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Time lag effect on malaria 
transmission dynamics 
in an Amazonian Colombian 
municipality and importance 
for early warning systems
William Gonzalez‑Daza  1*, Rafael Jose Vivero‑Gómez 2,3, Mariano Altamiranda‑Saavedra 4, 
Renata L. Muylaert 5 & Victor Lemes Landeiro 6

Malaria remains a significant public health problem worldwide, particularly in low-income regions with 
limited access to healthcare. Despite the use of antimalarial drugs, transmission remains an issue in 
Colombia, especially among indigenous populations in remote areas. In this study, we used an SIR 
Ross MacDonald model that considered land use change, temperature, and precipitation to analyze 
eco epidemiological parameters and the impact of time lags on malaria transmission in La Pedrera—
Amazonas municipality. We found changes in land use between 2007 and 2020, with increases in 
forested areas, urban infrastructure and water edges resulting in a constant increase in mosquito 
carrying capacity. Temperature and precipitation variables exhibited a fluctuating pattern that 
corresponded to rainy and dry seasons, respectively and a marked influence of the El Niño climatic 
phenomenon. Our findings suggest that elevated precipitation and temperature increase malaria 
infection risk in the following 2 months. The risk is influenced by the secondary vegetation and urban 
infrastructure near primary forest formation or water body edges. These results may help public health 
officials and policymakers develop effective malaria control strategies by monitoring precipitation, 
temperature, and land use variables to flag high-risk areas and critical periods, considering the time 
lag effect.

Malaria is a parasitic disease that continues affecting millions of people worldwide, especially those living in 
low-income regions with limited access to healthcare; an estimated 247 million cases of malaria occurred globally 
in 2021, resulting in 619,000 deaths1. In South America, the Amazon region is one of the most affected areas, 
with countries such as Brazil, Colombia, Peru, and Venezuela reporting the highest number of cases2. Malaria is 
particularly prevalent in the tropical regions of these countries, where the climate and geography provide optimal 
conditions for the Anopheles species that transmit the disease3.

According to the National Institute of Health of Colombia (INS), Colombia had a total of 81,363 cases 
reported for 2020, of these cases, 49.7% were caused by P. vivax, and 49.5% were caused by P. falciparum4. Despite 
the fact that 91% of Colombia is susceptible to malaria transmission, a big proportion of malaria cases are located 
in the Pacific region and are mainly caused by Plasmodium falciparum5. On the other hand, in most municipali-
ties at risk, including the entire Amazon area, Plasmodium vivax is the predominant cause of malaria6. This area 
is home to a high diversity of Anopheles mosquito species, being the most common A. darling, A. nuneztovari 
and A. albimanus7, surprisingly, with higher species number in deforested areas8–12.
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Despite efforts to control malaria transmission, including the use of antimalarial drugs and long-lasting 
insecticidal nets (LLINs), Colombia has not seen a decreasing trend in malaria cases in recent years and remains a 
major public health problem, especially among indigenous populations living in remote areas with limited access 
to healthcare13,14. In fact, The Annual Parasite Index (IPA) observed for 2020 was 8.4 cases per 1000 inhabitants 
at risk, one of the highest incidences in recent years after that obtained in 2010 (11.5 cases per 1000 inhabitants 
at risk) and in 2019 (10.01 cases per 1000 inhabitants at risk)5. This is in contrast to other countries in the region, 
such as Brazil, which have reported a decreasing trend in malaria cases in recent years15. The persistence of 
malaria in Colombia underscores the need for continued efforts to strengthen surveillance and control measures, 
particularly in high-transmission areas16.

In order to understand the conditions that drive malaria transmission in Colombia, it is important to consider 
that malaria transmission is influenced by a complex array of factors, including climate, land use, and human 
behavior3,17,18. Deforestation and climate change are two key drivers that raise malaria transmission risk, particu-
larly in tropical regions such as the Amazon basin19–22. Deforestation creates ideal breeding habitats for Anopheles 
mosquitoes by creating standing water and removing the forest canopy that regulates local temperature and 
humidity12,23,24. Moreover, deforestation can lead to population displacement and migration, which can further 
increase malaria transmission by introducing the disease to new areas9.

Although there have been various studies conducted in Colombia that establish a relationship between cli-
mate, land use, and malaria risk25–28, there are still significant gaps that need to be addressed16. These gaps can 
be filled by implementing better prevention and control measures in areas previously classified as moderate and 
high risk and by contributing to the development of early warning systems29. Besides, is critical the inclusion of 
eco-epidemiological information in finer spatial and temporal scales30. The coarse temporal scale in the annual 
models fail to account for the seasonal variations, which play a vital role in malaria outbreaks31. Moreover, finer 
scales than at the municipal level need to be considered since malaria transmission is context-dependent, and 
the landscape can vary significantly within a single municipality32. Lastly, it should be noted that the majority 
of research in Colombia have primarily focused on the Pacific region due to higher outbreaks numbers33,34, 
however, given its high likelihood for malaria transmission, it is imperative to conduct malaria research in the 
Amazon biome2.

