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Application of distributed lag 
models and spatial analysis 
for comparing the performance 
of the COVID‑19 control decisions 
in European countries
Ali Hadianfar 1, Sedigheh Rastaghi 1, Hamed Tabesh 2 & Azadeh Saki 1*

Over the past three years, the COVID‑19 outbreak has become a major worldwide problem, affecting 
the health systems and economies of countries. The mean delays, the expected time to observe the 
average effect of the number of new cases on the number of deaths, are gold times for decision‑
making regarding disease control and treatment facilities to reduce the fatality rate. The interest of 
the present study is estimating the mean delays and adjusted fatality rates of COVID‑19 with the new 
application of Distributed Lag Models (DLM) and their spatial distributions. The daily cases and deaths 
data of COVID‑19 for 39 European countries was obtained from two sources; the "European Centre 
for Disease Prevention and Control" and the "Our World in Data" database. The mean delay and the 
Adjusted Fatality Rate (AFR) for each country at three‑time intervals; the first and subsequent peaks 
before and after vaccination were estimated by the Distributed Lag Models. The spatial analysis was 
applied to find the spatial correlation of the mean delays and adjusted fatality rates among European 
countries. In the three‑time intervals, the first and the subsequent peaks before vaccination, and after 
vaccination, the median and interquartile range of the mean delays; and AFRs were: 1.1 (0.4, 3.2); 
0.024 (0.016, 0.044), 9.2 (6.2, 12.40); 0.013 (0.005, 0.020) and 7.3 (4.4, 11.0); 0.001 (0.001, 0.005), 
respectively. In the subsequent peaks before vaccination, the mean delays considerably increased, and 
the AFRs decreased for most European countries. After vaccination, the AFRs decreased considerably. 
Except for the first peak, the spatial correlations of AFRs were not significant among neighboring 
countries. Consecutive outcomes will occur with delays in outbreaks of infectious disease. Also, the 
fatality rates for these outcomes should be adjusted on delays. Estimating the mean delays and 
adjusted fatality rates by Distributed lag Models and the spatial distributions of theme in outbreaks 
showed that prevention and medical policies after the first peak as well as vaccination were effective 
to reduce the fatality rate of COVID‑19, but these effects were different between countries. These 
results recommended policymakers and governments assign prevention and medical resources more 
effectively.

The new coronavirus (COVID-19) outbreak began in Wuhan, China, towards the end of December of 2019 and 
was declared a global pandemic on March of the following  year1. Over the past two years, this virus has become 
a global problem, harming healthcare systems and economies in various countries. In Europe, when it was first 
discovered in the north of Italy and Spain, it quickly spread across the continent. On July 07, 2022, the WHO 
estimated that 206,490,180 cases of Coronavirus infection and 1,858,450 fatalities had been reported in Europe. 
As a result of the high incidence of this disease, Europe has become the second deadliest continent followed by 
North America 2,3.

Detection of COVID-19 outbreak is sometimes postponed many weeks, and so making early decisions about 
required interventions is a challenge. A great deal of research has been done against delaying the diagnosis of 
infectious  diseases4–7. Research shows that late diagnosis of COVID-19 could increase infections and have been 
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linked to many  deaths4,8,9. Therefore, the important indices for predicting and managing COVID-19 medical 
resources in the community are the mean delay, the expected time to observe the average effect of a unit change 
in the number of new cases on the number of deaths, and the Adjusted Fatality Rate (AFR)10.

The reported mean delays between new cases and deaths of COVID-19, are different among  countries11. A 
systematic review shows that the incubation period of COVID-19 is about six to seven days. Screening tests can 
diagnose patients at the onset of disease and so increase the delay time between diagnosis, hospitalization, and 
 death12.

Previous studies have shown a distinct delay between the peak of daily COVID-19 infections and the peak of 
daily deaths. Two major components of health, early diagnosis of infection and the level of treatment facilities, 
can impact this delay. A greater delay time is expected in countries with superior health  systems13,14 and so, this 
delay time was varied among countries with different level of  healthcare15,16.

