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Computer‑aided diagnosis 
of chest X‑ray for COVID‑19 
diagnosis in external validation 
study by radiologists 
with and without deep learning 
system
Aki Miyazaki 1, Kengo Ikejima 2, Mizuho Nishio 1*, Minoru Yabuta 2, Hidetoshi Matsuo 1, 
Koji Onoue 3,4, Takaaki Matsunaga 1, Eiko Nishioka 1, Atsushi Kono 1, Daisuke Yamada 2, 
Ken Oba 2, Reiichi Ishikura 3 & Takamichi Murakami 1

To evaluate the diagnostic performance of our deep learning (DL) model of COVID‑19 and investigate 
whether the diagnostic performance of radiologists was improved by referring to our model. Our 
datasets contained chest X‑rays (CXRs) for the following three categories: normal (NORMAL), non‑
COVID‑19 pneumonia (PNEUMONIA), and COVID‑19 pneumonia (COVID). We used two public datasets 
and private dataset collected from eight hospitals for the development and external validation of 
our DL model (26,393 CXRs). Eight radiologists performed two reading sessions: one session was 
performed with reference to CXRs only, and the other was performed with reference to both CXRs and 
the results of the DL model. The evaluation metrics for the reading session were accuracy, sensitivity, 
specificity, and area under the curve (AUC). The accuracy of our DL model was 0.733, and that of the 
eight radiologists without DL was 0.696 ± 0.031. There was a significant difference in AUC between 
the radiologists with and without DL for COVID versus NORMAL or PNEUMONIA (p = 0.0038). Our DL 
model alone showed better diagnostic performance than that of most radiologists. In addition, our 
model significantly improved the diagnostic performance of radiologists for COVID versus NORMAL or 
PNEUMONIA.

The novel coronavirus disease 2019 (COVID-19), a new infectious disease, was first discovered in China in 
2019 and has currently caused a significant number of infections and deaths  worldwide1. At the time of writ-
ing this paper, a total of at least 529,410,287 infections and 6,296,771 deaths have been confirmed  worldwide2. 
The development of vaccines and measures to prevent the spread of the disease have temporarily succeeded in 
reducing the number of infected people. However, the threat of COVID-19 continues worldwide because of a 
highly infectious species known as the Omicron strain.

Real-time polymerase chain reaction (RT-PCR) is used as a diagnostic method for COVID-19 in many medi-
cal institutions. However, RT-PCR is not always an effective method. One report has indicated that computed 
tomography (CT) is more sensitive than RT-PCR3. CT and chest X-ray (CXR) may serve as more accurate 
diagnostic methods for COVID-194,5.

The clinical application of deep learning (DL) in the diagnosis of COVID-19 on CXR has attracted  attention6,7. 
Although CXR is less accurate than CT, CT scanners are not always available. For example, as a 24/7 in-hospital 
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service, rural hospitals have very limited local access to CT  scanners8. CXR is simple and inexpensive, and radia-
tion exposure of CXR is less than that of CT. Therefore, if COVID-19 can be diagnosed using a combination of 
DL and CXR, it may be possible to screen for COVID-19.

Many studies have already been conducted on CT/CXR for the diagnosis of COVID-19 using DL, and most of 
them have shown promising  results9–11. However, in the case of the clinical application of DL as a computer-aided 
diagnosis system, medical doctors must compare their own diagnosis with that of DL. If there is an inconsist-
ency between doctors and DL, doctors may reject the DL diagnosis. To evaluate the clinical usefulness of DL, 
an observer study of CXR readings must be conducted for both DL and radiologists. Only a few studies have 
compared the diagnostic performance of DL and  radiologists12–14.

This study aimed to evaluate the diagnostic performance of our DL model of COVID-19 and investigate 
whether radiologists changed their diagnosis by referring to our DL model of CXR and whether the diagnostic 
performance of radiologists was significantly improved. To evaluate the clinical usefulness of DL, an observer 
study of radiologists and external validation of our DL model were conducted. Based on the reading sessions of 
the observer study, the diagnostic performance was compared among (i) our DL model, (ii) eight radiologists 
without DL, and (iii) eight radiologists with DL.