On the other hand, the use of mechanistic models such as SIR Ross Macdonald models serve as a valuable tool 
for evaluating the impact of malaria control and prevention measures, enabling the analysis of various scenarios 
and identification of eco-epidemiological parameters that exert the greatest influence on disease transmission35. 
The SIR models are based on the assumption that individuals can be classified into three compartments: suscep-
tible (S), infectious (I), and recovered (R) and how the number of individuals in each compartment changes over 
time due to malaria transmission and recovery36. Some variations of the SIR model can incorporate mosquitoes 
compartments as well and environmental variables such as temperature and rainfall, which affect the mosquito 
population and the malaria transmission rate37. Nevertheless, its use in exploring the relationship between land 
use and malaria is relatively scarce. Besides, incorporating these variables into mathematical models of malaria 
transmission is challenging due to the complex and often nonlinear relationships between land use and malaria38.

Some studies have attempted to integrate land use and land cover into SIR models of malaria transmission. 
For example, a study in the Brazilian Amazon used simulations of land use changes that incorporated economic 
and epidemiological variables into the SIR framework39, this study highlights the potential value of integrating 
land use and land cover variables into SIR models of malaria transmission. However, further research is needed 
to improve our understanding of the complex relationships between land use, climate, and malaria transmission, 
and to develop more accurate and comprehensive models that can inform effective malaria control strategies3,40,41.

In addition to the use of mechanistic models like SIR Ross Macdonald (SIR model specific for malaria) 
models for evaluating the impact of malaria control and prevention measures, it’s also crucial to consider the 
significance of various seasons in the yearly cycle of Anopheles, which can elevate the risk of humans being bitten 
by Plasmodium-carrying mosquitoes42. While changes in climatic variables such as rainfall and temperature can 
create new breeding sites for mosquitoes and affect their behavior and life cycle, it may take some time for these 
changes to be reflected in changes in malaria incidence43, for example, changes in rainfall can create new breeding 
sites for mosquitoes44, but it may take several weeks for these sites to become fully functional and for mosquito 
populations to increase45,46. Therefore, understanding the temporal dynamics of climate-malaria relationships is 
essential for developing effective malaria control strategies that take into account the lag time between changes 
in climate variables and changes in malaria incidence in the local context47–49.

As a result of the necessity to examine the context of the elevated risk of malaria transmission in the Colom-
bian Amazon, stemming from the rapid pace of land use change, the malaria habitat suitability and the need 
to carry out predictive models based on climatic seasons at fine scales, our main aim was to assess how the 
transmission of malaria is affected by precipitation, temperature, and changes in land use in a municipality in 
the Colombian Amazon. The study intends to determine the impact of these factors on malaria transmission 
while also considering the time lag effect. Additionally, the research will analyze two hypothetical scenarios (one 
pessimistic and the other optimistic) to evaluate the influence of managing and controlling some entomologi-
cal–epidemiological variables on the occurrence of malaria cases in humans. By exploring this relationship, this 
investigation highlights the importance of considering multiple variables when studying complex systems, such 
as malaria transmission dynamics, and how the findings can contribute to developing evidence-based policies 
to improve public health outcomes.
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Materials and methods
Study area
In relation to the occurrence of malaria instances within the Colombian Amazon, the chosen research site was 
the municipality of La Pedrera in the Amazonas Department. This choice was made for various reasons, includ-
ing the notable increase in malaria cases in the area over the past decade5.

La Pedrera municipality is located in the department of Amazonas in the southern Colombian region with 
an area of 13,945 km2 (see Fig. 1), it borders Brazil in the east and almost all of its territory is made up of tropi-
cal forest, in addition to evergreen forest, as is common in the Amazon region, there are also flooded forests by 
the seasonal flooding pulse of the Caquetá river and the Apaporis river50. Indigenous communities and non-
indigenous settlers are mainly located on the river’s edges due to the ease of access (see Fig. 1).

The following ethnic groups are present in the region: Yucunas, Macunas, Matapí, Tanimucas, Mirañas, 
Letuamos, Carihonas and Cubeos52. The main economic activities developed in the region are artisanal fishing, 
hunting, cassava, banana, corn and fruit crops, cattle and chickens to a lesser extent53, and in some surrounding 
places including Brazil, illegal mining45.

Within the realm of the Amazon biome, the pace of deforestation in Brazil’s forest is strikingly rapid54. This 
trend is not exclusive to Brazil, as Colombia is also grappling with significant deforestation pressures, notably 
concentrated in the headwaters of macro-basins55. This occurrence is contributing to a reduction in the quality 
and quantity of water bodies56. The central challenges to the Amazon forest arise from human activities, with 
illicit coca cultivation and agricultural practices emerging as the primary catalysts for deforestation within the 
transition zone that spans the Andean, Orinoco, and Amazon biomes57. It is worth highlighting that the central 
region of Colombia, along with the northern zone of the Amazon biome, has borne the brunt of substantial loss 
in primary forests over the past two decades58. These activities are linked to increased deforestation rates and 
have significant ecological and social consequences.

