only 
the neighboring players but also the players with whom it did not interact directly.

Figure 3 shows aggregated results of all the sessions regarding wealth and satisfaction across treatments. We 
did not count the bots’ wealth and satisfaction for the treatment sessions. Still, it could result in an inappropri-
ate comparison with control sessions because wealth and satisfaction could vary by network position. Thus, 
the network average might increase or decrease simply by excluding the results of players located at a certain 
network position in the average calculation. To examine the behavioral effects of bots by comparison with the 
control sessions, we modified the network averages of the control sessions as if one human player per network 
were excluded as an agent in the calculation for each treatment (see “Methods”). For the statistical comparison, 
we used one-sided t-tests because, following the preregistration, we specifically tested the theory-driven direc-
tional hypotheses (H1-4) whether bots increase group-wide human welfare (or decrease it in the case of the 
stingy policy at a semi-periphery node’s position). We confirmed the t test results with a comprehensive analysis 
using regression models.

First, we found that the wealth effect of reciprocal bots is limited (Fig. 3a). Reciprocal bots always shared all 
resources, which many human players did not (61.7% of human players did not share all the resources across 
the rounds). Nevertheless, reciprocal bots did not increase people’s total wealth when placed in a central or 
semi-peripheral location. When an agent was located at the central node, the weighted average wealth of the 
control sessions is 223.2 and the average wealth of the reciprocal-bot sessions is 231.3 (p = 0.302 with one-sided 
t-test; Cohen’s d = 0.190); when placed in a semi-peripheral location, the weighted average wealth of the control 
sessions is 206.1 and the average wealth of the reciprocal-bot sessions is 208.1 (p = 0.437 with one-sided t-test; 
Cohen’s d = 0.058). This is because human players reduced their share when they had a reciprocal bot in their 
network at these positions (human players wasted 23.5% of resources in the control condition; 29.1% in the 
reciprocal-bot-at-center condition; 32.9% in the reciprocal-bot-at-semi-periphery condition; and 20.0% in the 
reciprocal-bot-at-periphery condition).

Figure 3a also shows the decrease in wealth by the stingy bot except when the bot was placed in the central 
location. Since stingy bots did not share any amount of resources during the game, human players should acquire 
less wealth (75 units per player on average) in the sessions with the stingy bot, compared with the human-only 
sessions. However, there is no significant downturn in players’ wealth from the control to the stingy-bot-at-center 
sessions (the weighted average wealth of the control sessions is 223.2; the average wealth of the stingy-bot sessions 
is 206.7; p = 0.149 with one-sided t-test; Cohen’s d = 0.347). This exception happened because people increased 
the share amount as the interaction evolved and covered the economic loss by the central stingy bot (Fig. S2).

This stingy-bot effect is highlighted when we see how people are satisfied with resource sharing including 
the bot (Fig. 3b). Stingy bots had larger effects on human players’ satisfaction than reciprocal bots, and whether 
the effects were positive or negative depended on their network position. Stingy bots, although doing nothing, 
increased people’s satisfaction when they were placed in the central location (the weighted average satisfaction 
of the control sessions is 0.590; the average satisfaction of the stingy-bot sessions is 1.102; p = 0.044 with one-
sided t-test; Cohen’s d = 0.590; H1). On the other hand, stingy-bots decreased it when they were located at the 
semi-periphery (the weighted average satisfaction of the control sessions is 0.349; the average satisfaction of the 
stingy-bot sessions is -0.158; p = 0.049 with one-sided t-test; Cohen’s d = 0.590; H2) and did not change it when 
they were located at the periphery (H3). Reciprocal bots made no significant improvement in human satisfac-
tion (H4) except when they were placed in a semi-peripheral location (the weighted average satisfaction of the 
control sessions is 0.349; the average satisfaction of the reciprocal-bot sessions is 0.904; p = 0.049 with one-sided 

Figure 2.  Structure and sharing snapshots at the first and last rounds. The snapshots are created from two 
actual sessions. Node position identifies each player. Node size is proportional to total earnings at the indicated 
round. Arrow size is proportional to shared resources from sender to receiver. Node color and label indicate 
player’s feeling after the sharing. Human players represent circle nodes, and stingy bots (i.e. the bots sharing 
nothing) represent square nodes.
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t-test; Cohen’s d = 0.616). We found that reciprocal bots at a semi-periphery node’s position respond more fairly 
to the share amounts from local partners than humans at the same network position in the control sessions. This 
is the only result that disagrees with the pre-registered hypotheses.

