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Predicting acute pancreatitis 
severity with enhanced computed 
tomography scans using 
convolutional neural networks
Hongyin Liang 1,2, Meng Wang 3, Yi Wen 1,2, Feizhou Du 4, Li Jiang 5, Xuelong Geng 4, 
Lijun Tang 1,2 & Hongtao Yan 6*

This study aimed to evaluate acute pancreatitis (AP) severity using convolutional neural network 
(CNN) models with enhanced computed tomography (CT) scans. Three-dimensional DenseNet 
CNN models were developed and trained using the enhanced CT scans labeled with two severity 
assessment methods: the computed tomography severity index (CTSI) and Atlanta classification. Each 
labeling method was used independently for model training and validation. Model performance was 
evaluated using confusion matrices, areas under the receiver operating characteristic curve (AUC-
ROC), accuracy, precision, recall, F1 score, and respective macro-average metrics. A total of 1,798 
enhanced CT scans met the inclusion criteria were included in this study. The dataset was randomly 
divided into a training dataset (n = 1618) and a test dataset (n = 180) with a ratio of 9:1. The DenseNet 
model demonstrated promising predictions for both CTSI and Atlanta classification-labeled CT scans, 
with accuracy greater than 0.7 and AUC-ROC greater than 0.8. Specifically, when trained with CT scans 
labeled using CTSI, the DenseNet model achieved good performance, with a macro-average F1 score 
of 0.835 and a macro-average AUC-ROC of 0.980. The findings of this study affirm the feasibility of 
employing CNN models to predict the severity of AP using enhanced CT scans.

Acute pancreatitis (AP) is a common acute abdominal disease in clinical practice1. Mild acute pancreatitis 
(MAP) has a good prognosis, while severe acute pancreatitis (SAP) is often associated with complications such 
as pancreatic necrosis and organ failure, resulting in a high mortality rate2. As the clinical course of AP strongly 
depends on the early management of the disease, accurate assessment of the severity of AP can facilitate early 
intervention and contribute to improved clinical outcomes3, 4.

Several assessment systems that utilize clinical manifestations, laboratory tests have been developed and 
evaluated in predicting the severity and prognosis of AP, including the Acute Physiology and Chronic Health 
Evaluation (APACHE II)5, the Ranson system6, the Bedside Index for Severity in Acute Pancreatitis (BISAP)7, 
the Marshall score8, the Sepsis-related Organ Failure Assessment (SOFA)9. However, these systems, either 
individually or in combination, have not provided satisfactory predictions for SAP10. Machine learning and 
other artificial intelligence methods have shown promise in forecasting the severity of AP11. Studies have shown 
that machine learning models based on patient demographics and biochemical markers can enhance prediction 
accuracy12–14.

In clinical practice, CT scans play a vital role in assessing the severity of pancreatitis. Several CT scan-
related assessment systems, such as the Computed Tomography Severity Index (CTSI)15, the Modified Computed 
Tomography Severity Index (MCTSI)16, and the extrapancreatic inflammation on computed tomography (EPIC) 
score17, have shown associations with the severity and prognosis of AP. Several radiomics studies have also been 
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applied in the prediction of AP18, 19. However, the use of deep learning models based on CT images for evaluating 
AP severity is still in its early stages. A recent study by Chen et al. constructed a deep learning model based on 
MobileNetV2 using non-enhanced CT images obtained from AP patients within 72 h after onset20. The results 
demonstrated that the CT image-based deep learning model achieved a prediction accuracy of 72.3% with an 
AUC-ROC of 0.741 for MAP, and an accuracy of 79.5% with an AUC-ROC of 0.896 for SAP. These findings 
suggest that using deep learning models with CT scans to predict the severity of AP is feasible and holds great 
promise for future applications.