The number of deaths at each day is affected by the number of new cases during previous days. Also, these 
effects are not homogeneous and considerably different according to time of diagnosis. So, ordinary fatality rate 
without adjusting on the delay times between diagnosis and death is  biased4,8,9,17.

According to previous  studies8,11, when a new wave of COVID-19 cases appears, hospitalizations and deaths 
increase, but the time and amount of these increases vary according to population characteristics of nations. 
Research in England has shown that it takes between two and eight weeks for a person to develop symptoms 
and die from COVID-1918. The median time between the onset of symptoms and death is more than 14  days18,19. 
In addition, the median time between admission and mortality in the intensive care unit was between 7 and 
12.5  days18,20. As a result, the impact of new cases on future COVID-19 deaths must be considered.

In present study the Distributed Lag Model (DLM) was used for predicting future deaths according to the 
daily number of new cases in previous days. Also, this model could be estimating both important indices: the 
mean delay and AFR of COVID-19 in socio-economic and epidemiological  studies21,22. So, the interest of this 
study is to estimate the mean delay and AFR of COVID-19 among European countries and their spatial dis-
tributions with new application of DLMs that anticipate the delay effect of the number of COVID-19 cases on 
fatality rate.

Methods
Data
The daily cases and deaths data of COVID-19 for 39 European countries was obtained from two sources; the 
"European Centre for Disease Prevention and Control" and "Our World in Data"  database23 both data sets freely 
publishing online, the daily number of new COVID-19 cases and deaths by countries. We used data from January 
1, 2020, to May 1, 2022 since some nations began vaccination campaigns against COVID -19 in 2021. The first 
peak of COVID-19 in European countries was from January 1, to August 31, of 2020 and between September 
1, 2020 and April 30, 2021 these countries experience two or more peaks, according to a time-series analysis. 
These time interval were chosen to compare the performance of health care systems of the European countries at 
the first and the subsequent peaks of the COVID-19. Also, to assessing the effect of vaccination on fatality rates 
of CIVID-19 of those countries data between May 1, 2021, and May 1, 2022, was used. It was assumed that the 
outbreak of the new COVID-19 variants, and vaccination in European countries was approximately simultaneous.

Data analysis
Distributed Lag Models (DLMs)
Research in environmental health and epidemiology have examined the possibility of delayed effects. A tool origi-
nally developed for economic modeling, Distributed Lag Models (DLMs), is commonly used to explain delayed 
effects. In environmental epidemiology these models have been used  widely24–26. For example, in COVID-19 
disease, death occurred with various delays after diagnosis. So adjusting the fatality rate is necessary regarding 
the delayed effects of COVID-19 new cases in the preceding days that can be estimated by the  DLMs8,9 Also, the 
mean of delays is very different between countries that may due to the health disparities.

DLMs have two types: finite and infinite lags; infinite distributed lags allow the current value of the dependent 
variable to be influenced by values of the independent variable that occurred infinitely long ago; but beyond some 
lag length, the effects taper off toward zero. On the other hand, finite distributed lags allow for the independent 
variable at a particular time to influence the dependent variable for only a constrained number of  lags27,28. In the 
present study we used finite DLM, and two most common type of transformed coefficient models; Koyck-DLM 
and polynomial-DLM.