The satisfaction result of the sessions with central stingy bots is especially striking because stingy bots that 
provided no wealth improved satisfaction. This finding suggests that human players experienced a sense of welfare 
besides economic quantity (i.e. wealth), and stingy bots facilitated the process from the central node’s position 
of the network without bestowing wealth and suppressed it from a semi-peripheral node’s position.

Network heterogeneity of bot effects on wealth and satisfaction
Turning to the positional differences in the sharing outcomes, we find that economic benefits are highly corre-
lated with structural power in the sharing network when it has only humans (Spearman’s rank correlation coef-
ficient = 0.812 ± 0.035SE; Nsession = 16). In the control sessions without bots, players’ sharing centrality significantly 
impacts their wealth (p < 0.001; Table 1). As the network exchange theory predicts, players earned the most when 
they were located at the semi-peripheral node’s positions; they earned the second most at the center position; 
they earned the least at the peripheral positions (Fig. 4).

We also find that reciprocal bots did not change the original network heterogeneity of wealth, regardless of 
the bots’ network position (Table 1). With reciprocal bots, semi-peripheral players still got rich and peripheral 
players still got poor (Fig. 4 and Fig. S3a). In contrast, stingy bots significantly altered the structural advantages 
and disadvantages of gaining wealth (p ≤ 0.001 for all the interaction coefficients with sharing centrality; Table 1), 
and their impact varied according to their network position. When a stingy bot played at the central node’s 
position of a network, humans’ wealth equalized between the semi-peripheral and peripheral players who had 
a major gap in original structural power (Fig. 3).

Players’ structural power of network exchange (i.e. sharing centrality) also affects their satisfaction by default 
(p < 0.001; Table 1). In the control sessions without bots, semi-peripheral players archived the highest satisfaction, 
then central players, and finally, peripheral players, which is in the same order as sharing centrality (Fig. 4). Bots 
changed the satisfaction distribution of human players in various ways depending on their allocation policy and 
network position (Table 1 and Fig. S3b). The improvements of structural inequality (i.e., the negative interaction 

Figure 3.  Average wealth and satisfaction across treatments. Error bars indicate standard error (Nsession = 15–19; 
see Table S2). P values are calculated by one-sided t test; bold font indicates statistical significance at the 5% 
level. Only human players count in the analysis.
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effects) were significant when reciprocal bots were located at the semi-periphery (p = 0.009) and when stingy 
bots were located at the center and the periphery (p < 0.001 for both).

Of particular note is that, only with a stingy bot located at the “center,” all human players were satisfied with 
the game across their network positions (i.e. their satisfaction score was more than 0). While central stingy bots 
decreased the average satisfaction of players at the semi-peripheral node’s positions (from 1.619 to 0.806; p = 
0.014; one-sided t-test), they significantly increased that at the peripheral node’s positions (from − 0.425 to 1.356; 
p < 0.001) (Fig. 4). The improvement for the people in the weak positions overwhelmed the suppression for those 
in the strong positions. As a result, group-wide satisfaction improved in the presence of a bot with inaction from 
the central node’s position (Fig. 3b).

Stingy bots help humans reciprocate other’s share
We examined how players behaved from both their behavioral data during the game and subjective descrip-
tions of their behavior in the post-game survey. In short, both analyses show that most human players allocate 
resources according to the norm of reciprocity.