Notably, the use of non-enhanced CT images obtained upon admission may be insufficient for a 
comprehensive evaluation of AP severity. In the initial stages of the disease, the pancreas undergoes rapid 
morphological changes and necrosis, which may remain undetectable or underestimated in non-enhanced CT 
scans21. Relevant guidelines22, 23 recommend that the optimal timing for CT scans used in assessing the severity 
of AP is at least 72–96 h after the onset of symptoms, and enhanced CT scans should be utilized.

In this study, we developed a convolutional neural network (CNN) model using 3D DenseNet, to predict 
the severity of AP using enhanced CT scans. Additionally, we investigated two distinct approaches for severity 
grading of AP, CTSI and the Atlanta classification, to label the enhanced CT scans. The CTSI can be derived 
solely from CT images, whereas the Atlanta classification, being more commonly used, incorporates factors 
beyond CT images. Each labeling method was used independently for model training and validation, facilitating 
a comprehensive comparison of the predictive performance of the models.

Methods
Study design
This was a single-center retrospective study conducted in a tertiary care hospital in western China. The study 
was approved by the Institutional Ethics Committee (No. A20200212008), and a waiver of informed consent 
was obtained.

CT scan data from an AP database established in 2009 were utilized24, comprising enhanced CT scans of 
patients diagnosed with AP from 2009 to 2022. The database includes 2,571 abdomen-enhanced CT scans from 
1,945 patients diagnosed with AP. Exclusions included patients under 18 years old, patients who have undergone 
retroperitoneal puncture and catheterization, those with chronic pancreatitis, a history of upper abdominal 
surgery (except cholecystectomy and bile duct exploration), or tumors. Ultimately, 1,798 enhanced CT scans 
were included in this study.

Definition
Diagnosis of AP
A diagnosis of AP was made according to the 2012 revised Atlanta classification and definitions of AP2; patients 
had to meet any two of the following conditions: (1) abdominal pain consistent with the characteristics of AP; 
(2) serum amylase (or lipase) greater than three times the upper limit of normal; and (3) characteristic findings 
of AP on imaging.

Definition of CTSI
Balthazar proposed the CTSI score based on enhanced CT images, considering pancreatic inflammation and the 
area proportion of pancreatic necrosis15. The detailed scoring criteria are provided in Table 1.

Classification of AP severity
In this study, we used two approaches for assessing AP severity. Firstly, classification based on CTSI scores: a total 
CTSI of 0–3 indicated MAP, 4–6 indicated moderately severe AP (MSAP), and 7–10 indicated SAP. Secondly, the 
classification based on the 2012 revised Atlanta classification, which also defined three degrees of AP severity, 
as outlined in Table 2.

Table 1.   Computed tomography severity index.

Category Score

Pancreatic inflammatory

 Normal pancreas 0

 Focal or diffuse enlargement of the pancreas 1

 Intrinsic pancreatic abnormalities and inflammatory changes in the peripancreatic fat 2

 Single, ill-defined area of fluid collection 3

 Two or multiple, poorly defined area of fluid collections 4

Pancreatic necrosis

 Normal 0

 Mildly necrotic (≤ 30%) 2

 Moderately necrotic (> 30% and ≤ 50%) 4

 Extensively necrotic (> 50%) 6
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CT scans acquisition and labeling
All patients underwent standard contrast-enhanced abdominal CT examinations using a single-source, 
64-multidetector CT scanner. Specific parameters were as follows: slice thickness of 1.0 mm and a matrix size 
of 512 × 512. CT scans usually consisted of 300–350 slices. Following non-enhanced CT acquisition, enhanced 
CT images were obtained after intravenous administration of nonionic iodinated contrast material (300 mg/mL 
of iodine) at a dose of 1.2 mL/kg and an injection rate of 2.5 mL/s using an automatic power injector. CT scans 
were saved in digital imaging and communications in medicine (DICOM) format to the picture archiving and 
communication system (PACS).

