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A theory of demographic 
optimality in forests
Jon Moore 1, Arthur Argles 2* & Peter Cox 1

Carbon uptake by the land is a key determinant of future climate change. Unfortunately, Dynamic 
Global Vegetation Models have many unknown internal parameters which leads to significant 
uncertainty in projections of the future land carbon sink. By contrast, observed forest inventories in 
both Amazonia and the USA show strikingly common tree-size distributions, pointing to a simpler 
modelling paradigm. The curvature of these size-distributions is related to the ratio of mortality to 
growth in Demographic Equilibrium Theory (DET). We extend DET to include recruitment limited by 
competitive exclusion from existing trees. From this, we find simultaneous maxima of tree density 
and biomass in terms of respectively the ratio of mortality to growth and the proportion of primary 
productivity allocated to reproduction, an idea we call Demographic Optimality (DO). Combining DO 
with the ratio of mortality to growth common to the US and Amazon forests, results in the prediction 
that about an eighth of productivity should be allocated to reproduction, which is broadly consistent 
with observations. Another prediction of the model is that seed mortality should decrease with 
increasing seed size, such that the advantage of having many small seeds is nullified by the higher 
seed mortality. Demographic Optimality is therefore consistent with the common shape of tree-size 
distributions seen in very different forests, and an allocation to reproduction that is independent of 
seed size.

Predicting how forests respond to climate and land-use change is of critical importance in climate research. There 
is still significant uncertainty in the predictions of what proportion of human carbon emissions are taken in by 
ecosystems on land (global land carbon sink)1. This is, in part, due to the challenges of modelling the complexi-
ties of global vegetation, across large scales and multiple  biomes2–5. To meet this challenge medium complexity 
dynamic global vegetation models (DGVMs), that find a balance between representing complex processes and 
yet being simple enough to be usable at a large scale, are increasingly becoming seen as a  solution6.

Global forest models predict forest-level metrics, such as biomass density, tree density or canopy cover-
age based on tree traits, scaling laws from allometry and modelling of processes. The values of the traits in 
these models are derived in various ways, including from observed data and the understanding of physiological 
processes. Some of these traits have greater uncertainty in their values or have only sparse observed data. An 
interesting question is what underlying principles lead to the observed traits and do these traits lead to observed 
size-distributions of trees in forests?

Three key drivers of forest dynamics are growth, mortality and reproduction. Combined with the scaling of 
tree dimensions with size (allometry) these determine the ultimate forest-level metrics of a forest as it reaches 
maturity. Given these drivers, the tree-size distribution can be modelled using the principle of continuity. Which 
implies that the numbers of trees in any size range is determined by the number of trees growing into that size 
range from below, the number trees growing out to larger size classes, and the loss of trees due to mortality. When 
applied to forests close to equilibrium (unchanging size-structure) we get the theory known as Demographic 
Equilibrium Theory (DET)7.

Using DET we have previously shown that there are very similar shapes of forest size-distribution in both 
the  US8 and  Amazon9. These studies used the fact that DET predicts a size-distribution known as the Weibull 
distribution. We used a form of the distribution that allowed us to characterise the shape of the distribution 
purely through a single parameter that represents the ratio of mortality to growth at a reference tree size. While 
the value of this parameter varies at local scales, a similar common value emerges when combining multiple sites 
across the very different forests of North America and Amazonia (Fig. 1).

The third driver of forest dynamics is reproduction, which is not previously directly modelled in DET. Forests 
allocate part of their productivity to reproduction so as to have enough seeds to survive through to adulthood. 
The literature is somewhat sparse as to how much of the productivity of a forest is allocated to reproduction, 
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but of the few studies available it is suggested that 5–15% of net primary productivity (NPP) is allocated to 
 reproduction10 or 3% and 20% of annual gross primary production (GPP)11.

The distribution of trees across size is therefore dependent on the rate of growth, mortality and reproduction. 
This raises the question of whether optimality can be seen in forest models and whether the common mortality-
to-growth ratio and observed allocation to reproduction are related. Are the mean values of these two traits the 
result of an emergent property resulting from the evolution, competition and physical limits of physiological 
processes? Do these processes in turn maximise the forest-level properties like biomass density and tree density?