In the individual-level analysis of behavioral data, we focused on the level of reciprocity in their resource 
allocation across the treatments. Figure 5 shows how the player’s last-received resource amounts related to the 
next given ones for each neighbor. If a player strictly follows reciprocity, they will give the same amount of 
resources as they have received in the last round (indicated with the dashed lines in Fig. 5). The result shows that, 
in the control sessions, human players reciprocate to neighbors except when they have received more than 20 
units in the last round. They often did not give back more than 20 units to a neighbor, even when they received 
that much. This deviation from reciprocity happened because they faced a structural constraint with limited 
resources. For example, if a player receives 20 units from two neighbors, the player cannot give 20 to both from 
the 30-unit capacity.

Although reciprocal bots did not change the situation, stingy bots did. In the session with stingy bots, human 
players reciprocated to neighbors, including when they received more than 20 units. The bots helped people 
overcome the structural constraint of reciprocal exchanges by sacrificing their own earning opportunities. Stingy 
bots did not increase human wealth. Nevertheless, when located at the central network position, stingy bots 
facilitated reciprocity not only with themselves directly, but also between human players indirectly. Facilitating 
group-wide reciprocity was likely to contribute to the increase in human satisfaction. We also confirmed the 

Table 1.  Results of the statistical analysis regarding the effect of sharing centrality with bot policies and 
positions on players’ wealth and satisfaction, estimated by regression models. The reference of bot treatments 
is the control without bots. Sharing centrality affects individual wealth and satisfaction. The interaction effects 
indicate how bots rectify or exacerbate the structural inequality represented by the effect of sharing centrality. 
***p < 0.001; **p < 0.01; *p < 0.05.

Y = wealth Y = satisfaction

Dependent variables Coeff C.I. (2.5%, 97.5%) P values Coeff C.I. (2.5%, 97.5%) P values

Intercept  − 138.6 (− 224.2, − 53.0) 0.002 **  − 3.566 (− 5.202, − 1.930) 0.000 ***

Sharing centrality 458.6 (353.7, 563.4) 0.000 *** 5.261 ( 3.259, 7.264) 0.000 ***

 Bot treatments (ref. control)

 Reciprocal at center  − 45.3 (− 173.7, 83.0) 0.488 1.623 (− 0.823, 4.082) 0.193

 Reciprocal at semi-periphery 124.8 (− 12.3, 261.9) 0.074 3.866 ( 1.246, 6.485) 0.004 **

 Reciprocal at periphery  − 34.4 (− 164.4, 95.5) 0.603 1.052 (− 1.431, 3.535) 0.405

 Stingy at center 332.2 ( 213.3, 451.0) 0.000 *** 5.838 ( 3.567, 8.110) 0.000 ***

 Stingy at semi-periphery  − 236.2 (− 375.5, − 116.9) 0.000 ***  − 2.537 (− 5.008, − 0.066) 0.044 *

 Stingy at periphery 270.6 ( 137.1, 404.5) 0.000 *** 6.076 ( 3.526, 8.626) 0.000 ***

Interaction effects

 Sharing centrality: reciprocal 
at center 42.1 (− 112.3, 196.5) 0.593  − 1.794 (− 4.744, 1.156) 0.233

 Sharing centrality: reciprocal 
at semi-periphery  − 161.3 (− 336.9, 14.2) 0.071  − 4.461 (− 7.816, − 1.107) 0.009 **

 Sharing centrality: reciprocal 
at periphery 69.6 (− 84.9, 224.1) 0.377  − 1.195 (− 4.147, 1.757) 0.427

 Sharing centrality: stingy at 
center  − 444.6 (− 588.8, − 300.5) 0.000 ***  − 6.728 (− 9.482 , − 3.974) 0.000 ***

 Sharing centrality: stingy at 
semi-periphery 262.3 ( 97.4, 427.2) 0.002 ** 2.645 (− 0.505, 5.795) 0.100

 Sharing centrality: stingy at 
periphery  − 389.6 (− 549.1, − 230.2) 0.000 ***  − 7.327 (− 10.373, − 4.281) 0.000 ***

Number of observations 464 464

R-squared 0.508 0.222

Adjusted R-squared 0.494 0.199
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mechanism explanation with the results of post-game survey that asked participants about their satisfaction 
reasons (Fig. S4; see “Methods”).