Portal venous phase CT images (50–70 s after contrast injection) were extracted from the PACS and used 
in this study. The CT image window width was adjusted to 200, and the window position was set at 45. Raw 
Hounsfield unit (HU) values were rescaled to a range of 0 to 1. Each CT scan included 256 manually selected 
slices encompassing the pancreas, and the CT scan image size was reshaped to 64 × 128 × 128.

CT scans were labeled for AP severity based on CTSI or the 2012 revised Atlanta classification. CTSI scores 
were determined by radiologists (Du and Geng, each with more than 10 years of experience) using the CTSI 
criteria according to the CTSI criteria. The radiologists were blinded to patient clinical symptoms and treatment. 
AP severity based on CTSI was determined by the calculated CTSI score, while severity based on the Atlanta 
classification was extracted from the database, recorded during patient hospitalization. These data were classified 
into MAP, MSAP, and SAP groups accordingly. Notably, the AP severity classification based on CTSI did not 
exactly match that based on the Atlanta classification. Each labeling method was used independently for model 
training and validation.

Model development and evaluation
Training and test datasets
The 1,798 CT scans were randomized into the training dataset (n = 1,618) and the test dataset (n = 180) at a ratio 
of 9:1. To enhance the training process, data augmentation techniques such as random rotation and translation 
were applied to the CT scans. As the CT scans were represented as rank-3 shape tensors (samples, depth, height, 
width), an additional dimension of size 1 at axis 4 was added to enable 3D convolutions (samples, depth, height, 
width, 1). The training dataset included both the raw CT scans and augmented CT scans, while only the raw CT 
scans were used for model evaluation in the test dataset.

DenseNet model
A three-dimensional DenseNet CNN model was developed for this study, utilizing the network architecture 
presented in Fig. 1. The model consisted of four modules, each comprising a dense block and a transition block. 
Within the dense block, the output Xi of layer i satisfied expression (1), where the nonlinear transformation 
function Hi(·) incorporated batch normalization and convolution. The last module connected the fully connected 
layers and applied the Softmax function to produce the final predictions.

Model evaluation
Confusion matrices were used to assess the accuracy of pairwise classification between different categories of 
patients. Since the task involved multiclassification prediction, the metrics such as AUC-ROC, precision, recall, 
and F1 score were calculated. The macro-average values of these metrics, computed as the arithmetic mean 
across individual classes, were used to evaluate the model’s performance. In this study, macro-average metrics 
were employed instead of micro-average metrics to evaluate model performance in the triple classification 
task25. Macro-average metrics, which assign equal importance to each class, are considered more suitable for 
imbalanced datasets compared to micro-average metrics26. By giving equal weight to each class, macro-average 
metrics provide objective results for imbalanced datasets, allowing for reliable evaluation.

Visual interpretation of the models
The interpretation of model predictions was achieved by employing Gradient-weighted Class Activation Mappings 
(Grad-CAMs) extended to the 3D setting27. These visual explanations represent heat maps superimposed on each 
slice, providing insights into the model’s decision-making process. To visualize the Grad-CAMs, we overlay the 
Grad-CAMs on each input slice, offering a comprehensive view of the prediction rationale.

(1)Xi = Hi([x0, x1, . . . , xi−1]).

Table 2.   Grades of acute pancreatitis severity based on the 2012 revised Atlanta classification.

Severity grade

Mild acute pancreatitis
No organ failure

No local or systemic complications

Moderately severe acute pancreatitis
Organ failure that resolves within 48 h (transient organ failure)

Local or systemic complications without persistent organ failure

Severe acute pancreatitis Persistent (single or multiple) organ failure (> 48 h)
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Ethics statement and informed consent statement
The study was approved by the Institutional Ethics Committee of the General Hospital of Western Theater 
Command (No. A20200212008). The requirement for obtaining written informed consent from patients was 
waived by the Institutional Ethics Committee of the General Hospital of Western Theater Command due to 
the retrospective nature of this study. Our study was conducted according to the ethical standards of the 1964 
Declaration of Helsinki and its later amendments.