In a DLMs, the effect of an exploratory variable X on dependent variable Y appear with a delay and is distrib-
uted over time. This study considers a daily number of new reported COVID-19 cases and deaths as explanatory 
and dependent variables, respectively. Let Yt be the number of COVID-19 deaths at day t; t = 1, . . .T and Xt−l 
be the number of COVID-19cases at day −l; l = 0, 1, . . . , the infinite DLM can be written as follow:

where E(ǫt) = 0 and var ( ǫt) = c, α is intercept, β-parameters are the effect of the changes in Xt on the expected 
value of Yt . Estimation of an infinite number of β coefficients is impossible, and it is usually assumed that 
limi→∞βi = 0 and 

∑
∞

i=0 βi = β < ∞ . Assuming that the changes in  Xt do not have much effect after L number 
of days, the proposed model reduces to a finite distributed lag model as follows:

(1)Yt = α +

∞∑

l=0

βlXt−l + ǫt
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Bounded summing of finite length L yields a finite linear DLM of order L, which is the only solution. The 
n-1 [ yt.xt ] pairs are applied to evaluate model parameters. These distributed lag models incorporate several 
parameters that should not be overlooked. A conservative assumption is that the lagged variable coefficients are 
not all independent, but rather functionally connected. In this model, we consider maximum lag equal 14 based 
on countries’ reports and previous  studies10,11; then, according to the Akaike information criterion (AIC), the 
ideal number of lag was selected for each country. In this situation, the number of COVID-19 deaths at a given 
time t may be explained in the past number of new cases Xt−l with l as the lag, representing the period elapsed 
between the independent variable and the response. So our model is as follows:

Through this model, the mean delay and long-run effect (AFR) can be estimated as follows:

The mean delay is the weighted average of lags that shows how long it takes the average effect of change in 
the number of cases on the number of deaths. The long-run effect is the overall effect of daily new cases on death 
that equals to the AFR according delays.

Koyck-DLM model is an infinite DLM. Due to the unrestricted lags, the number of coefficients in the above 
model is infinite, making it necessary to impose restrictions on their structure. The appropriate solution for this 
task is to use the Koyck transformation, which defines the structure of the coefficients as follows:

By replacing this equation in (1) the Koyck -DLM is as follow:

For this model, the mean delay and long-run effect (AFR) are estimated by:

Polynomial-DLM is a finite DLM model, where βls are Polynomial equations of degree r as follow:

By replacing this equation in (2) for r = 2 the Polynomial-DLM is as follow:

For this model, the mean delay and long-run effect (AFR) are estimated by:

Due to our data structure the predictive powers of these three models were compared by Median Absolute 
Percentage Error (MdAPE). The MdPAE is the median of the Absolute Percentage Errors  (APEt) that is defined as:

(2)Yt = α +

L∑

l=0

βlXt−l + ǫt

(3)number of deathst = α +

L∑

l=0

βl∗number of casest−l + ǫt

(4)mean delay =

∑L
l=0 βl ∗ l∑L
l=0 βl

(5)long− run effect(AFR) =

L∑

j=0

βj = β0 + β1 + . . . βL

(6)βl = β0�
l0 ≤ � ≤ 1

(7)number of deatht = α +

∞∑

l=0

β0�
l
∗number of casest−l + ǫt

(8)mean delay =

∑
∞

l=0 βl ∗ l∑
∞

l=0 βl
=

�

1− �

(9)long− run effect(AFR) =

L∑

j=0

βj =
β0

1− �

(10)βl = α0 + α1l + α2l
2
+ · · · + αrl

r

(11)number of deatht = α +

L∑

l=0

(α0 + α1l + α2l
2)∗number of casest−l + ǫt

(12)mean delay =

∑L
l=0 βl ∗ l∑L
l=0 βl

=
L

2

(
α0 + α1

2L + 1

3
+ α2

L(L + 1)

2

)
/

(
α0 + α1

L

2
+ α2

L(2L + 1)

6

)

(13)long− run effect(AFR) =

L∑

j=0

βj = α0(L + 1)+ α1
L(L + 1)

2
+ α2

L(L + 1)(2L + 1)
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The best model is a model with the smaller value of the MdAPE.

Spatial analysis of the mean delays and AFRs
Moran’s bivariate spatial correlation was used to find the effect of outbreaks in neighboring countries on the 
mean delays and AFRs among European countries. As the number of death was significantly correlated with 
the number of new cases, we used Moran’s bivariate spatial correlation to examine the correlation between the 
mean delay and AFR with the number of new cases among neighboring countries.