Robustness check with bot visibility
Considerable studies show that people behave differently with machine agents than other humans in economic 
 games34,35. People often exploit cooperative approaches from machines and allocate fewer resources to them 
when they realize that their partners are machines. Identifying bots might counteract the behavioral treatment 
of bots in sharing networks.

Therefore, we conducted a separate experiment involving further 128 participants and a matched set of 32 
networks (in addition to the 496 participants and 120 networks in the main experiment) and examined the 
impact of making the bots visible. In addition to the basic setting used before, human players were informed 
that they were interacting with bots and which nodes were played by bots by labeling the relevant nodes “bot” 
in their game view. As a result, we found no statistically significant difference with bot visibility. Group-wide 
wealth and satisfaction were statistically indistinguishable between the bot’s visible and invisible conditions 
(Fig. S5). In the reciprocal-bot sessions, the average wealth of the bot-invisible condition is 227.9 (15.4SE) and 
that of the bot-visible condition is 247.7 (14.7SE) (p = 0.355 with two-sided t-test; Cohen’s d = 0.173); the average 
satisfaction score of the bot-invisible condition is 0.894 (0.172SE) and that of the bot-visible condition is 0.950 
(0.191SE) (p = 0.831 with two-sided t-test; Cohen’s d = 0.079). In the stingy-bot sessions, the average wealth of 

Figure 4.  Network heterogeneity of wealth and satisfaction in the control and central-bot sessions. See Fig. S3 
for the other bot positions. Error bars indicate standard error (Nsession = 15–19; see Table S2).

Figure 5.  Human players reciprocate to neighbors and stingy bots help it. The graphs show how much a human 
player give their resources to a neighbor based on how much they received at the last round from the neighbor. 
Dots show the average of giving resources to a neighbor at round t by receiving resources from the neighbor at 
round t-1. Solid lines show smoothed conditional means estimated by generalized additive models. Shaded areas 
indicate standard error.
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the bot-invisible condition is 204.8 (10.0SE) and that of the bot-visible condition is 209.2 (11.0SE) (p = 0.771 with 
two-sided t-test; Cohen’s d = 0.051); the average satisfaction score of the bot-invisible condition is 1.103 (0.208SE) 
and that of the bot-invisible condition is 1.051 (0.190SE) (p = 0.852 with two-sided t-test; Cohen’s d = 0.062). The 
bot’s behavioral effects on human players throughout the system are almost similar even when they identify their 
partners as bots in our experimental setup.

Discussion
Our experiment supports the pre-registered hypotheses H1-3 and partially supports H4 about machine alloca-
tion behavior for human welfare developed from network exchange theory. It shows that reciprocal bots, which 
share reciprocally, do not improve collective welfare, except when they are placed in a semi-peripety location. 
The exception happens because reciprocal bots treat local partners more fairly than humans. In contrast, stingy 
bots, which share nothing at all, make a significant shift in people’s wealth and satisfaction. In particular, when 
stingy bots play at the central node’s position of the network, they improve people’s satisfaction by facilitating 
reciprocal transactions between them. Since stingy bots provide no wealth to people, this finding is evidence 
against a dyadic economic view of human-AI interaction. In assessing subjective welfare, people consider not 
only economic outcomes, but also social processes leading to the  outcomes23,24. People can attain greater welfare 
even in a zero-sum game (where total wealth is on a plateau) when they are involved in reciprocal exchanges that 
are symmetric. This study uses a simple but illustrative AI to show the potential of designing machine agents for 
collective welfare to induce reciprocity in sharing networks.

One key difference from the standard notion of network effects is that exchanging limited resources provides 
negatively-connected networks, where one giving more to a partner has to give fewer to  others25,26. In contrast, 
information diffusion and social contagion assume positively-connected networks, where one giving more to a 
partner can give more to others because information and other contagious social constructs are virtually unlim-
ited in  number36–38. In such networks, interventions are more straightforward; supporting specific individuals 
expects spillover effects on  others39, and even without such effects, every increase in individual benefits adds up 
to the increase in collective benefits. Not all social interactions, however, are based on unlimited resources. In 
particular, people often develop social relations through social exchange with limited resources. Thus, when we 
design a system to facilitate social relations among people, we might need to consider the network mechanisms 
that differ from information  diffusion9,10; otherwise, the system might yield unintended negative  consequences40.