Methods statement
All methods were carried out in accordance with relevant guidelines and regulations.

Experimental environment and statistical analysis
This study was conducted on a computer with an NVIDIA(R) RTX(R) 3090 TI GPU and Intel(R) Core(R) CPU 
i9-12900 K processor. Python 3.9.0 (Python Software Foundation, Wilmington, DE, USA) was used for data 
extraction and preprocessing, model development and validation, and visualization and statistical analysis. To 
calculate the Ninety-five percent confidence intervals (CIs) for performance evaluation metrics such as accuracy 
and F1 score, we implemented bootstrapping with 1,000 iterations28. This allowed us to derive values from these 
iterations, upon which the CIs were computed. Statistical significance was computed with the same bootstrapping 
method29. P < 0.05 was considered statistically significant.

Results
In this study, a total of 1,798 enhanced CT scans from 1,561 patients were included (Fig. 2). These CT scans were 
labeled according to both the CTSI (MAP: 769, 42.8%; MSAP: 619, 34.4%; SAP: 410, 22.8%) and the 2012 revised 
Atlanta classification (MAP: 629, 35.0%; MSAP: 709, 39.4%; SAP: 460, 25.6%) to determine the severity of AP. 
Notably, there were 173 instances (9.6%) where the severity determination based on the CTSI did not correspond 
with the Atlanta classification. Of these, 154 instances were allocated to the training dataset, and 19 to the test 
dataset. Specifically, 123 instances categorized as MAP based on the CTSI were classified as MSAP according 
to the Atlanta classification. 17 instances categorized as MAP by CTSI were later classified as SAP under the 
Atlanta criteria. Furthermore, 33 instances categorized as MSAP by CTSI were classified as SAP according to 
the Atlanta classification. The dataset was randomly divided into a training dataset (n = 1,618) and a test dataset 
(n = 180) with a ratio of 9:1.

The demographic characteristics and clinical outcomes of the patients in both the training and test datasets 
are summarized in Table 3. There were no significant differences between the two groups in terms of age, 
gender, etiology, length of hospital stay, and mortality rate (P > 0.05). Furthermore, the time interval from the 
onset of symptoms to the CT examination for both groups was 5.4 ± 0.9 days and 5.4 ± 0.8 days, respectively, 
demonstrating no significant variance (P > 0.05).

The performance of the trained models are summarized in Table 4, and the confusion matrices depicting 
the prediction results are presented in Fig. 3. The results revealed that the DenseNet model achieved favorable 
predictions for both the CTSI- and Atlanta classification-labeled CT scans, with accuracy exceeding 0.7 and 

Figure 1.   Network architecture of DenseNet.
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Figure 2.   Dataset Selection Flow Diagram. Note: 1CT, computed tomography; 2CTSI, computed tomography 
severity index; 3Atlanta, 2012 revised Atlanta classification of acute pancreatitis; 4MAP, mild acute pancreatitis; 
5MSAP, moderate severe acute pancreatitis; 6SAP, severe acute pancreatitis.

Table 3.   Demographic characteristics and clinical outcomes of the training and validation cohort. LOS length 
of stay. *P < 0·05.

Training dataset (n = 1,618) Test dataset (n = 180) P

Age, mean ± SD 49.7 ± 9.4 50.6 ± 9.9 0.201

Sex, male, n(%) 938 (58.0%) 102 (56.7%) 0.797

Etiology 0.976

 Hypertriglyceridemia 726 (44.9%) 82 (45.6%)

 Biliary 534 (33.0%) 58 (32.2%)

 Other 358 (22.1%) 40 (22.2%)

Time interval between CT scan and the onset, days, mean ± SD 5.4 ± 0.9 5.4 ± 0.8 0.488

LOS, days, mean ± SD 10.9 ± 3.1 11.0 ± 2.9 0.554

Mortality, n (%) 76 (4.7%) 7 (3.9%) 0.762

Table 4.   Predictive performance of the models trained using CT scans labeled with CTSI and Atlanta 
classification. CTSI computed tomography severity index, MAP severe acute pancreatitis, CI confidence 
interval, MSAP moderately severe acute pancreatitis, SAP severe acute pancreatitis, Atlanta 2012 revised 
Atlanta classification of acute pancreatitis.