Also, spatial maps were drowning to present the spatial distribution of the mean delays and AFRs in Europe.
R4.2.2 was used for statistical computation. We employ the “dLagM” and “tmap” package for fitting DLMs, 

and spatial mapping, respectively.

Ethical approval and consent to participate
In this study open-source data set was used. And the methodology was used for these data approved at ethics 
approval board of the Research of Mashhad University of Medical Sciences.

Results
Results from the fitting the distributed lag model to data on the daily number of newly reported COVID-19 cases 
and deaths in 39 European countries revealed that there was heterogeneity among countries in respect of the 
values of the mean delay and AFR before vaccination in both the first and the subsequent peaks as well as after 
vaccination. The results of three models showed that for most countries the Koyck-DLM model was better than 
the two other models (supplementary file, S1). The results of the Koyck-DLM models are shown in Table 1. The 
results of these models indicated that the mean delay between the number of new cases and the daily death of 
COVID-19 among European countries in the first half of 2020 varied between 0 and 17.7 days. The lowest average 
delays were in the Cyprus, North Macedonia, and Latvia, with the mean delay at 0.0, 0.1, and 0.1 respectively. 
The highest average delays were found in Spain, Sweden, and Belgium and their respective delays were 17.7, 
16.0 and 12.0 days. The average delay time between European countries during this period was 2.9 ± 4.2 days, 
which means that the impact of any decrease or increase in the number of new cases on the number of deaths 
appears after 2.9 days.

Furthermore, results from the fitting of models to data from the second time interval showed that the mean 
delay had increased in all European countries. The overall mean delay was observed to be 9.4 ± 4.6 days, and it 
varied between 0.5 and 19.4 days. Also, in these six months, the lowest mean delay was seen in Cyprus, Finland, 
and Albania, with the average delay at 0.5, 0.6, and 2.1 days, respectively, and the highest delay was noted in 
Norway, Belgium, and Hungary at 19.4, 16.6, and 16.2 days, respectively.

In addition, there is a considerable variation among different countries regarding the long-run effect, which 
shows the AFR based on new cases identified in the previous days. Thus, in the first six months of 2020, the high-
est values of this index belonged to three countries, namely, England, Belgium and Italy. They had adjusted fatality 
rates of 0.24, 0.19 and 0.14 respectively. On the contrary, the lowest value was observed in Belarus, Slovakia, 
and Latvia with the AFR 0.005, 0.006 and 0.009 respectively. Furthermore, our findings indicate that this index 
decreased in most countries in the second time interval, indicating a decrease in fatality rates. For example, in 
the case of Britain and France, this index decreased to 0.03 and 0.004, respectively.

Table 2 shows the result of the models goodness of fits. As the MdAPEs of the Koyck-DLMs were smaller 
than the Finite-DLMs and the Polynomial-DLMs this model was the best for these data sets (these indices are 
reported in the supplementary file S1). The adjusted R-squared values are high in most countries, which indicates 
a suitable fit of the models for these data sets. Also, for cross validation, fourteen days’ forecast based on the 
Koyck-DLM model with their upper and lower 95% confidence limits were presented at supplementary file S2.

Figure 1 shows the spatial distribution of the mean delay for European countries at the three time intervals. 
The mean delay in the first peak of 2020 was the lowest in Eastern and Southern European countries, which 
increased in the next time intervals. In countries such as United Kingdom, Poland and France, this change was 
considerable. Also, the mean delay has remained unchanged in some countries, such as Germany and Sweden.

Figure 2 shows the spatial distribution of the AFR concerning European countries in the first peak and subse-
quent peaks before and after vaccination. The AFRs in the first peak was the highest in some Western European 
countries, but it decreased in the subsequent peaks before vaccination. France, Italy, Belgium, Netherlands, 
and Britain experienced a significant decline in AFR during this period. However, countries like Germany and 
Ukraine maintained a consistent AFR. In 2021, most European countries had an AFR lower than 0.005. After 
vaccination the AFRs considerably decrese in most countries, but a few countries such as.