This study also suggests a complementary role of machine agents in facilitating human  collectives14,15. In our 
experiment, reciprocal bots are less effective because their policy is similar to most human participants. Instead, 
stingy bots cause a significant shift in human groups, both positively and negatively, because they behave dif-
ferently from typical humans (in fact, no human participants shared no resources in our experiment). In other 
words, stingy bots are insensitive to the norms of reciprocity, but humans are sensitive to them and treat the bots 
reciprocally (i.e., giving zero back to them). Thus, stingy bots can work as social catalysts for people when they 
are located at a specific network position. For exactly the same reason, however, introducing stingy bots is also 
quite risky; there are large negative consequences when they are misplaced (e.g. stingy bots at a semi-periphery 
node’s position of our study’s network). These findings suggest that to break up structural barriers, we might 
need to design machine behavior differently from human behavior because the barriers often come from current 
human practice, but it requires careful consideration of its position in an entire  network10.

Our work involves human participants interacting online in a highly stylized way. Thus, we might miss fea-
tures potentially relevant to resource sharing and subsequent welfare. For example, different people may have 
different shareable resources, and the differences can be associated with their network  position23,41. Also, social 
equity might demand unequal resource allocations according to the need of each  individual42,43. The type of 
resource sharing also might affect our findings. People might behave and feel differently with different types of 
resources (e.g. non-monetary resources). They might ensure welfare in a different configuration of its multiple 
dimensions in other contexts. In this study, we evaluate subjective satisfaction as a more holistic measure of wel-
fare than objective monetary rewards because people count the rewards in their satisfaction assessment. However, 
regardless of whether individuals realize it, financial support could underpin long-term collective welfare. Finally, 
most real social networks are larger and more complex than the network we  used44,45. In such a network, purely 
stingy bots might be hard to find an appropriate network position to work as much as our experiment shows 
(although it is not our research purpose). Developing an integrated algorithm of machine policies and network 
positioning is a promising next step to facilitate collective welfare, given more complex sharing networks. Our 
work provides theoretical guidelines with empirical evidence for the next step.

Although the results of laboratory experiments do not translate directly into the real world, the evidence 
presented here suggests further design space for machine allocation behavior by broadening the target scope to 
a network level. Network mechanisms provide the interdependence of social interactions, which is not always 
straightforward. Given that machines powered by artificial intelligence are increasingly incorporated into our 
economic and social life, they can leverage such network mechanisms to help people negotiate social impedi-
ments for collective welfare.

Methods
Participants
We conducted experiments from May to June 2022. A total of 496 unique participants were recruited from 
Amazon Mechanical Turk (MTruk) and completed our experiment. We decided the sample size based on prior 
work using the same experimental  setting23. Participants could not join more than one session. We limited appli-
cants to experienced workers on MTurk using the platform’s qualification system (1000 HITs completed with a 
99% approval rate accomplished). Table S1 shows the participant demographics obtained with a free-response 
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post-game survey. Before joining the game, all the participants passed an Internet speed check, human veri-
fication check, and a comprehension test about the experiment settings. Actual instructions are shown in the 
Supplementary Information.

Experimental system
Experiments were implemented with the Breadboard platform (https:// bread board. yale. edu/). Participants inter-
acted anonymously over the Internet using customized software playable in a browser window. To study the 
sharing dynamics and welfare in a network of people, we used a resource-sharing game based on the notion of 
a household WiFi sharing service (“WiFi sharing game”). This sharing game has been used to examine realistic 
sharing dynamics incorporating actual human  interactions21,23, simulating real-world  applications46. Although 
framed as a game involving the sharing of WiFi over geographic distance, the experiment setup has a number of 
generic features that are applicable to many settings where people have computer-supported social interactions 
and share  resources32.