Accuracy Recall Percision F1 score AUC-ROC

Model trained using CT scans labeled 
with CTSI

MAP, [95% CI] 0.871 [0.813–0.919] 0.773 [0.619–0.881] 0.927 [0.829–1.000] 0.834 [0.750–0.909] 0.967 [0.935–0.990]

MSAP, [95% CI] 0.883 [0.828–0.935] 0.689 [0.559–0.868] 0.951 [0.846–1.000] 0.781 [0.654–0.878] 0.978 [0.946–0.995]

SAP, [95% CI] 0.942 [0.899–0.980] 0.948 [0.841–1.000] 0.837 [0.726–0.956] 0.890 [0.824–0.957] 0.993 [0.981–1.000]

Macro-average, [95% CI] 0.899 [0.847–0.945] 0.803 [0.673–0.916] 0.905 [0.799–0.985] 0.835 [0.742–0.915] 0.980 [0.954–0.995]

Model trained using CT scans labeled 
with Altanta

MAP, [95% CI] 0.782 [0.711–0.850] 0.523 [0.356–0.686] 0.787 [0.667–0.909] 0.622 [0.453–0.756] 0.843 [0.763–0.904]

MSAP, [95% CI] 0.779 [0.697–0.838] 0.559 [0.422–0.692] 0.855 [0.722–0.961] 0.669 [0.542–0.777] 0.859 [0.767–0.919]

SAP, [95% CI] 0.864 [0.793–0.924] 0.714 [0.539–0.881] 0.736 [0.598–0.887] 0.717 [0.563–0.863] 0.890 [0.791–0.962]

Macro-average, [95% CI] 0.809 [0.733–0.871] 0.599 [0.439–0.753] 0.793 [0.662–0.919] 0.670 [0.519–0.799] 0.864 [0.774–0.928]
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AUC-ROC exceeding 0.7. Notably, the model trained with CTSI-labeled CT scans demonstrated particularly 
favorable performance, with a macro-average accuracy of 0.899, macro-average F1 score of 0.835, and macro-
average AUC-ROC of 0.980.

The ROC curves of the DenseNet model predictions for the two different labeling methods are illustrated 
in Fig. 4. Both methods exhibited the best prediction performance for SAP, likely due to the more pronounced 
CT image changes observed in patients with SAP, making them more easily distinguishable by the model. 
Furthermore, the model demonstrated superior predictions with CTSI labeling compared to the Atlanta 
classification (macro-average AUC-ROC: 0.980 vs. 0.864, P < 0.05; macro-average F1 score: 0.835 vs. 0.670, 
P < 0.05).

The visualization results of our model can be seen in Fig. 5. We selected three representative CT scan slices of 
AP and employed Grad-CAMs to visualize the regions influencing the decision-making process in our trained 
DenseNet models. Our findings reveal that in the case of MAP with a pancreatic enlargement (Fig. 5A), both 
DenseNet models trained with the two annotation methods focused on the pancreas and the surrounding 
peripancreatic region. However, in instances with more noticeable pancreatic morphological changes (Fig. 5B 
and C), the DenseNet model trained using CTSI-labeled CT scans more effectively accentuated the areas 
corresponding to pancreatic necrosis and peripancreatic accumulation.

Figure 3.   Confusion matrices of the model prediction. The DenseNet model was used to estimate the severity 
of acute pancreatitis based on (A) CTSI-labelled CT scans and (B) Atlanta classification-labelled CT scans. 
Note: 1CTSI, computed tomography severity index; 2Atlanta, 2012 revised Atlanta classification of acute 
pancreatitis; 3MAP, severe acute pancreatitis; 4MSAP, moderately severe acute pancreatitis; and 5SAP, severe 
acute pancreatitis.