Figure 3 displays the spatial distribution of the total number of COVID-19 tests conducted per million 
populations in European countries at the three time intervals. The total number of COVID-19 tests in Euro-
pean countries has generally increased from the first to the second time interval. In the first time interval, many 
European countries had conducted fewer than 100,000 tests per million populations. However, in the second 
interval, the total number of tests considerably increased, with the majority of European countries conducting 
200,000 to 500,000 tests per million populations. This increasing trend continued in 2021 as well, so that most 
of the European countries had implemented more than one million tests per one million populations.

Figure 4 illustrates a significant positive spatial correlation between the AFRs and te rate of infection among 
neigboring countries (p = 0.04) at first peak of COVID-19.

(14)APEt =

∣∣∣∣∣

(
ŷt − yt

)

yt

∣∣∣∣∣
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Discussion
Previous studies showed that there is a delay time between diagnosis, hospitalization, and death of COVID -19 
by descriptive methods or ordinary  regression11–13,29,30. Also, one study reported the lag time between the peak 
of incidence and fatality according to the density  estimation11. In the present study, a novel application of DLMs 
was proposed and applied to estimate the mean delay between the change in the number of new cases and the 
number of death.

Ordinary estimation of fatality rate during a time interval for COVID -19 is biased due to delay effects of 
the new cases on death. For clarity the ordinary fatality rate since observing the first infection in UK on 24 Mar, 
31 Mar, and 7 Apr (beginning the first outbreak) were 7.88%, 12.22, and 17.42%, respectively. And at the end 
of the first outbreak on 7Jul, 14Jul, and 21 Jul those were equal to 19.61%, 19.44%, and 19.23%,  respectively23. 
So, the present study used the DLM to estimate the adjusted fatality rates according to delay effect of the new 
cases on death rate.

Table 1.  The Mean Delay and Adjusted Fatality Rate (AFR) of COVID-19 Estimated by Koyck-DLMs among 
European countries from January 2020 to May 2022.