This interconnected web of deforestation, environmental change, and social dynamics underscores the com-
plex landscape of challenges facing the La Pedrera municipality, where addressing malaria cases and broader 
conservation efforts require a multifaceted approach58. Moreover, the presence of indigenous communities lack-
ing access to proper healthcare facilities in the region further elevates the vulnerability of this municipality to 
malaria59. Consequently, the municipality requires the implementation of prevention and control strategies as it 
ranks high on the priority list for such plans60. Additionally, challenges related to accessing healthcare services 
and implementing preventive measures are notable in this context61.

Figure 1.   Flow chart indicating each of the steps used in the analysis, categorized into three main parts: 
model variables, model building, and model calibration. The landscape component is represented by steps 1, 
3, and 5, while steps 2, 4, 5, 6, 7, 9, and 10 pertain to the eco-epidemiological aspects. (1) Location map of La 
Pedrera municipality: The Amazon biome from Mapbiomas in 201851, along with the countries in which it 
is located. The inset map shows a 4 km buffer around the rivers where populations are concentrated, marked 
in aquamarine and red dots. The white dot with a black center denotes the location of La Pedrera’s municipal 
center, which is home to the hospital where most malaria cases are reported.
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Malaria cases and population data
Human diary malaria cases of La Pedrera municipality from 2007 to 2020 were provided by Colombia’s National 
Public Health Surveillance System62, due to the specificity of the parameters used in the modeling and the large 
proportion of vivax malaria cases in the Colombian Amazon, malaria cases were taken into account only from 
Plasmodium vivax infections. However, it’s essential to acknowledge certain limitations associated with this 
data source. First, there may be an underreporting rate of malaria cases, as not all individuals with malaria 
symptoms may seek medical attention or be included in the surveillance system’s records. Secondly, errors in 
the identification of the parasite in blood smears can occur, potentially leading to misclassifications or missed 
cases. Thirdly, the dataset includes reported cases without differentiation between new infections and cases with 
a possible origin of recrudescence.

The cases were downloaded without stratification by age, sex, or race. The total annual population size was 
downloaded directly from the National Administrative Department of Statistics63, which provides a population 
annual growing rate.

Land use land cover, temperature and precipitation
Raster maps of land use were created from multiband Landsat image collections 5, 7, and 8 with 30 m cell-size. 
A supervised classification of remote sensing images was then performed using the random forest algorithm 
with 500 training samples and 10 trees. The choice of these values was carefully considered, striking a balance 
between precision and processing time/capacity. It’s important to note that as the number of training samples 
and trees increases, the accuracy of the maps improves, but this also leads to longer processing times for each set 
of bands. Therefore, the selected values represent an intermediate point that optimizes precision while ensuring 
attainable processing time.

To achieve this classification, we utilized a training layer containing 30 polygons for each land use type 
detected, including forest, flooded forest, sand, urban infrastructure, secondary vegetation, and water. These 
polygons enhanced the contrast and refined the spectrum intervals of land uses by generating various band 
combinations. However, the classification did face challenges in areas with uncertainty, typically occurring in 
intermediate pixels or at intersections between different land uses. These uncertain areas, whether due to land 
use transitions or tenuous cloud cover, were excluded from the total quantification to ensure the accuracy of 
the final results.

This approach allowed for the classification of different land uses in the study area. Nonetheless, due to the 
persistent high levels of cloud cover throughout the year, we generated yearly mosaics by combining multiple 
classified raster images to maximize the input data quality and produce a consensus map of yearly land use 
spanning from 2007 to 2020.

The satellite layers were acquired using the La Pedrera municipal center as the central reference point. A 
buffer of 50 km was established around this point, which is the farthest distance between the municipal center 
and the last registered human settlement in this area. To detect changes in land use in areas where human activity 
has taken place, an additional buffer of 4 km was applied within the 50 km buffer, specifically along the edges of 
the Caquetá and Apaporis rivers, where the present communities are located. This chosen overlapping region 
of the buffers served as our specific study area for collecting climate data and documenting alterations in land 
use (see Fig. 1).

Furthermore, acknowledging the significance of the water body edges for mosquito breeding, we calculated 
the water edge area (water cover edge length multiplied by 30 cm) to identify potential temporal and permanent 
mosquito spawning sites46,64. Finally, monthly air temperature (°C) and precipitation (mm) data were obtained 
from the Copernicus Open Access Hub platform between 2007 and 2020, utilizing data sourced from the Sen-
tinel-2 satellite for the study area.

Subsequently, the temperature was averaged for each quarter of the year and the precipitation added due to 
the time scale used in the model for the following reasons: Firstly, a quarterly model strikes a balance between 
accuracy and practicality65 while daily or even monthly models may offer higher resolution and more precise 
results, using daily models may lead to issues with optimizing parameters reliably, producing less dependable 
long-term trends and patterns, and requiring overly complex and computationally intensive parameter optimiza-
tion processes66. On the other hand, semi-annual models may not capture the fluctuations in disease dynamics 
as accurately as quarterly models, quarterly models can capture seasonal variations in disease transmission 
such as temperature and precipitation pikes67. This can be particularly useful for monitoring the effectiveness of 
interventions or identifying outbreaks before they become severe68,69.