This study will investigate the question of whether there are particular values of the parameters of the DET 
equilibrium solutions that can lead to an maxima in the forest-wide properties such as biomass, and total tree 
density. It will also investigate how any such optima may relate to the previously observed similar values of 
mortality to growth ratio across the US and Amazon.

Demographic Equilibrium Theory
The forest model used in this study, known as Demographic Equilibrium  Theory7–9 (DET), describes the distri-
bution of tree sizes in a forest that has reached a steady state under constant environmental conditions and no 
stochastic disturbances. To keep the model analytically tractable we also currently assume no under-storey, nor 
stratification of forest layers and that we have just one tree type that is the average of many competing species 
seen in a real forest. In this model the number of trees in any given size range is simply determined by the balance 
of smaller trees growing into that size range and the trees leaving the size range through growth and mortality. 
This process is described by the one-dimensional drift or continuity equation (Eq. 1) with an added loss term 
for  mortality12. This equation can also be obtained from the Kolmogorov forward or the Fokker-Planck equation 
if the second-order term is  omitted13:

where n is the size distribution (tree density per size class) in trees per unit tree mass per unit area, in terms of 
tree mass, m, tree mass growth rate, g, and mortality rate, γ , over time, t.

The demographic equilibrium size distribution can be obtained from Eq. (1) through integration of Eq.12,14:

where the lower bound of the integration corresponds to seedlings of mass ms and density ns . For DET the mass 
growth rate is assumed to scale as a power law, (Eq. 3) according to Metabolic Scaling  Theory15,16 (MST):

where gr is the tree growth rate (in kg C yr−1 ) at some fixed tree size, mr (kg C), and the scaling power 3/4 is 
derived from MST. To keep the equations tractable the mortality, γ , is assumed to be size-invariant. We believe 
this is an acceptable compromise as growth scaling seems to matter more in these type of  models17 and has 
previously been fitted to tree inventory data  successfully8,9.
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Figure 1.  Evidence of similar ratios of mortality to growth in forest worldwide. Blue dots show binned 
observations for North American trees using observations of trunk diameter (diameter at breast height) from 
the USDA Forest Service FIA program, and red dots show likewise for the RAINFOR measurements of basal 
diameter in  Amazonia21. The best fit DET profiles are shown by the red dashed line and the light-blue dashed 
line, respectively. Figure based  on6, using data  from8,9.
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The integration results in a left-truncated Weibull size  distribution7,9:

where nr is the tree density function, n (trees per m2 per kg C), at a reference tree size; mr (useful choices for 
this could be the seedling size ms or m1 = 1 kg C). The dimensionless quantity µr is the ratio of the rate biomass 
loss due to mortality to the rate of biomass gain from growth for a tree of mass mr , defined mathematically as:

The µr parameter affects the curvature of the Weibull size distribution, with a larger value meaning the mortality 
is higher relative to the growth and so more trees are lost as any particular cohort of trees of a given size grows 
(Fig. 2). So a high µr forest will have a much larger proportion of small trees compared to a low µr forest.

Despite the simplifying assumptions, Eq. (4) has been validated against observations across a large scale and 
many sites for tropical  forests7,9,17,18 and the  US8.

Equation (4) can in turn be  integrated9,19 to obtain the respective equations for the equilibrium total forest 
tree density, N (trees per m2 ), total biomass density, M (kg C per m2):

where ns and gs are respectively the tree density function, n, and the growth at the seedling size, ms , and m̄ = M/N 
is the mean tree mass.

If we again use the assumption of MST power law allometry for tree crown  area20, a (in m2):

then we can also integrate to obtain the fraction of ground area directly covered by tree crowns, called the 
fractional coverage, ν:

where ā = ν/N is the mean tree crown area. The current version of this model assumes no overlap of tree crowns.
The mean mass, m̄ , and mean crown area, ā , evaluate to a finite series of terms involving µs , which is the 

mortality to growth ratio of newly recruited seedlings of mass ms and crown area as:

The equations for the mean tree mass and crown area are respectively:
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Figure 2.  The effect of the mortality to growth ratio for a 1 kg C size tree µ1 on the curvature of a forest size 
distribution. Increasing µ1 means mortality rate is increasing relative to the growth rate and so more trees die 
before they grow as big.
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The derivation of can be found in sections 1 and 2 of the supplementary material.