Country

1-Jan-2020 to 
31-Aug-2020

1-Sep-2020 to 
30-Apr-2021

1-May-2021 to 1-May 
2022

Mean Delay AFR Mean Delay AFR Mean Delay AFR

Albania 0.4 0.031 2.1 0.014 3.1 0.003

Austria 5.4 0.026 13.7 0.020 10.8 0.001

Azerbaijan 0.7 0.014 7.9 0.012 5.0 0.006

Belarus 4.1 0.005 3.8 0.003 4.5 0.001

Belgium 12.0 0.185 16.6 0.010 4.9 0.001

Bosnia & Herzegovina 0.7 0.023 11.0 0.023 11.2 0.023

Bulgaria 0.7 0.021 12.6 0.030 6.9 0.015

Croatia 0.7 0.006 6.2 0.019 7.3 0.006

Cyprus 0.0 0.012 0.5 0.003 6.9 0.001

Czech IA 3.1 0.010 11.6 0.011 23.5 0.002

Denmark 1.3 0.052 5.4 0.007 2.1 0.001

Estonia 0.2 0.024 11.5 0.007 0.7 0.001

Finland 0.7 0.048 0.6 0.005 7.3 0.003

France 3.4 0.111 14.3 0.004 10.8 0.001

Germany 9.0 0.024 9.1 0.018 11.0 0.001

Greece 0.9 0.011 8.4 0.026 7.8 0.001

Hungary 1.6 0.088 16.2 0.028 14.8 0.008

Ireland 0.4 0.066 10.2 0.013 1.7 0.000

Italy 1.9 0.014 8.0 0.020 10.7 0.002

Kosovo 0.4 0.044 8.6 0.014 5.9 0.005

Latvia 0.1 0.009 6.0 0.015 2.1 0.001

Lithuania 0.1 0.020 11.3 0.014 5.3 0.001

Moldova 0.3 0.019 7.2 0.002 4.8 0.005

Netherlands 3.2 0.106 2.2 0.003 4.4 0.000

North Macedonia 0.1 0.038 11.7 0.026 3.2 0.010

Norway 1.1 0.016 19.4 0.003 33.6 0.000

Poland 2.0 0.018 13.7 0.001 8.5 0.010

Portugal 2.8 0.040 11.0 0.023 3.3 0.001

Romania 1.4 0.029 12.4 0.003 7.8 0.004

Russia 2.8 0.016 6.8 0.014 15.0 0.031

Serbia 1.7 0.023 9.1 0.009 13.4 0.004

Slovakia 0.3 0.006 3.4 0.026 15.5 0.000

Slovenia 0.9 0.029 9.2 0.005 3.5 0.001

Spain 17.7 0.041 4.2 0.011 4.8 0.001

Sweden 16.0 0.020 14.9 0.006 9.2 0.001

Switzerland 8.0 0.060 11.6 0.018 3.0 0.000

Turkey 5.8 0.030 12.0 0.006 19.8 0.003

Ukraine 0.8 0.016 7.7 0.016 10.9 0.003

United Kingdom 0.7 0.239 13.2 0.033 14.8 0.001
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In our previous study DLM for Iranian COVID -19 hospitalized patients was used, and find that the mean 
delay between hospitalization and death was 5 days and the case fatality rate was 12  percent8. In present study, the 
mean delays and the adjusted fatality rates were heterogeneous among European countries. So, the models were 
fitted for each country, separately. The results of DLMs in present study show that in the second time interval, 
the mean delays considerably increased and the adjusted fatality rate decreased among most European coun-
tries. This result is desirable because after the first peak the number of COVID -19 tests for infection diagnosis 
and screening as well as medical resources, and proper management of medical resources increased in these 
countries. It is obvious that a part of this decline is due to diagnosis in the early phases of COVID -19 infection 
and an increasing in the delay between diagnoses to hospitalization. As a result, the health system has enough 
time to the preparation of treatment facilities for the future  hospitalizations9,15. These results were supported 
with previous studies that reports the mean delays and fatality rates are different among countries and improved 
with superior health system  conditions13–16. Also, the AFRs after vaccination were reduced considerably in most 
countries and a few countries with low percent of vaccination have increases in AFRs.

Table 2.  Adjusted R-Squared (Adj.  R2) and Median Absolute Percentage Error (MdAPE)MdAPE for the Koyck 
–DLMs fitted to European countries COVID-19 data from January 2020 to May 2022.