Materials and methods
This retrospective study was approved by the institutional review boards of eight hospitals (Kobe University 
Hospital, St. Luke’s International Hospital, Nishinomiya Watanabe Hospital, Kobe City Medical Center General 
Hospital, Kobe City Nishi-Kobe Medical Center, Hyogo Prefectural Kakogawa Medical Center, Kita Harima 
Medical Center, and Hyogo Prefectural Awaji Medical Center); the requirement for acquiring informed con-
sent was waived by the institutional review boards of these eight hospitals owing to the retrospective nature of 
the study. This study complied with the Declaration of Helsinki and Ethical Guidelines for Medical and Health 
Research Involving Human Subjects in Japan (https:// www. mhlw. go. jp/ file/ 06- Seisa kujou hou- 10600 000- Daiji 
nkanb oukou seika gakuka/ 00000 80278. pdf).

Dataset
The CXR datasets used for developing and evaluating our DL model contain CXRs for the following three cat-
egories: normal CXR (NORMAL), non-COVID-19 pneumonia CXR (PNEUMONIA), and COVID-19 pneu-
monia CXR (COVID). Our DL model was developed using two public (COVIDx and  COVIDBIMCV) and one 
private  (COVIDprivate) datasets. One public dataset (COVIDx) was built to accelerate the development of highly 
accurate and practical deep learning model for detecting COVID-19 cases (https:// github. com/ linda wangg/ 
COVID- Net/ blob/ master/ docs/ COVIDx. md)15. The other public dataset  (COVIDBIMCV) was constructed from 
two public datasets: the PadChest dataset (https:// github. com/ auriml/ Rx- thorax- autom atic- capti oning)16 and 
BIMCV-COVID19+ dataset (https:// github. com/ BIMCV- CSUSP/ BIMCV- COVID- 19)17.  COVIDprivate was based 
on the dataset collected from six hospitals previously, and the two public datasets (COVIDx and  COVIDBIMCV) 
were the same as those in previous  studies18,19. The details of these datasets are described in the Supplementary 
material. Compared with the previous study, CXRs were added for  COVIDprivate in the current study. The addi-
tional CXRs included 37, 7, and 31 cases of NORMAL, PNEUMONIA, and COVID, respectively.  COVIDprivate 
contained 530 CXRs (176 NORMAL, 146 PNEUMONIA, and 208 COVID).

In addition to  COVIDprivate, CXRs were collected from two other medical institutions. In total, 168 CXRs (80 
NORMAL, 37 PNEUMONIA, and 51 COVID) collected from one medical institution (Hospital A) were used 
for the internal validation of the DL model (as a part of validation set) and for radiologists’ reading practice con-
ducted before the observer study. Moreover, as unseen test set, 180 CXR cases (60 NORMAL, 60 PNEUMONIA, 
and 60 COVID) collected from another medical institution (Hospital B) were used for the external validation 
of the DL model and observer study of radiologists.

In the Hospital B, COVID was limited to those diagnosed with COVID-19 pneumonia using RT-PCR, and 
CXR was obtained after symptom onset. The time of COVID-19 diagnosis was between January 24, 2020, and 
May 5, 2020. PNEUMONIA was defined as patients clinically diagnosed with bacterial pneumonia that improved 
with appropriate treatment. Patients who showed no pneumonia on CT or had lung metastasis of malignancy and 
acute exacerbation of interstitial pneumonia were excluded from PNEUMONIA. NORMAL was defined as the 
absence of abnormalities in the lung, mediastinum, thoracic cavity, or chest wall on CXR and CT. NORMAL and 
PNEUMONIA were limited to cases before the summer of 2019 (before the COVID-19 pandemic). The details 
of the unseen test set collected from the Hospital B are described in the Supplementary material. The inclusion 
criteria of CXRs in the  COVIDprivate and the Hospital A were the same as the previous  study19.

Table 1 lists the details of each CXR dataset. The 180 cases (as the unseen test set) used for the external valida-
tion and reading sessions were adults aged 20 years or older. In the 180 cases, NORMAL included 39 men and 
21 women aged 58.1 ± 27.9 years. PNEUMONIA included 43 men and 17 women aged 76.2 ± 20.8 years. The 
COVID group included 46 men and 14 women aged 53.4 ± 38.6 years.