SIR Ross–Macdonald model
We propose a modification to the Baeza et al., model, our model focuses specifically on the transmission of Plas-
modium vivax by Anopheles darlingi mosquitoes. The modified model consists of five compartments, including 
two for the vector mosquito: healthy X and infected W where Nm = Totalmosquitoes(X +W), and three for 
humans: susceptible S , infected I , and recovered R where Nh = Totalpeople(S + I + R).

δS

δt
= r × Nh+ σ × R − β × S,

δI

δt
= β × S − µ× I ,
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In this model, susceptible people become infected at rate

And healthy mosquitoes become infected at rate

where au is the biting rate described by the Human biting index HBI

And the BMDR is the Blood Meal digestion rate as a function of the temperature (T) described by the equa-
tion of the curve estimated from the data of Refs.70–72 on the gonotrophic cycle of Anopheles albimanus due to 
the absence of these data for Anopheles darlingi

The parameter r is the human birth rate or population growth rate. Infected humans recover at the rate µ 
and lose the immunity, then reentering the susceptible population at the rate σ . The parameter b represents the 
probability of human being infected from infectious mosquito bite, and c represents the transmission efficiency 
from infected humans to uninfected mosquitoes. The mosquitoes fecundity is described by the rate Fe and it’s 
mortality by the rate δm.

In order to incorporate the effect of the landscape modification through the land use land cover change in 
the model through the time, we assigned a value of total mosquitoes per area unit (square meters) where each 
land use land cover type ( landcovern ) can carry a maximum mosquitoes number ( carryingcapacityvalue ), thus, 
the total carrying capacity KTOTAL was calculated yearly based on the total sum of hectares of each land cover 
multiplied by its carrying capacity value reported in the Table 1.

δR

δt
= µ× I − σ × R,

δX

δt
= Fe × Nm

(

1−

(

Nm

Ktotal × prec × 0.01

))

− V × X − δm× X ,

δW

δt
= V × X − δm×W .

β =
(

au × prec × 0.01
)

× b×

(

W

(Nm)

)

×

(

Nm

Nh

)

.

V =
(

au × prec × 0.01
)

× c ×

(

I

(Nh)

)

.

au = Bitingrate =
HBI
1

BMDR

.

BMDR(T) = exp (0.014× T)− exp

(

0.014× 37.98−
37.98− T

0.83

)

− 1.144.

KTOTAL =

n
∑

i=0

(

landcovern× carryingcapacityvaluen
)

.

Table 1.   The carrying capacity values calculated for each of the land uses in La Pedrera, Amazonas. Land uses 
such as sand, bare soil, or water cover were excluded from the calculation since they do not play a significant 
role in the biological cycle of mosquitoes. Areas with strong currents or the central zones of lagoons were 
omitted from the analysis due to their minimal impact on the biological life cycle of mosquitoes due to the fact 
that the predominant breeding sites exist primarily at the perimeters of rivers, lakes, and other water bodies 
(These peripheral areas were quantified as “water edge”). The proportional percentage calculation is based 
on the forest formation because it is the natural habitat where Anopheles darlingi typically develops and the 
carrying capacity values are reported. Mosquitoes’ values are based on sampling methods and environmental 
covariates from satellite sources to estimate adult mosquito abundance per unit area39. Percentages greater 
than 100 indicate areas where mosquito populations can reproduce more easily due to greater food availability 
and fewer predators, resulting in a higher carrying capacity. m2 square meters, % percentage based on the 
maximum carrying capacity of Anopheles darling.

LULC type Carrying capacity value (mosquitoes/m2) % based on forest formation References

Forest formation 0.01 100 49,73

Flooded vegetation 0.015 150 74–76

Open areas (secondary vegetation) 0.03 300 12,19,23,77

Urban infrastructure 0.015 150 12,19,23,77

Water edge 0.02 200 46,78,79



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18636  | https://doi.org/10.1038/s41598-023-44821-0

www.nature.com/scientificreports/

Consequently, the model accounts for temperature and precipitation by factoring in their impact on the 
biting rate au. Moreover, the model considers the effect of precipitation on the ecosystem’s carrying capacity, 
which influences the development capacity and mosquito life cycle during rainy conditions. This assumes that 
as precipitation increases, the carrying capacity for each land use land cover type also increases.

Vector parameters and human parameters
In order to match the simulated values with the observed cases, we estimated both the epidemiological and 
human parameters. Changes in these parameters affect the behavior of the simulated curve, so ranges were 
defined for each parameter. The optimization algorithm adjusts the parameters listed in Table 2, along with 
their bibliographical references. We assumed unreported values fall within logical and positive intervals based 
on appropriate epidemiological criteria.

Model assessment
The model was run by considering the accumulated cases of malaria caused by P. vivax per quarter, mean tem-
perature, sum of precipitation, and annual carrying capacity value. After running the model, manual calibration 
of the parameters was done to verify changes in the behavior of curves of both state variables of mosquitoes 
(X, W) and humans (S, I, R). The calibration was done using the maximum likelihood distance function with a 
Poisson distribution of errors and a standard logarithm function link to compare the simulated and real cases of 
infected people (I) in the municipality of La Pedrera. The BFGS (Broyden–Fletcher–Goldfarb–Shanno algorithm) 
or quasi-Newton method was used to estimate the optimized parameters within the previous defined range.