Demographic Equilibrium Theory including reproduction
The theory so far only directly gives the relative abundance of any given size class (the shape of the equilibrium 
distribution) but will not give the absolute abundance of trees of any given size, as the scaling parameter nr 
(Eq. 4) is not explicitly specified in terms of the tree parameters. The reason for this is the lack of any modelling 
of the recruitment of tree seedlings. To have a complete theory, recruitment from existing trees within the size-
structure needs to be included.

This can be done by assuming a fixed proportion, α , of the NPP from photosynthesis left after litter losses 
(hereafter called assimilate, with p for tree assimilate and P for total forest assimilate) is allocated to reproduc-
tion with the remainder allocated to  growth19: g(m) = p(m)(1− α) . Tree assimilate, p, is assumed to scale 
identically to growth:

To satisfy equilibrium, the total number of seeds recruited in the forest is assumed to balance the total number 
of individuals lost through mortality. The rate of seeds produced by the forest per unit area is simply the total 
forest assimilate, P, multiplied by α and divided by the seed mass, ms . We assume seeds and freshly germinated 
seedlings have the same mass. Losses of seeds due to various forms of mortality and reproduction costs (e.g., 
flowers, seed cases, fruit etc) are represented collectively by the fraction frs , which is the proportion of assimilate 
allocated to reproduction that survives to germination. It is assumed that the seeds recruited only survive if they 
germinate away from the shade of larger trees, so the recruitment is scaled by the amount of unshaded ground, 
which is one minus the total forest canopy coverage. Also, for simplicity, we assume MST allometry down to 
the seedling size. While this is unlikely to be realistic, the effect of any deviations are small as the contribution 
of such small seedlings to the overall forest biomass and coverage is small. This whole process is illustrated in 
Fig. 3 and is described by the boundary equation:
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Figure 3.  Reproductive fluxes in the model. Adult trees all have a net assimilate p (NPP - Litter losses) and 
allocate a proportion of α of p to reproduction and the remainder to growth g. Larger trees have a greater 
assimlate and hence growth and reproductive flux. Reproduction comes with costs such as flowers, fruit, seed 
cases etc, the remaining reproductive allocation becomes seeds (1). Seeds then can be lost off the tree due to 
processes such as herbivory before raining down on the ground (2). Seeds can suffer further mortality on the 
ground before germination (3). Final losses due to competitive suppression and shading, with the remaining flux 
joining the forest size distrubution. The parameter frs represents the fraction of reproduction flux reaching (3) 
before the shading losses, so the flux at (3) is αfrsP.
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The total coverage, ν , takes values between 0 and 1. This can simplified by noting that mean rate of seeds recruit-
ment per tree, s̄ , is defined as:

resulting in the boundary equation becoming:

from which coverage, ν , can be eliminated using Eq. (9). This can be rearranged to obtain an equation for the 
total tree density, N, in terms of mean tree crown area, ā , and mean tree rate of seed recruitment as well as tree 
mortality, γ:

which is a full equilibrium solution describing both the shape of the size distribution and the absolute abundance 
of trees of any given size. Note that if s̄ < γ , then this means there are not enough seeds produced to replace trees 
lost from mortality, so no forest can exist in equilibrium. By combining this with Eq. (7), the biomass is then:

This model is the same as the equilibrium solution of the RED DGVM, except for the inclusion reproduction 
survival term frs . The inclusion of this term improves the model by collectively representing three processes of 
reproduction costs, these are seed production costs, pre-dispersal losses and post-dispersal / seed pool losses. 
For simplicity, these processes are combined to just give a single fractional value frs in this study.

Biomass and tree density maxima
Analytical equations have an advantage over numerical models, in that it is easy to explore the effects that key 
parameters have upon them. This allows for efficient investigation of whether there is an optimum value of 
forest-level properties such as biomass or tree density in terms of any given parameter.