Deep learning model
Our EfficientNet-based DL model was constructed in the same manner as described in previous  papers18,19. Fig-
ure 1 shows a schematic of the construction of the DL model. There are two major differences in the DL model 
construction between the present study and previous studies; one is that the 168 CXRs collected from Hospital 
A were used for internal validation as a part of the validation set, and the other is that the 180 CXRs collected 
from Hospital B were used for external validation as the unseen test set. The DL model development set included 
two public datasets,  COVIDprivate, and 168 CXRs collected from Hospital A. Five different random divisions of 
the training and validation sets were created from the development set. In the division, 300, 300, and 90 images 

https://www.mhlw.go.jp/file/06-Seisakujouhou-10600000-Daijinkanboukouseikagakuka/0000080278.pdf
https://www.mhlw.go.jp/file/06-Seisakujouhou-10600000-Daijinkanboukouseikagakuka/0000080278.pdf
https://github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md
https://github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md
https://github.com/auriml/Rx-thorax-automatic-captioning
https://github.com/BIMCV-CSUSP/BIMCV-COVID-19
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were randomly selected as the validation set from COVIDx,  COVIDBIMCV, and  COVIDprivate, respectively. The 
remaining images of COVIDx,  COVIDBIMCV, and  COVIDprivate were used as the train set. In addition, all the 
168 CXRs collected from Hospital A were used for the validation set. Model training and internal validation of 
diagnostic performance were performed for the training set and validation set, respectively. The training of our 
DL model is also described in the Supplementary material.

The inference results of the DL model were calculated using an ensemble of five trained models. For the 
180 CXRs of the external validation, an average of the probabilities obtained from the five trained models was 
calculated as the inference results of the DL model to evaluate the diagnostic performance of the DL model and 
to provide supporting information for radiologists during the observer study.

The DL model calculated the probability of NORMAL, PNEUMONIA, or COVID for each CXR, with a 
total of 100%. We also created images using Grad-CAM and Grad-CAM++ as explainable artificial intelligence, 
which visualized the reasoning for the diagnosis of the DL  model20,21. Grad-CAM and Grad-CAM++ images 
were used for the observer study. Min–max normalization with a linear transformation was performed on the 
original Grad-CAM and Grad-CAM++ images.

Observer study
Eight radiologists (with 5–20 years of experience in diagnostic radiology) performed the observer study at two 
medical facilities. For the 180 CXRs collected from Hospital B, each radiologist performed two reading sessions 
over a period of more than 1 month. One reading session was performed with reference to CXRs only, and the 
other was performed with reference to both CXRs and the results of the DL model. The order of the two sessions 
was randomly selected to reduce bias. The eight radiologists scored the probabilities of NORMAL, PNEUMONIA, 
and COVID on a 100% scale. In the reading session with the DL model, the radiologists referred to the prob-
abilities of NORMAL, PNEUMONIA, and COVID calculated using the DL model. If there was any uncertainty 
regarding the probabilities of the DL model, the results of Grad-CAM and Grad-CAM++ were available. Images 
of the 168 CXRs collected from Hospital A were also processed with Grad-CAM and Grad-CAM++ , and the 
diagnosis of the DL model and images of Grad-CAM and Grad-CAM++ of the 168 CXRs were presented to the 
radiologists for practice sessions before each reading session. Eight radiologists were taught how to interpret 
the Grad-CAM and Grad-CAM++ images before the observer study. There was no time limit for reading and 
practice sessions. Prior to the reading sessions, only the approximate frequencies of the three categories were 
presented to the radiologists and no other clinical information was provided. Our novelties in this study were to 

Table 1.  Numbers of CXR images in the datasets: COVIDx,  COVIDBIMCV, and  COVIDprivate, Hospital A, and 
Hospital B. All cases of PNEUMONIA were bacterial pneumonia in  COVIDprivate, Hospital A, and Hospital B. 
Abbreviations: CXR, chest X-ray; COVIDx, public dataset used for COVID-Net;  COVIDBIMCV, public dataset 
obtained from the PadChest and BIMCV-COVID19+ datasets;  COVIDprivate, private dataset collected from 
six hospitals. Hospital A, dataset collected for internal validation; Hospital B, dataset collected for external 
validation. Hospitals A and B were not included in the six hospitals where  COVIDprivate data were collected.