Figure 4.   The receiver operating characteristic curves of the model prediction. Note: 1CTSI, computed 
tomography severity index; 2Atlanta, 2012 revised Atlanta classification of acute pancreatitis; 3MAP, severe acute 
pancreatitis; 4MSAP, moderately severe acute pancreatitis; 5SAP, severe acute pancreatitis; 6Macro, macro-
average; and 7ROC-AUC, areas under the receiver operating characteristic curve.
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Discussion
Our study confirms the feasibility of using the CNN models, grounded on 3D DenseNet, to predict the severity 
of AP using enhanced CT scans. Regardless of whether the models were trained on CT scans labeled CTSI or 
Atlanta classification, the trained model consistently yielded robust classification performance, with a macro-
average AUC-ROC score surpassing 0.8.

In recent years, advancements in AI and deep learning have enabled the application of CNN models, such as 
ResNet, DenseNet, Inception, and VGG, in the automatic analysis of CT scans30–33. DenseNet has demonstrated 
favorable predictive performance in studies on the prediction of various conditions, including COVID-1934. 
Previous studies predominantly utilized 2D CT slices for training and testing CNN models35. However, since 
CT scans inherently provide 3D information, processing them using 2D models may lead to the loss of valuable 
information and compromise predictive efficacy. With the advancement of computing capabilities, the use of 3D 
models for direct processing of CT scans has become feasible. Studies involving the automated identification of 
COVID-19 patients have shown promising results using 3D CNN models36. Therefore, in this study, we employed 
a 3D DenseNet model based on these previous findings.

To the best of our knowledge, there is limited research on using deep learning models to predict the severity of 
AP from CT scans. In a recent study, Chen et al. employed an image-deep learning model based on MobileNetV2 
and trained it on non-enhanced CT scans obtained within 72 h of onset20. In this study, we trained a CNN 
model based on 3D DenseNet using enhanced CT scans from patients with AP, typically taken around 5.4 days 
after symptom onset. The focus of the two studies varies, and the superior predictive performance of our 
models demonstrates the potential advantage of using enhanced CT scans for severity prediction of AP through 
CNN models, aligning with pancreatitis treatment guidelines and clinical experience. However, both studies 
preliminarily suggest the promising potential of CNN models in predicting the severity of AP using CT scans. 
However, there remains a considerable gap between the current capabilities of these models and their potential 
clinical applications, emphasizing the need for continued research.

The Atlanta classification is currently the most prevalent method for severity classification in AP. While there 
is a correlation between the CTSI and Atlanta classification, they are not identical37, 38. The primary rationale 
for employing the CTSI in our research stems from its exclusive reliance on CT imaging, which sets it apart 
from the Atlanta Classification which also factors in additional data beyond the scope of CT imaging. Given 
these distinctions, CT images may not carry sufficient information for a precise Atlanta classification, and the 
utilization of Atlanta classification labels in training the CNN model may compromise the model’s generalization 
capability.

Figure 5.   Visual explanations of model predictions using Grad-CAMs. The left column shows original CT scan 
images, the middle column displays visual explanations obtained from the model trained with CTSI-labeled CT 
scans, and the right column shows visual explanations from the model trained with Atlanta-labeled CT scans. 
(A) CT scan slice with mild pancreatic enlargement; (B) CT scan slice with peripancreatic accumulation; (C) CT 
scan slice with extensive pancreatic necrosis and peripancreatic accumulation.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17514  | https://doi.org/10.1038/s41598-023-44828-7