Country

1-Jan-2020 to 
31-Aug-2020

1-Sep-2020 to 
30-Apr-2021

1-May-2021 to 
1-May 2022

Adj.  R2 MdAPE Adj.  R2 MdAPE Adj.  R2 MdAPE

Albania 0.74 0.14 0.78 0.08 0.66 0.11

Austria 0.80 0.13 0.93 0.04 0.87 0.05

Azerbaijan 0.84 0.09 0.96 0.05 0.86 0.07

Belarus 0.79 0.09 0.80 0.03 0.70 0.03

Belgium 0.98 0.20 0.95 0.02 0.79 0.08

Bosnia & Herzegovina 0.59 0.36 0.66 0.12 0.61 0.21

Bulgaria 0.45 0.34 0.80 0.24 0.51 0.30

Croatia 0.22 0.33 0.89 0.07 0.89 0.06

Cyprus 0.20 0.04 0.20 0.37 0.26 0.31

Czech IA 0.63 0.18 0.93 0.02 0.94 0.03

Denmark 0.78 0.37 0.78 0.13 0.64 0.27

Estonia 0.48 0.12 0.62 0.28 0.32 0.31

Finland 0.66 0.19 0.30 0.29 0.74 0.21

France 0.69 0.45 0.10 0.37 0.69 0.22

Germany 0.87 0.36 0.66 0.20 0.79 0.09

Greece 0.46 0.36 0.85 0.04 0.82 0.05

Hungary 0.75 0.17 0.91 0.02 0.93 0.04

Ireland 0.87 0.49 0.88 0.06 0.51 0.16

Italy 0.96 0.25 0.82 0.03 0.87 0.05

Kosovo 0.77 0.22 0.53 0.20 0.79 0.12

Latvia 0.20 0.11 0.52 0.31 0.49 0.23

Lithuania 0.17 0.15 0.80 0.15 0.74 0.08

Moldova 0.55 0.40 0.78 0.03 0.73 0.12

Netherlands 0.83 0.37 0.51 0.18 0.62 0.15

North Macedonia 0.57 0.23 0.67 0.13 0.67 0.11

Norway 0.49 0.26 0.31 1.05 0.10 7.63

Poland 0.60 0.20 0.51 0.16 0.56 0.68

Portugal 0.85 0.24 0.98 0.05 0.83 0.08

Romania 0.82 0.17 0.60 0.08 0.80 0.09

Russia 0.87 0.18 0.88 0.03 0.99 0.00

Serbia 0.85 0.06 0.98 0.03 0.98 0.02

Slovakia 0.23 0.06 0.61 0.12 0.88 0.04

Slovenia 0.51 0.16 0.84 0.06 0.71 0.12

Spain 0.92 1.08 0.79 0.09 0.81 0.08

Sweden 0.96 0.04 0.91 0.05 0.89 0.07

Switzerland 0.94 0.23 0.95 0.06 0.69 0.11

Turkey 0.99 0.01 0.99 0.02 0.95 0.02

Ukraine 0.84 0.21 0.68 0.09 0.82 0.07

United Kingdom 0.99 0.03 0.99 0.04 0.94 0.02
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Figure 1.  Spatial distribution of the mean delay between COVID-19 new cases and deaths among European 
countries from January 2020 to May 2022.

Figure 2.  Spatial distribution of Adjusted Fatality Rate (AFR) of COVID-19 among European countries from 
January 2020 to May 2022.
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Spatial correlations of the mean delays were not significant at three time intervals. Only at the first peak of 
outbreak AFRs were significantly correlated with the rates of infection in neighboring countries. This result 
shows that except for the first peak, the transboundary infection was controlled among European countries.

In another study, Log-Linear DLM was used, and showed that the risk of death increased with the number 
of hospitalizations in past days and find the tolerance of hospitalization in  Iran9. Also, a study reported that the 
fatality of COVID -19 increased with  hospitalizations15. So, the fatality rate of COVID -19 was not constant and 
it is related to the health system tolerance.

DLMs are flexible and strongly appropriate to use in infectious diseases control decision making due to 
estimating important indices of different aspects of an outbreak.

Our proposed model is also appropriate for Socio-Epidemiologic studies since most of the epidemic outcomes 
are due to the previous change in the level of exposure or disease  occurrence31, and consecutive outcomes will 
occur with delay. This delay plays a key role in estimating the gold time for decision-making regarding the allo-
cation of resources and treatment facilities necessary to reduce fatality. Also, the epidemiologic indices such as 
fatality rates for these outcomes should be adjusted by the distributed lag models.

Figure 3.  Spatial distribution of total COVID-19 tests conducted per million populations among European 
countries from January 2020 to May 2022.
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Data availability
All data were used in this study are from two open access and open sources; the “ECDC” and “Our World in 
Data”. The copyright policy of ECDC is compatible with CC BY 4.0 license. And “Our World In Data” is a project 
of the Global Change Data Lab, a registered charity in England and Wales (Charity Number 1186433). The data 
and R-codes were used to this study are available respectively at supplementary files S3 & S4.
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