To evaluate the influence of the temporary lag, four models were simulated based on parameter estimation 
using the maximum likelihood distance function. These simulations include: (1) No temporary lag, (2) One 
month of temporary lag, (3) Two months of temporary lag, and (4) Three months of temporary lag, using the 
values of the covariates 1, 2 and 3 months before and thus recreate the delayed environmental effect on the 
transmission of cases in the region. The best model was selected based on the log likelihood value, AIC, and 
visual assessment of fit between the observed and simulated cases.

We created two hypothetical scenarios to examine the effect of certain parameters on malaria cases and the 
potential impact of a positive intervention on transmission in the region. These models were based on the model 
parameters that most closely aligned with the observed data. The first scenario (negative scenario or pessimistic) 
involved increasing certain parameters that are positively associated with transmission by 5% (b, HBI, Fe, c) and 
decreasing parameters that have a negative relationship with transmission by 5% ( δm ). The second scenario was 
the opposite (positive or optimistic scenario), involving a decrease in parameters that are positively related to 
transmission and an increase in those that are negatively related to transmission.

Finally, the elaboration of the land use maps was carried out with QGIS 3.10.14-A Coruña, and the Semi-
automatic Classification Plugin (SCP) 7.10.6—Matera91 coupled with ESA SNAP Desktop implementation 9.0.0 
software. The differential SIR model equations were solved using deSolve 1.33 R package92, the maximum likeli-
hood distance function using the bbmle 1.0.25 R package93, the parameters optimization and the graphs with R 
4.2.1 in-built environment packages.

Informed consent
In this study, studies were not carried out directly in humans, however, the data for the construction and evalua-
tion of the model was based on observed cases for the municipality of La Pedrera—Amazonas Colombia. Avail-
able for free access on the SIVIGILA–COLOMBIA platform (https://​porta​lsivi​gila.​ins.​gov.​co/).

Table 2.   Epidemiological parameters for human host and mosquito vector. Parameters related with the 
ecology and vectorial capacity of Anopheles mosquitoes. The majority of the values for these parameters are 
obtained through empirical measurements and statistical inference methods, while the parameters related to 
human epidemiology processes are based on the literature and incorporate measurements from controlled 
experiments, as well as estimates from transmission models that are fitted to time series data on malaria 
cases in India and Africa. Sigma ( σ ): Immunity human loss rate, b: Probability of human being infected from 
infectious mosquito bite, HBI: Human biting index, Fe: Anopheles females’ fecundity (eggs laid and retained), 
c: Transmission efficiency from infected humans to uninfected mosquitoes, Mu ( µ ): Human recovery rate and 
δm: Mosquito mortality rate (day).

Parameter estimated Range Unit References

Sigma σ [0–30] Number of people/quarter 80–82

b [0.01–0.6] – 17,83

HBI [0.1–1.0] [% blood from humans] 84,85

Fe [50–150] [larvae/female] 86

c [0.01–0.55] – 17,87

δm [12–30] [days] 88–90

Mu µ [0–100] Number of people/quarter 17

https://portalsivigila.ins.gov.co/
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Results
In the course of the analysis spanning from 2007 to 2020, a total of 6076 P. vivax cases were recorded within 
the municipality. Malaria cases exhibited a cyclical pattern, with the highest incidence ranging from 150 to 200 
cases before 2015. The most notable peak in cases occurred during the third quarter of 2016, reaching 658 cases, 
followed by a decline in 2017, recording 382 cases during the second quarter. Another peak emerged in the third 
quarter of 2018, with 537 cases, after which the numbers dwindled to 13 in the second quarter of 2020.

Regarding landscape modifications, there was no discernible trend or concentration of continuous deforesta-
tion, except for the flooded forest, which experienced a consistent decline throughout the observed area over 
the years. Between 2007 and 2020, significant changes in land use unfolded. Forested areas expanded during 
this period, with a minor reduction at the outset of 2020. In contrast, the flooded forest exhibited a continuous 
decline, intensifying since 2017. Areas surrounding bodies of water displayed a steady increase during the ana-
lyzed years. Urban infrastructure underwent cycles, with an upward trajectory until 2010, followed by a decrease 
until 2016, and a subsequent significant surge until 2020. Open areas exhibited constant expansion until 2017, 
followed by a temporary reduction, only to resume a positive trend in late 2019 (see Fig. 2).

Despite the absence of a consistent upward trend in urban infrastructure (in fact, more than half of the ana-
lyzed time frame witnessed a decrease), there was a constant increase in open areas, indicating the transformation 
of forests into grasslands and predominantly open herbaceous vegetation. The increase in forest, as quantified 
in the land use maps, was not a true increment but rather a shift from flooded forest to non-flooded tropical 
forests that were not necessarily located in high areas outside the area of the pulse of river flooding (a transition 
from Varzea forest to mainland forest). In general, all of these landscape modifications collectively resulted in a 
continuous rise in the presumed limit carrying capacity of Anopheles darlingi, with a more pronounced growth 
in 2016.