In the game, each player was given a certain amount of WiFi capacity, 30 units per round, which they could 
not spend on themselves (e.g. simulating an absence from their residence). Instead, they could share this excess 
resource (which was useless to them) with their neighbors. In each round, players chose the amount of resources 
they wanted to give to each of their neighbors (Fig. S1a). After all players in the network decided on their alloca-
tion, they were informed of their neighbors’ allocations to themselves. Then, they answered the question, “How 
happy are you with your neighbor(s) at this moment?” using a 5-level rating system with emojis (Fig. S1b). They 
continued the allocation decisions and feeling evaluation with the same network neighbors until they completed 
10 rounds.

While making their decisions and evaluations, players were given information regarding their own resources 
and transactions. They were also informed about their own and neighbors’ total earnings until then (i.e. “wealth”). 
On the other hand, they were not informed about the entire network structure, the exchanges of their neigh-
bors with the other players, the amount of their neighbors’ shareable resources, and their feeling evaluation. 
They could give their neighbors different amounts of the resource across the rounds, possibly recognizing past 
exchanges of their own or anticipating future ones, and they did not have to allocate their entire capacity. The 
non-allocated capacity neither carried over to the next round nor counted towards their wealth (hence, it was 
a wasted resource). Each player’s final wealth depended only on the units received from neighbors, which were 
converted to actual monetary compensation at the end of the experiment ($1.00 = 200 units). Thus, players were 
economically motivated to collect as much of this as possible over the course of the game.

Experimental procedure
After the tutorial and screening process, participants were randomly assigned to one of seven conditions and a 
node of the five-node path network. They then played the WiFi-sharing game for 10 rounds (per session) without 
knowing when it would end. Following the 10-round game play, participants were asked about their satisfaction 
related to the game. They answered whether they agree or disagree, using a 7-level rating system, with the fol-
lowing 5 sentences: “In most ways, my outcome of the game was close to my ideal.” “My neighborhood situation 
in the game was excellent.” “I was satisfied with how the game went.” “I got a sufficient amount of resources from 
my neighbor(s) in the game.” “If I could play the game again, I would change almost nothing.” These questions 
were modified from an established satisfaction-with-life  scale31 and used to evaluate the collective welfare of 
resource sharing in prior  work23. Participants also described their gameplay to answer two open questions: “How 
did you decide your allocation to your neighbor(s) in the game?” “What made you happy or/and unhappy during 
the game?” Finally, they answered their socio-demographic status.

Participants received two fixed payments; the first corresponds to the traditional show-up fee ($2.00) and the 
second to the completion of the task ($2.00). The latter encouraged players to complete the game and post-game 
survey. Moreover, participants received a performance-based payment, which was proportional to the aggregate 
resources they received from all their neighbors throughout the game (i.e. Wealthi). The exchange rate of the 
bonus was $1.00 = 200 units.

Some participants were dropped during the game. When participants were inactive for 15 s in each decision-
making, they got a warning about being dropped. When they remained inactive after 15 s, they were dropped. 
When at least one player was dropped halfway through the game, other players kept playing the game, but we 
did not use the data of all the players in the session rounds after the dropout. As a result, 36 of 156 sessions 
had at least one dropped player during the game (Table S2). We collected 120 completed sessions involving 496 
participants. We used only the completed sessions except for the per-round analysis. We confirmed no statisti-
cally significant differences in the number of dropped sessions among treatments (p = 0.709; Fisher’s exact test).

After the gameplay, 32 of 496 participants did not complete the postgame survey (Table S2). In contrast to 
the gameplay, participants took the post-game survey individually. Thus, someone’s dropout did not affect other 
participants. We confirmed no statistically significant differences in the number of dropped participants in the 
post-game survey among treatments (p = 0.670; Fisher’s exact test).