www.nature.com/scientificreports/

Indeed, in this research, we amassed as many enhanced CT scans of patients with AP as possible. Several 
patients underwent multiple CT scans, and if these scans met the study’s inclusion and exclusion criteria, they 
were included. As pancreatic necrosis can develop during the early stages of AP, the CTSI classification for these 
patients may fluctuate over different time points. However, their classifications according to the Atlanta criteria 
remained consistent. Training the model on distinct CT images carrying identical labels may detrimentally 
impact the model’s predictive capacity. Our results showed that the predictive performance of the model 
trained on CT scans labeled with CTSI outperformed the model trained on CT scans labeled with the Atlanta 
classification (macro-average AUC-ROC: 0.980 vs. 0.864). These findings indicated that training a CNN model 
using enhanced CT images based on the CTSI can achieve better predictive performance, and it demonstrates 
the ability of the CNN model to capture information about changes in the severity of AP from CT images.

In this study, we did not perform an a priori extraction of the region of interest (ROI) pertaining to the 
pancreas. Currently, there are no mature algorithms for accurately classifying pancreatic necrosis, peripancreatic 
necrotic accumulation, and normal pancreas39, and manual ROI labeling or training a separate model for 
automated segmentation would require substantial time and effort40.

One of the key advantages of deep learning models is their ability to automatically extract quantitative features 
from high-throughput images, analyze image data in-depth, and translate microscopic lesion changes into 
quantitative measures41. In this study, referred to some previous CNN model research42–44, we adopted an end-
to-end approach that bypasses ROI extraction and directly employs the entire CT scan for model development. 
Fortunately, our results affirmed the feasibility and effectiveness of this direct approach in predicting the severity 
of pancreatitis. Regardless, employing an appropriate pancreatic segmentation algorithm or extracting ROI could 
potentially enhance the predictive performance of the model. This issue can be further explored in subsequent 
research.

To further evaluate whether our model effectively focuses on the pancreas and peripancreatic necrosis, we 
employed the Grad-CAMs visualization technique to highlight potentially decision-related areas in CT scan 
slices27. The Grad-CAM results confirmed that the model successfully attends to areas of both pancreatic and 
extrapancreatic necrosis, further supporting the model’s applicability.

In the field of artificial intelligence for pancreatitis, one of the ultimate goals might be to dynamically predict 
the severity of a patient’s condition and their clinical prognosis based on various collected data, thereby guiding 
clinical diagnosis and treatment. In future research, through model improvements, such as adopting attention-
based transformer models and incorporating time-series based recurrent neural networks, we may not only 
further enhance the predictive performance of the model and reduce computational load, but also potentially 
achieve a dynamic evaluation of pancreatitis severity using heterogeneous data from different time points. This 
could enable us to rapidly and accurately determine the severity of AP using available data.

However, this study has certain limitations inherent to its design and objective conditions. Firstly, it was 
a single-center study, which limits its generalizability, although sample consistency was high. Conducting 
multicenter studies and external validation would further strengthen the predictive efficacy of the model. 
Secondly, as mentioned earlier, ROI extraction was not attempted in this study, and it remains unclear whether 
performing ROI extraction would improve the model’s prediction performance. This aspect can be explored in 
future research. Thirdly, in this study, we focused on developing a 3D DenseNet CNN model. Future studies can 
investigate additional CNN models and cross-modal hybrid models that integrate both imaging information 
and clinical data to enhance the model’s performance in predicting AP severity.

In summary, our findings demonstrate that the constructed 3D DenseNet CNN model exhibits reliable 
predictive capability in classifying AP severity after training with enhanced CT scans, highlighting the feasibility 
of using CNN models for automatic AP severity classification based on imaging data. Moreover, this study 
provides insights for the development of more comprehensive models that incorporate both imaging information 
and clinical data for predicting the severity of pancreatitis. Further advancements in this area can lead to 
improved clinical decision-making and better patient outcomes.

Data availability
The data generated and analyzed during the current study are not publicly available due to privacy laws and 
policies, but are available from the corresponding author on reasonable request.
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