Moreover, temperature and precipitation variables exhibited a fluctuating pattern that corresponded to rainy 
and dry seasons, respectively. The precipitation had its highest peak in 2017-I, beginning to increase significantly 
since the start of 2016. On the other hand, the temperature reached its peak in 2015-IV, apparently with the same 
cyclical pattern of malaria cases but with a difference in time in onset or delay effect (the climatic events of peaks 
in temperature and precipitation occurring first than the peaks of malaria cases). See Fig. 2.

Model performance and time lag effect
The results of our study showed that the 2-month lag model had the best fit based on both the Akaike Information 
Criterion (AIC) and the maximum log likelihood (see Table 3). Taking into account the visual assessment of the 
adequacy of the model, the 2-month lag model was able to more accurately track the peaks and valleys observed 
in the actual cases, specifically the highest peak of 2016-III quarter, the second peak of 2018-III, quarter and the 

Figure 2.   Variables of annual land use, carrying capacity, mean quarter temperature, quarter total precipitation 
and cases of vivax malaria in La Pedrera Amazonas in red. The y axes of the land use and carrying capacity (K) 
variables were transformed to facilitate their visualization. The land use variables were based on the supervised 
classification of remote sensing images (Landsat 5, 7 and 8), the temperature and precipitation were based on the 
Copernicus Open Access Hub platform between 2007 and 2020 and finally the carrying total capacity based on 
the total sum of hectares of each land cover multiplied by its carrying capacity value reported in the Table 1.
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downward trends following seasonal peaks of infection. In contrast, the other models, which lacked a temporal 
lag or had 1 or 3 months of temporary lag, did not capture the observed pattern of infections. The second-best 
fitting model was the 1-month temporal lag model, which displayed good agreement with the maximum peak 
of cases 2016-III and 2018-III but showed asynchrony in all other peaks of cases (see Fig. 3). While the 2-month 
temporary lag model exhibited a superior fit during certain time periods, it failed to accurately track the observed 
cases between 2010 and 2012 and also underestimated the magnitude of the peaks between 2012 and 2014, which 
were higher in the observed cases than in the simulated cases (see Fig. 3).

Regarding the simulated models that were created by modifying the adjusted parameters, the negative sce-
nario, which involved a 5% reduction in the parameters, resulted in malaria cases increases of up to approximately 
300% in some periods (i.e., 2009 and 2010), with the maximum peak numbers similar to those observed in 2017 

Table 3.   AIC criteria information, maximum log likelihood of the models to evaluate the effect of the 
temporary lag with the optimization of parameters based on the observed cases. Best model fit in boldface.

Model Max log likelihood AIC

No temporal lag 6325.302 6339.302

1-month lag 4847.832 4861.832

2-month lag 2805.243 2819.243

3-month lag 5317.259 5331.259

Figure 3.   Infected people/per semester (simulations in red and green line with confidence interval) and 
infected people (observed cases in blue line) for the six models. (A) No temporary lag, (B) 1-month temporal 
lag, (C) 2-month temporal lag and (D) 3-month temporal lag, (E) optimistic scenario and (F) pessimistic 
scenario. The pessimistic and optimistic scenarios were based on the parameter modifications from the 2-month 
temporal lag model (the best fit model).
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and 2019, without the 300% increase seen in the earlier periods. Despite these changes, the negative scenario still 
exhibited a cyclical behavior with significant seasonal peaks and valleys (see Fig. 3, graph E and F).

Conversely, the modifications made for the optimistic scenario demonstrated that a 5% reduction in param-
eters could result in a complete elimination of cases between 2013 and 2016, despite a 31% probability of infection 
from infected mosquitoes, 22% of HBI and only a 5% reduction in mosquito mortality (see Table 4). For the most 
significant peaks of observed cases, the optimistic scenario resulted in a reduction from approximately 650 cases 
to around 100 cases, leading to a maximum peak of approximately 160 cases in 2019. Ultimately, the simulated 
cases for the optimistic scenario deviated from their previous cyclical nature with marked peaks and valleys.

Discussion
The study provides valuable insights into the relationship between climatic and land use factors and malaria 
transmission in La Pedrera. The results suggest that the model was able to effectively replicate the observed 
malaria cases by taking into account the cyclical patterns in temperature-precipitation and the increasing trend 
in mosquito carrying capacity due to changes in land use. The study also highlights the importance of consider-
ing the duration of ecological and biological processes, such as the mosquito’s biological cycle after peak rain or 
temperature, and the parasite’s development time within mosquitoes and humans (2 months), thus the findings 
suggest that elevated levels of precipitation and temperature increase the risk of malaria infection in the subse-
quent two months. Overall, this study highlights the potential of climate and land use models in predicting and 
preventing malaria outbreaks in similar contexts.