For the remainder of this study, we will choose the reference tree mass mr to be equal to m1 =1 kg C, i.e. all size-
dependent parameters will be defined in terms of a tree of mass 1 kg C. So we will define our tree trait parameters 
in terms of that, such as reference crown area a1 , growth g1 , assimilate p1 and mortality to growth ratio µ1 . Other 
parameters such as seed size, ms , the proportion of assimilate allocated to reproduction, α , and the proportion 
of reproductive assimilate reaching seed germination, frs , are assumed to be invariant with respect to tree size. 
While in reality α varies seasonally, and with tree size, in the context of this model we choose, for simplicity, for 
α to represent the mean reproductive effort of the forest.

One thing to note is that the reference size is chosen purely for convenience and to be consistent with previ-
ous work. As the study uses MST it is easy to translate any value to a larger size. For example the common value 
of µ1 = 0.235 for a 1 kg C tree purely characterises the size-distribution shape. The same shape of distribution 
would have a µr = 58.75 for a 1000 kg C tree.

We will also define the ratio of mortality to assimilate for trees of 1 kg C size, µp1 , defined as follows:

To test if biomass is maximised we fix all parameters except α , growth g1 , µ1 and evaluate Eq. (18) with increasing 
α . In this situation we have a trade-off, as a tree of any given size has a fixed amount of assimilate to allocate to 
either growth or reproduction. Allocating more to growth allows the existing trees to grow larger but reduces 
the number of trees.

This leads to the forest biomass maxima seen in Fig. 4a. Where α is less than the peak value the biomass is 
limited by the number of seeds being recruited, while α is greater than the peak value, biomass is limited by the 
diminishing growth rate. The position and magnitude of the optima are altered by changing µp1 , seed mass, ms , 
and frs but a1 only affects the magnitude of the maxima, not its position (see equations describing the optima in 
Supplementary material sections 4.1 and 4.2).

For tree density, we find a maximum in terms of the mortality to assimilate ratio with all other parameters 
held constant including α (Fig. 4b).

For a fixed line α , µp1 is directly proportional to the mortality growth ratio, µ1 . A higher value of µ1 means 
growth is lower relative to mortality, and for a lower value of µ1 it is relatively higher. As previously discussed, 
µ1 determines the shape of the size distribution, with a faster decline in tree abundance with size for higher µ1 
values (Fig. 2). The amount of seeds produced is a product of the shape of the distribution, with larger trees 
producing more seeds, hence more seeds are produced on average per tree for lower values of µ1 (and hence µp1 
along a line of fixed α ). The mean crown area is also higher for low µ1 , again due to the greater numbers of large 
trees. Initially, tree density N increases with increasing µp1 . This is because the mean crown area, ā , decreases 
faster than the effect of decreasing seed production (Eq. 17). As µp1 increases further, the rate of decrease of ā 
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ā

(

1−
γ

s̄

)

, s̄ > γ .

(19)µp1 =
γm1

p1
= µ1(1− α).



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18712  | https://doi.org/10.1038/s41598-023-44860-7

www.nature.com/scientificreports/

reduces and the effect of the falling seed production starts to dominate, so that N now decreases. This leads to 
the peak seen in tree density seen in Fig. 4b.

To see the more general picture contour plots of tree density and biomass can be shown on axes of α vs µp1 
for constant seed mass and frs (Fig. 5). These plots show biomass has a maximum in terms of α but not µp1 , and 
the converse is true for tree density. Biomass is highest for low µp1 and α and decreases and both increase, while 
tree density increases in a curving path starting low at low α and µp1 and increasing through middling values of 
before starting curve back to its highest values for low µp1 and high α.

By themselves each of the optima for biomass and tree density alone suggest unrealistic values of parameters 
such as α . Following along the biomass optima to higher biomass suggests a forest corresponding to the global 
maximum biomass would have a value of α that is low compared to observations and also growth very much 
higher than mortality, rather than the value that we widely observe. This would imply a forest of a small number 
of very large trees. For tree density, the global maximum would have a very high α (close to 1) and a low µp1 (but 
µ1 would be high due to the large α ), suggesting an unrealistic forest of very many very small trees.