Dataset
Total number of CXR 
images

Number of CXR images of 
NORMAL

Number of CXR images of 
PNEUMONIA

Number of CXR images of 
COVID

COVIDx 14,258 8066 5575 617

COVIDBIMCV 11,253 8799 979 1475

COVIDprivate 530 176 146 208

Hospital A 168 80 37 51

Hospital B 180 60 60 60

Figure 1.  Schematic illustration of dataset splitting and model training for our DL model. Abbreviation: DL, 
deep learning; COVIDx, public dataset used for COVID-Net;  COVIDBIMCV, public dataset obtained from the 
PadChest and BIMCV-COVID19+ datasets;  COVIDprivate, private dataset collected from six hospitals; Hospital 
A, dataset collected for internal validation and radiologist’s practice before the observer study; Hospital B, 
dataset collected for external validation.
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investigate whether radiologists changed their diagnosis by referring to our DL model of CXR and whether the 
diagnostic performance of radiologists was significantly improved.

Evaluation of Grad‑CAM++ images
After the observer study, one senior radiologist visually evaluated the 180 Grad-CAM++ images in the test set. 
The visual evaluation of the Grad-CAM++ images was performed on the images that were accurately diagnosed 
by the DL. The radiologist visually examined the CXR and Grad-CAM++ images and determined whether the 
Grad-CAM++ images were typical or understandable. The typical Grad-CAM++ images were described in Sup-
plementary material. If abnormal findings on CXR images were highlighted on Grad-CAM++ images, the cases 
were considered understandable by the radiologist. In addition, for COVID, the radiologist counted the number 
of Grad-CAM++ images with highlighted regions outside the lung area.

Statistical analyses
We evaluated the diagnostic performance of the DL model alone and compared the results between reading 
sessions with and without the DL model. The evaluation metrics were accuracy, sensitivity, specificity, and area 
under the curve (AUC) in the receiver operating characteristics. Because three-category classification was per-
formed, these metrics were calculated class-wise (one-vs-rest), except for accuracy. For the AUC, multi-reader 
multi-case statistical analysis was used to statistically analyze the results of the eight radiologists. MRMCaov was 
used for the statistical  analyses22. Although MRMCaov is a statistical method designed for binary classification 
of two categories, this study was designed to diagnose three categories: NORMAL, PNEUMONIA, and COVID. 
Therefore, the three-category classification was divided into three binary classifications (one-vs-rest): (1) NOR-
MAL versus PNEUMONIA or COVID, (2) PNEUMONIA versus NORMAL or COVID, and (3) COVID versus 
NORMAL or PNEUMONIA. We then compared the class-wise AUC of the eight radiologists between reading 
sessions with and without the DL model. The difference in the AUC was statistically tested using MRMCaov. 
Because it was necessary to integrate the results from the eight radiologists, the class-wise MRMCaov was used 
in the present study. To control the family-wise error rate, Bonferroni correction was used; a p value less than 
0.01666 was considered statistically significant. R (version 4.1.2) was used for the statistical analysis.

Results
Figure 2 shows examples of CXR, Grad-CAM, and Grad-CAM++ images from NORMAL, PNEUMONIA, and 
COVID. As shown in Fig. 2, in the images of Grad-CAM and Grad-CAM++ from NORMAL, there was often a 
relatively symmetrical region of interest in the lung fields. In PNEUMONIA, the region of interest was observed 
in the unilateral lung field in most cases, which was consistent with an abnormal shadow caused by pneumonia. 
COVID tended to show regions of interest in both the lungs and mediastinum.

Table 2 shows the sensitivity, specificity, accuracy, and AUC of the DL model and eight radiologists with and 
without the DL model. Here, the three types of binary classifications (one-vs-rest) were defined as follows: A, 
“NORMAL versus PNEUMONIA or COVID”; B, “PNEUMONIA versus NORMAL or COVID”; and C, “COVID 
versus NORMAL or PNEUMONIA.” Fig. 3 shows the receiver operating characteristics curves of our DL model 
alone for the three types of binary classifications. Figure 4 shows the receiver operating characteristics curves of 
eight radiologists with and without the DL model.">

The three-category classification accuracy of the DL model was 0.733 (132/180). The 95% confidence intervals 
of class-wise AUC of the DL model were as follows: A, 0.872–0.955; B, 0.903–0.972; and C, 0.711–0.862. The 
mean accuracy of radiologists without the DL model was 0.696 ± 0.031 (range, 0.667 [120/180]–0.756 [136/180]). 
Their class-wise AUCs without the DL model were as follows: A, 0.889 ± 0.027 (0.860–0.941); B, 0.844 ± 0.046 
(0.792–0.905); and C, 0.716 ± 0.028 (0.679–0.757). The mean accuracy of radiologists with the DL model was 
0.723 ± 0.021 (range, 0.689 [124/180]–0.756 [136/180]). Their class-wise AUCs with the DL model were as follows: 
A, 0.903 ± 0.028 (0.871–0.954); B, 0.883 ± 0.055 (0.792–0.938); and C, 0.762 ± 0.029 (0.730–0.816). The accuracy 
of our DL model was better than that of six radiologists without the DL model.