In relation to climatic factors, the El Niño Southern Oscillation (ENSO) climatic phenomenon plays an impor-
tant role in the transmission of malaria in the Colombian Amazon region31,94. The patterns of high temperature 
(year 2015) and subsequent increase in rainfall (year 2016), which are directly related to the peak of infections 
observed in the year directly related with the simulations, are determined by the ENSO phenomenon95. The study 
also reveals the impact of climate change on the rising cases of malaria in the Amazon region, as there has been a 
temperature increase of 0.5 °C from 1983 to 201696, leading to abnormal weather patterns that represent a greater 
risk for malaria transmission. Although the time window analyzed in the study is not sufficient to confirm the 
temperature increase, it does show a cyclical pattern that is increasing according to reported data on temperature 
increases in the Amazon possibly due to climate change97.

The relationship between land use and precipitation can be explained biologically, as different land uses 
with their carrying capacities are enhanced by precipitation98. This is particularly important for water bodies, 
temporary and permanent wells in the forest, urban infrastructure, and secondary vegetation, which are all 
important breeding sites for mosquitoes99. However, it is also important to note that rain can have a limiting effect 
on mosquito populations when it exceeds a certain threshold, as it can wash away breeding sites or be deadly to 
adults who lack a suitable place to hide100,101.

It is important to note that land use changes have an impact on Anopheles populations’ carrying capacity, not 
only in forest or flooded the rising forest areas, but also in other landscape characteristics such as the rising of 
water body edges and open areas with deforested grazing or shrubby vegetation where people reside (see Fig. 2). 
In Belize, a comparable pattern was identified in which transitioning from native vegetation to a mixture of crops 
and marshes is linked to elevated populations of Anopheles spp.102. This highlights the multi-biological nature 
of malaria, where not only the presence of high-risk land uses is significant, but also the way humans access and 
modify them, which can either increase or decrease the risk103.

The model was able to track the observed cases’ behavior. However, there were time periods where cases 
were underestimated (2013–2014). This may be due to variables not considered by the model, such as migra-
tion, mining, transmission due to other important vectors7 and recrudescence. Firstly, La Pedrera is located on 
the border of Brazil, and there is frequent migration between the two countries, especially because the area is 
predominantly indigenous, and political-administrative boundaries do not necessarily apply to their distribu-
tion area16,104. Additionally, gold mining is a prevalent undertaking in the neighboring areas, exposing indi-
viduals to an elevated risk of malaria transmission. Prolonged exposure to water bodies and residing in camps 
lacking protection measures against mosquitoes or access to healthcare services contribute to this heightened 
vulnerability45,105. Illegal miners may introduce malaria cases to La Pedrera from other regions via the Caquetá 
and Apaporis rivers, which are not necessarily related to the activities in La Pedrera. Lastly, Plasmodium vivax 

Table 4.   Two month’s lag model parameters calculated from the maximum likelihood (the best fit model) 
and simulated positive and negative scenarios. The parameters used to simulate both positive and negative 
scenarios were modified by increasing or decreasing them by 5% depending on their influence on malaria 
transmission. Sigma ( σ ): Immunity human loss rate, b: Probability of human being infected from infectious 
mosquito bite, HBI: Human biting index, Fe: Anopheles females’ fecundity (eggs laid and retained), c: 
Transmission efficiency from infected humans to uninfected mosquitoes, Mu ( µ ): Human recovery rate and 
δm: Mosquito mortality rate (day).

Model

Parameters

Sigma σ b HBI Fe c Mu µ δm

2-month lag 5.0000004 0.3268949 0.2355878 116.84353 0.2608142 2.9999991 14.999997

Optimist scenario (+) 4.7500003 0.3105501 0.2238084 111.00135 0.2477734 3.1499990 14.249997

Pessimistic scenario (−) 5.2500004 0.3432396 0.2473671 122.68570 0.2738549 2.8499991 15.749996
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and Plasmodium ovale can remain latent in the human body, and incomplete antimalarial drug treatment may 
not entirely eliminate the parasite from the body106. As a result, people may experience symptoms that are not 
necessarily caused by new infections107,108.

On the other side, during the periods when the model indicated a higher number of cases than those observed 
(2010–2012), we believe that several factors may have contributed to this discrepancy. Firstly, the underreporting 
of data could be a possible reason, given that the region’s health services are still underdeveloped and largely man-
aged by health campaigns from the capital city of Leticia—Amazonas without adequate oversight109. Secondly, 
acquired immunity to malaria could also be a contributing factor. It has been previously reported that malaria 
cases in endemic areas are influenced by resistance built up through constant infections over the years106. Lastly, 
there are various complex limiting environmental factors that affect the vector’s development, which are chal-
lenging to model, these include non-constant mortality rates, ecological interactions with other species that alter 
their population size, human population not homogeneously mixed and other variables that could improve the 
mathematical framework and the real cases simulations36.

Regarding the impact of the parameters derived from optimizing the 2-month temporary lag model, we can 
identify several factors related to environmental variables or intrinsic immunological factors and parasite load. 
For instance, the human biting index (HBI) is associated with temperature due to the mosquito’s metabolic cycle, 
while precipitation and land use affect the probability of mosquitoes feeding on humans. Mosquito fecundity is 
influenced by temperature, availability of food, and suitable bodies of water for oviposition. Mosquito mortal-
ity, on the other hand, is primarily affected by age, environmental stressors, and exposure to insecticides88–90.