However, plotting the lines of these maxima on each plot and then together without the contours (Fig. 5c), 
show they cross at a particular α and µp1 . This special point has the forest simultaneously maximising its biomass 
in terms of its α and its tree density in terms of its µp1 . We call this intersection point “Demographic Optimality 
(DO)”.

Demographic optimality and observed mortality to growth ratio
Our hypothesis is that the common shape of the demographic profiles that we see across sites in North America 
and Amazonia (Fig. 1), is consistent with this definition of Demographic Optimality.

We used the RAINFOR Amazon forest inventory  dataset21 to find the mortality-to-growth ratio µ1 for a large 
number of forest plots across the Amazon. We derived a central estimate of µ1 = 0.198 for a tree with 1 kg dry 
tree mass. To convert to kg of carbon we assume approximately half the dry mass is  carbon22. We must account 
for this factor in both the reference tree size and also on the tree growth rate, which leads to an adjustment fac-
tor 21−3/4 = 21/4 = 1.189 (where the power is one minus the growth scaling power). Our best-fit value of µ1 , in 
terms of kgC, is therefore 0.235 (See supplementary material section 3).

The only variable that moves the intersecting maxima in α - µp1 space for any given seed mass, is frs . We can 
therefore use numerical methods to find the value of frs that corresponds to the intersecting maxima having an 
µ1 of exactly 0.235. This process can be repeated for a range of seed mass values (see Fig. 6).

For any given value of seed mass, there is a corresponding DO state that gives µ1 = 0.235 , the proportion 
of assimilate allocated to reproduction that ends up as seeds that survive to germination ( frs ) increases almost 
linearly with seed mass. A simple linear regression gives frs ≈ 0.35m0.926

s  (see Fig. 6a) . The values of frs range 
from 0.35 for a very large 1 kg C seed, to 6.1× 10−4 for 1 g C seed to 1.1× 10−6 for a 1 mg C seed.

This relationship suggests that smaller seeds are much less likely to end up as seedlings. The fraction of 
assimilate allocated to reproduction α remains surprisingly insensitive to changing seed mass, increasing from 

Figure 4.  Total forest biomass and tree density optima. (a) Biomass as a function of the proportion of assimilate 
(NPP minus litter losses) allocated to reproduction. (b) Tree density as a function of the mortality to assimilate 
ratio. For both panels the parameters used are seed mass ms = 10−4 kg C, frs = 7× 10−5 , crown area a1 = 0.5 
m2.
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12.5% to 13% of assimilate allocated to reproduction. The mortality to assimilate ratio µp1 also hardly changes 
and gives a value of 0.205. The biomass and fractional canopy coverage increase with increasing seed mass, while 
the tree density declines. This suggests forests with smaller seed sizes should have smaller but more numerous 
trees compared to those with larger seed sizes.

Discussion
Demographic Equilibrium Theory (DET) gives a maximum in forest biomass as a function of reproductive alloca-
tion ( α ), and also a maximum in total tree number density as a function of the ratio of mortality to assimilate ratio 
( µp1 ). It is possible to find an intersection point where both biomass and tree density are on their maximisation 
curves, a point that we have called demographic optimality (DO). The shape of Amazon and US forest size dis-
tributions have been previously  observed8,9 to be very similar, as characterised by their mortality-to-growth rate 
ratio µ1 = 0.235 . We have hypothesised that this common value of µ1 is consistent with DO, if the proportion of 
reproductive assimilate that survives through to seed germination ( frs ) has a near-linear dependence on seed size. 
Both of the two optima studied have, for the range of α we expect to see, show a positive gradient of α to µp1 . This 
suggests trees having lower assimilate or experiencing higher mortality will need to focus more on reproduction 
to have the maximum possible biomass. It also suggests that trees with higher proportion of assimilate allocated 
to reproduction (up to 0.25) will need to have higher growth relative to mortality to maximise tree density.