Table 3 shows the averaged AUC of senior and junior radiologists with and without our DL model. The 
numbers of senior and junior radiologists were five and three, respectively. According to the Table 3, in both 
senior and junior radiologists, the difference of averaged class-wise AUC for C (“COVID versus NORMAL or 
PNEUMONIA”) between with and without the DL model was larger than those for A and B.

We integrated the results of eight radiologists with and without the DL model using the software MRMCaov 
and compared the class-wise AUC of radiologists between reading sessions with and without the DL model. The 
results of MRMCaov showed that in the classification C (COVID versus NORMAL or PNEUMONIA), there were 
significant differences in AUC between the radiologists with and without the DL model (p = 0.0038). In classifica-
tions A and B, there were no significant differences in the AUC between the radiologists with and without the 
DL model (p = 0.2396 and 0.1190, respectively). Figure 5 shows the class-wise receiver operating characteristics 
curves of the integrated results of eight radiologists with and without the DL model.

Table 4 shows the results of visual evaluation of the Grad-CAM++ images. The ratio of the typical or under-
standable Grad-CAM++ images was 0.932 (123/132). The ratio of Grad-CAM++ images highlighted outside the 
lung area was 0.200 (8/40) for COVID.

Discussion
In this study, eight radiologists performed the reading sessions with and without the DL model, and the results 
were compared and analyzed using multi-reader multi-case statistical analysis. The diagnostic performance of 
the DL model alone was also evaluated. Our DL model achieved a higher accuracy and AUC than the majority 
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of the eight radiologists without the DL model. Furthermore, the results of the statistical analysis showed that 
radiologists’ diagnostic performance was significantly improved by the DL model in diagnosing COVID-19 on CXR.

Based on the results of the receiver operating characteristics analysis with MRMCaov, there was a significant 
difference in AUC of radiologists between with and without the DL model for “C: COVID versus NORMAL or 
PNEUMONIA” (p = 0.0038). However, there was no significant difference for “A: NORMAL versus PNEUMONIA 
or COVID” and “B: PNEUMONIA versus NORMAL or COVID.” One possible reason for these results may be 

Figure 2.  Results of Grad-CAM and Grad-CAM++ for our DL model. (A) NORMAL, (B) PNEUMONIA, 
and (C) COVID. Each row consists of CXR images collected from Hospital A and the Grad-CAM and Grad-
CAM++ results. One trained DL model was used for Grad-CAM and Grad-CAM++ . Left column, original CXR 
image; middle column, result of Grad-CAM; right column, results of Grad-CAM++ . Abbreviations: DL, deep 
learning; CXR, chest X-ray.
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that radiologists have less experience in reading COVID than NORMAL or PNEUMONIA. Based on these results, 
the DL model may be more useful for medical doctors in other fields with less experience in reading COVID.

Because the DL model alone had a higher diagnostic performance than the majority of the eight radiologists, 
it may be possible to apply the DL model to COVID-19 diagnosis on CXR for screening and other purposes. This 
DL model of CXRs may be useful, especially in areas where medical resources are limited.

In a previous study, our DL model was significantly superior to radiologists in diagnosing COVID-19 
 pneumonia19. However, the DL model was not evaluated as computer-aided diagnosis system in the previous 
study. On the other hand, because the reading sessions of the present study were conducted by radiologists with 
and without the DL model, this is more similar to the situation of practical clinical use of the DL model. In addi-
tion, the previous study had the disadvantage that it was performed by internal validation. The current study was 
performed using external validation, which generally produces more reliable results than internal validation. 
Rangarajan et al.23 also performed external validation of the DL model for COVID-19 diagnosis. They pointed 
out that their DL model may complement COVID diagnosis on CXR. Although the study by Rangarajan et al. is 
similar to our study, the classification targets and method of statistical analysis are different from ours.