Measures
We evaluated the effects of experimental treatments compared with the control sessions without bots. We mainly 
focused on two variables as the game’s outcomes: human players’ wealth and satisfaction. We defined Player i’s 
wealth as

https://breadboard.yale.edu/
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Here xj→i,t is the shared resources that Player j gives to Player i at round t, and Vi is the neighbors of Player i.
We measured each player’s satisfaction using the post-game survey of the five questionnaires. We trans-

formed the 7-category answers (“strongly disagree,” “disagree,” “slightly disagree,” “neither agree nor disagree,” 
“slightly agree,” “agree,” and “strongly agree”) into numerical values from − 3 to 3, with higher values indicating 
higher satisfaction. With responses to the 5 items averaged, the resulting scale had high reliability (Cronbach’s 
alpha = 0.93), and the highest eigenvalue was 3.96 for the 5 items. Therefore, we used the average score as a 
measure of Player i’ satisfaction, Satisfactioni.

We then calculated network averages of wealth and satisfaction as collective outcomes. Network k’s average 
wealth and satisfaction were calculated as follow:

Here Nk is the number of human players in Network k; Nk = 5 for the control sessions and Nk = 4 for the treat-
ment sessions. We did not count the bots’ wealth and satisfaction for the treatment sessions. Still, it could result 
in an inappropriate comparison with control sessions because wealth and satisfaction could vary by network 
position. Thus, the network average can increase or decrease simply by excluding the results of players located 
at a certain network position in the average calculation. To examine the behavioral effects of bots by compari-
son with the control sessions, we modified network averages for the control sessions as if one human player per 
network were excluded as an agent in the calculation. Specifically, we introduced weights w in calculating the 
network averages of wealth and satisfaction for the control sessions:

The weights w are based on what treatment to compare. When the control sessions are compared with the 
sessions with a central bot, w = 0 for human players located at the center; w = 1 otherwise. When compared with 
those with a semi-peripheral bot, w = 0.5 for human players located at the semi-periphery (because a bot was 
located at one of the two semi-peripheral node’s positions in a treatment network); w = 1 otherwise. Finally, when 
compared with those with a peripheral bot, w = 0.5 for human players located at the periphery; w = 1 otherwise.

Finally, we examined per-round outcomes across treatments. To discuss how economic transactions and 
satisfaction changed over time, we measured the following four parameters: per-round earnings, local Gini, 
local reciprocity, and feeling at each round. We modified the standard measurement of the Gini coefficient 
(which represents the wealth inequality within a social group)47 to the local wealth inequality that each player 
could recognize from their own and neighbors’ wealth. We also used a measurement of reciprocity in weighted 
 networks48 to calculate each player’s local reciprocity in the sharing game.

We also calculated Feelingi,t by transforming the 5-category answers to the question “How happy are you with 
your neighbor(s) at this moment?” into numerical values from − 2 to 2. We confirmed that the round average 
of Feelingi,t was correlated with the overall satisfaction Satisfactioni (measured from the answers to the five post-
game questions) in individuals (Person’s correlation coefficient = 0.726; p < 0.001).

Statistical analysis
We analyzed how individual wealth and satisfaction vary with sharing centrality and bot treatments using a 
linear regression model:

where Y is Wealthi or Satisfactioni, Xcentrality is a sharing-centrality value based on the player’s network position 
(i.e. the “center” node = 0.750; the “semi-periphery” nodes = 1.000; the “periphery” nodes = 0.625; Fig. 1), and 
Xbot is the vector of dummy variables indicating the bot treatment with reference to the control (i.e. reciprocal 
at center, reciprocal at semi-periphery, reciprocal at periphery, stingy at center, stingy at semi-periphery, and 
stingy at periphery). Table 1 shows the estimation results. The interaction effects β3 indicate how bots rectify or 
exacerbate the structural inequality represented by sharing centrality.

(1)Wealthi =

10∑

t=1

∑

j∈Vi

xj→i,t .

(2)Wealthk =
1

Nk

Nk∑

i=1

Wealthi ,
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1

Nk

Nk∑
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Satisfactioni .
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Data availability
The datasets generated and analyzed during the current study are available in the Mendeley Data repository, 
https:// data. mende ley. com/ datas ets/ y88xd w2n97/1.
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