The DO model produces a near-linear relationship between the parameter frs and the seed size. This suggests 
that smaller seeds undergo higher reproductive costs and seed mortality, consistent with studies that reconstruct 
the relationship of seed size to seed mortality from many previous field  studies23,24 and to theories exploring the 
trade-off of different seed  sizes25. Currently the DO model only gives us the overall reproductive cost implied by 
the frs parameter, and does not give any indication of how the three main processes of reproductive costs, pre-
dispersal and post-dispersal (seed pool) losses relate to seed size. This makes it difficult to compare to previous 
studies such as those by  Greene24 and  Moles23, as they do not include all three aspects of reproductive costs.

A further interesting result is that the model implies both the allocation to reproduction α and the mortality 
to assimilate ratio for a 1 kg C tree µp1 are nearly invariant to changing seed size. The value of α suggested by 
the DO model of about 13% falls nicely within the range suggested by both  Malhi10 (5-15% NPP) and  Schaefer11 

Figure 5.  Simultaneous maxima for total forest biomass and tree density. (a) Biomass (contours) as a function 
of proportion of assimilate allocated to reproduction α and the mortality to assimilate ratio µp1 . The line shows 
the optimum biomass in terms of α for each value of µp1 . (b) Tree density (contours) in terms of α and µp1 . Line 
shows the optimum tree density in terms of µp1 for each value of α . (c) intersection of biomass and tree density 
optima, representing the simultaneous maxima (Demographic Optimality). For all panels the parameters used 
are seed mass ms = 10−4 kg C, frs = 7× 10−5 , crown area a1 = 0.5 m2 . The black regions on panels (a) and (b) 
represent regions where it is not possible for forest to exist.
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(3-20 % GPP). The µp1 value is even more invariant to seed size with a value close to 0.205. This suggests, aver-
aged over the large scale, that forests such as the Amazon would be expected to allocate around an eighth of its 
assimilate to reproduction. Similarly such a forest would have its small trees expected to have a rate of assimilate 
production around five times that of their mean mortality rate, with this ratio increasing with tree size. These 
results suggest suitable values for these parameters within DGVMs.

This study hypothesises DO as a possible explanation for the remarkable similarity between forest size dis-
tributions, in otherwise very different forests. This hypothesis is based-on Demographic Equilibrium Theory 
(DET), and so applies generally to forests that are not heavily managed or recently disturbed. More complex 
models often contain many more processes and parameters, but their equilibria will still imply effective param-
eters within a DET profile.

We have not discussed how the DO state may be arrived at, although competition between trees of different 
sizes and trees of different types, are the most likely mechanisms. For example, the mean mortality rate which is 
a key influence on the shape of tree-size distributions, implicitly includes the impacts of competition for space 
and light.

Are these predictions subject to the effects of climate change and the effect of increased growth due to CO2 
fertilization? If the common value of µ1 and the predicted α are robust to such changes then the biomass of the 
forest would likely be unaffected. The µ1 value itself does not specify absolute growth or mortality just their 
relative magnitudes, so it is possible for two forests to have the same µ1 but different growth rates, if mortality 
increases also. Recent  studies26–28 both suggest an increase in both mortality and growth but at the moment 
suggest an overall reduction in the carbon sink and hence µ1 increasing overall.

Conclusions
The number density of trees as a function of tree-size (the ‘tree-size distribution’) has been found to have a 
remarkably similar shape across very different forest sites in Amazonia and the USA. In a steady state, this sug-
gests a common ratio of tree mortality-rate to tree growth-rate for a tree of a given mass. We have shown that 
such a common ratio of mortality to growth is consistent with the simultaneous maximisation of the tree num-
ber and total biomass of a forest, which we term ’Demographic Optimality (DO)’. If the DO state is maintained 
it implies that tree mortality rates will vary proportionally to tree growth-rate, and that forest biomass will be 
largely insensitive to CO2 fertilization of photosynthesis.

Figure 6.  Demographic Optimality with the observed mortality to grow ratio µ1 = 0.235 as a function of seed 
size. (a) fraction of reproductive carbon surviving to seed germination. The line approximates a near linear 
power law with exponent 0.92. (b) fraction of assimilate allocated to reproduction. (c) mortality to assimilate 
ratio for 1 kg C size tree. (d) total forest biomass density. (e) total forest tree density. (f) fractional coverage of 
tree crowns. For all panels the 1 kg C tree crown area a1 = 0.5 m2.
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Data availability
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