Intrinsic human parasitic or immunological factors of mosquitoes determine the parameters such as b and 
c, that are more closely related to the pathogen load in the human host’s blood, the immune response of the 
mosquito, the duration of the blood meal, the mosquito’s age and infection status, and the immune response 
of the human host17. Therefore, this model, despite having calculated both epidemiological and entomological 
parameters such as human recovery and re-entry rates, highlights the significance of HBI, fecundity, and mos-
quito mortality rates, which are the parameters most affected by changes in the environment, such as increasing 
temperatures, precipitation, and land use changes, which in turn increase the likelihood of infection.

Nonetheless, this does not imply that intrinsic-immunological and epidemiological parameters are insignifi-
cant or unimportant for control plans, which is where positive-optimistic and negative-pessimistic scenarios 
come into play. Parameters such as b, c, Mu (μ), and even δm can be manipulated to significantly reduce the 
number of cases. Traditional control measures such as wearing appropriate clothing in high-risk biting areas, 
using mosquito nets, improving the implementation and efficacy of antimalarial treatments, controlling mos-
quito breeding sites, and reducing mosquito fecundity could decrease both the efficiency of mosquito-human 
and human-mosquito transmission. The latter becomes critical due to the growing resistance of mosquitoes to 
insecticides. However, according to the findings of this study, it is crucial to consider that other variables can be 
modified with appropriate measures and time based on the temporary lag. Our findings support early prevention 
plans to take action and increase general awareness 2 months before expecting high numbers of malaria cases 
following high rainfall and temperatures.

The performance of the models highlights the significance of the temporal lag, and the 2-month model was 
found to be the most accurate. This finding is consistent with previous research, which demonstrated a relation-
ship between precipitation and malaria cases, with cases being associated with precipitation occurring 9 weeks 
earlier (on average, 2 months) and capable of predicting both the magnitude and cyclical pattern of the disease110. 
Another study found that Anopheles populations were higher during the dry season111, which can be attributed 
to their development and oviposition during the preceding rainy season or transition from rainy to dry seasons. 
Therefore, it is important to consider different temporal lags for temperature and precipitation, as high rainfall 
promotes reproduction during the rainy season when temperatures are lower. In contrast, during the dry season, 
high temperatures directly impact the gonotrophic cycle, where the rate of digestion increases with temperature, 
resulting in a higher rate of human blood index (HBI) in adult mosquitoes already developed and not dependent 
on bodies of water for their initial cycle.

Conclusions
The study highlights the significance of considering the cyclical patterns in temperature, precipitation and land 
use changes in predicting malaria transmission. The findings indicate that elevated levels of precipitation and 
temperature increase the risk of malaria infection in the following 2 months, particularly in areas with mixed 
secondary vegetation and urban infrastructure near primary forest formations or the edges of water bodies. 
Additionally, it is crucial to emphasize the model’s strong fit to the observed cases, which indicates that it may 
accurately forecast cases in areas with comparable socioeconomic and environmental conditions. The El Niño 
Southern Oscillation (ENSO) also plays an essential role in malaria transmission in the region. The analysis 
suggests that land use changes impact the carrying capacity of Anopheles populations, not only in forested areas 
but also in other landscape characteristics such as water body edges and urban infrastructure. Our findings 
highlight the multi-biological nature of malaria, where humans’ access and land use modification can modulate 
disease transmission risk. For future research, separating susceptible people into different compartments based 
on exposure and including other social variables, such as human migration, is recommended. These results could 
be valuable for public health officials and policymakers to develop effective strategies for early warning systems 
and malaria control in the region. Our results suggest continuously monitoring precipitation, temperature, and 
land use variables to predict high-risk areas can be beneficial to long-term disease mitigation.

Finally, and especially in the La Pedrera—Amazonas, it is important to consider the effects and direct impact 
of deforestation and modification of the Amazonian primary forest and the need for better malaria control 
measures. These measures include implementing plans to use mosquito nets in urban areas, controlling breeding 
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areas in both open and urban areas, having prevention plans that involve wearing clothing to reduce mosquito 
bites in flooded forests or near bodies of water and improving the health system of the region by expanding the 
use of effective treatments against malaria, particularly after peak temperatures and rains. These control meas-
ures can help intervene in the eco-epidemiological parameters and have an impact on reducing malaria cases 
and improving the quality of life for the people, as observed in both pessimistic and optimistic simulated cases.

Data availability
Climatic data obtained from the Copernicus Open Access Hub platform (https://​scihub.​coper​nicus.​eu/). Land 
use maps created from the Landsat collections 5, 7, and 8 layers for the studied area and downloaded directly 
using the free access Semi-automatic classification plugin for QGIS (https://​plugi​ns.​qgis.​org/​plugi​ns/​SemiA​utoma​
ticCl​assif​icati​onPlu​gin/). Human malaria cases for each municipality available on the open access Colombian 
National Health Institute platform SIVIGILA (https://​porta​lsivi​gila.​ins.​gov.​co/).
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