To the best of our knowledge, there are no studies in which three-category classification (including COVID) 
was performed using DL models and external validation. This study is the first to evaluate the generalizability 
of the DL model in a three-category classification. Several studies have compared the diagnostic performance 
of the DL model with that of radiologists for COVID-19 on  CXR12–14. They reported that the AUC and accuracy 
of the DL model tended to exceed those of radiologists in most cases. For example, Wehbe et al.14 compared the 
diagnostic performance between their DL model and two radiologists in the diagnosis of COVID-19 positive 
and COVID-19 negative. Their DL had a significantly higher sensitivity (71%) than that of one radiologist (60%) 
and a significantly higher specificity (92%) than that of two radiologists (75% and 84%, respectively).

RT-PCR is the most commonly used test to detect COVID-19, but its sensitivity is not significantly high. One 
study reported that the sensitivity of RT-PCR is approximately 71%3. RT-PCR is also time consuming and often 
difficult to perform in small medical facilities. This is particularly true in developing countries. In contrast, CXR 
is a simple imaging examination. The disadvantage of CXR is that its diagnostic performance depends on the 
reader’s ability. The sensitivity and specificity of our DL model were relatively high for the three types of target 
classification. Therefore, it may be possible to increase the usefulness of CXR as an alternative or complementary 
test to RT-PCR.

Table 2.  Class-wise sensitivity, specificity, AUC, and 3-category classification accuracy of our DL model 
alone and eight radiologists with and without our DL model. AUC  area under the curve, DL deep learning, SD 
standard deviation; A, NORMAL versus PNEUMONIA or COVID; B, PNEUMONIA versus NORMAL or 
COVID; C, COVID versus NORMAL or PNEUMONIA.

Sensitivity Specificity

accuracy

AUC 

A B C A B C A B C

Reader1
DL (−) 0.883 0.733 0.467 0.850 0.825 0.867 0.694 0.882 0.852 0.696

DL (+) 0.833 0.783 0.600 0.867 0.900 0.842 0.739 0.895 0.912 0.768

Reader2
DL (−) 0.967 0.517 0.533 0.742 0.933 0.833 0.672 0.860 0.797 0.679

DL (+) 0.983 0.633 0.533 0.758 0.908 0.908 0.717 0.871 0.802 0.738

Reader3
DL (−) 0.900 0.733 0.467 0.850 0.825 0.875 0.700 0.891 0.855 0.682

DL (+) 0.983 0.567 0.517 0.758 0.900 0.875 0.689 0.876 0.792 0.730

Reader4
DL (−) 0.817 0.650 0.517 0.933 0.775 0.783 0.661 0.941 0.792 0.731

DL (+) 0.833 0.750 0.633 0.892 0.908 0.808 0.739 0.928 0.911 0.777

Reader5
DL (−) 0.817 0.783 0.667 0.908 0.892 0.833 0.756 0.877 0.900 0.757

DL (+) 0.833 0.800 0.633 0.917 0.900 0.817 0.756 0.954 0.895 0.816

Reader6
DL (−) 0.867 0.583 0.550 0.808 0.883 0.808 0.667 0.867 0.792 0.725

DL (+) 0.817 0.633 0.667 0.858 0.908 0.792 0.706 0.886 0.896 0.755

Reader7
DL (−) 0.783 0.767 0.600 0.892 0.883 0.800 0.717 0.915 0.905 0.736

DL (+) 0.783 0.767 0.600 0.892 0.883 0.800 0.717 0.903 0.938 0.733

Reader8
DL (−) 0.883 0.600 0.617 0.842 0.917 0.792 0.700 0.882 0.856 0.718

DL (+) 0.783 0.767 0.617 0.883 0.892 0.808 0.722 0.912 0.919 0.776

Mean ± SD DL (−) 0.865 ± 0.058 0.671 ± 0.097 0.552 ± 0.072 0.853 ± 0.060 0.867 ± 0.053 0.824 ± 0.034 0.696 ± 0.031 0.889 ± 0.027 0.844 ± 0.046 0.716 ± 0.028

Mean ± SD DL (+) 0.856 ± 0.081 0.713 ± 0.088 0.600 ± 0.051 0.853 ± 0.061 0.900 ± 0.009 0.723 ± 0.041 0.723 ± 0.021 0.903 ± 0.028 0.883 ± 0.055 0.762 ± 0.029

DL model 0.750 0.783 0.667 0.900 0.917 0.783 0.733 0.913 0.937 0.786
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One of the reasons why we evaluated our DL model by external validation is that it is difficult to evaluate the 
DL model accurately using public datasets. Garcia Santa Cruz et al. pointed out that public datasets contain unde-
tected  bias24. When these datasets are used for internal validation, there is a risk of overestimation of the diag-
nostic performance of the DL model. Therefore, we attempted to mitigate these biases using external validation.

Our study has some limitations. First, the CXRs in this study were obtained from large-sized hospitals, and 
good-quality CXRs were used. Therefore, we did not evaluate the usefulness of our DL model on poor-quality 

Figure 3.  Class-wise receiver operating characteristics curves of our DL model in external validation. (A) 
NORMAL versus PNEUMONIA or COVID, (B) PNEUMONIA versus NORMAL or COVID, and (C) COVID 
versus NORMAL or PNEUMONIA. Abbreviation: DL, deep learning.
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Figure 4.  Class-wise receiver operating characteristics curves of eight radiologists with and without our DL 
model in observer study. (A) NORMAL versus PNEUMONIA or COVID, (B) PNEUMONIA versus NORMAL 
or COVID, and (C) COVID versus NORMAL or PNEUMONIA. The blue and red lines represent the receiver 
operating characteristic curves of the radiologists with and without our DL model, respectively. Abbreviation: 
DL, deep learning.
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CXRs. Second, we conducted an observer study for CXRs with normal, non-COVID-19 pneumonia, and COVID-
19 pneumonia. Because we excluded CXRs with other lung diseases, we could not assess the usefulness of our 
DL model for these images.

In conclusion, our DL model alone showed better diagnostic performance than most of the eight radiolo-
gists in the external validation of the three-category classifications of normal, non-COVID-19 pneumonia, and 
COVID-19 pneumonia. In addition, our DL model significantly improved the diagnostic performance of the 
eight radiologists in COVID-19 pneumonia versus normal or non-COVID-19 pneumonia.

Figure 4.  (continued)

Table 3.  Averaged AUC of senior and junior radiologists with and without our DL model. The numbers of 
senior and junior radiologists are five and three, respectively. AUC  area under the curve, DL deep learning, SD 
standard deviation; A, NORMAL versus PNEUMONIA or COVID; B, PNEUMONIA versus NORMAL or 
COVID; C, COVID versus NORMAL or PNEUMONIA.

AUC 

A B C

Senior radiologists
Mean ± SD DL (−) 0.901 ± 0.027 0.861 ± 0.046 0.720 ± 0.031

Junior radiologists
Mean ± SD DL (−) 0.870 ± 0.011 0.815 ± 0.036 0.707 ± 0.025

Senior radiologists
Mean ± SD DL (+) 0.911 ± 0.030 0.890 ± 0.057 0.765 ± 0.035

Junior radiologists
Mean ± SD DL (+) 0.890 ± 0.021 0.872 ± 0.062 0.756 ± 0.019
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Data availability
The source code of our DL model and its related data are available from the following URL of GitHub: https:// 
github. com/ jurad er/ covid 19_ xp_ effic ientn et.

Figure 5.  Class-wise receiver operating characteristics curves obtained by integration of reading session results 
of eight radiologists with and without our DL model. Note: (A) NORMAL versus PNEUMONIA or COVID, (B) 
PNEUMONIA versus NORMAL or COVID, (C) COVID versus NORMAL or PNEUMONIA. The blue and red 
lines represent the integrated receiver operating characteristics curves of radiologists with and without our DL 
model, respectively. Abbreviation: DL, deep learning.

Table 4.  Results of the visual evaluation of Grad-CAM +  + images in the unseen test set. The value in the 
parenthesis means numerator and denominator for the ratio. DL deep learning.

Number Ratio

Accurate diagnosis by DL model 132 0.733 (132/180)

Typical or understandable Grad-CAM++ images 123 0.932 (123/132)

Grad-CAM++ images highlighted outside the lung area for COVID 8 0.200 (8/40)

https://github.com/jurader/covid19_xp_efficientnet
https://github.com/jurader/covid19_xp_efficientnet
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