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Application of deep learning 
technology for temporal analysis 
of videofluoroscopic swallowing 
studies
Seong Yun Jeong 1,3, Jeong Min Kim 2,3, Ji Eun Park 2, Seung Jun Baek 1* & Seung Nam Yang 2*

Temporal parameters during swallowing are analyzed for objective and quantitative evaluation 
of videofluoroscopic swallowing studies (VFSS). Manual analysis by clinicians is time-consuming, 
complicated and prone to human error during interpretation; therefore, automated analysis using 
deep learning has been attempted. We aimed to develop a model for the automatic measurement of 
various temporal parameters of swallowing using deep learning. Overall, 547 VFSS video clips were 
included. Seven temporal parameters were manually measured by two physiatrists as ground-truth 
data: oral phase duration, pharyngeal delay time, pharyngeal response time, pharyngeal transit time, 
laryngeal vestibule closure reaction time, laryngeal vestibule closure duration, and upper esophageal 
sphincter opening duration. ResNet3D was selected as the base model for the deep learning of 
temporal parameters. The performances of ResNet3D variants were compared with those of the 
VGG and I3D models used previously. The average accuracy of the proposed ResNet3D variants was 
from 0.901 to 0.981. The F1 scores and average precision were 0.794 to 0.941 and 0.714 to 0.899, 
respectively. Compared to the VGG and I3D models, our model achieved the best results in terms of 
accuracy, F1 score, and average precision values. Through the clinical application of this automatic 
model, temporal analysis of VFSS will be easier and more accurate.

Abbreviations
VFSS  Videofluoroscopic swallowing study
FEES  Fiberoptic endoscopic evaluation of swallowing
LVC  Laryngeal vestibule closure
UES  Upper esophageal sphincter
FPS  Frames per second
3D  Three-dimensional
CNN  Convolutional neural network
RGB  Red, green and blue
AP  Average precision
TP  True positive
PAS  Penetration-aspiration score

Dysphagia, defined as difficulty in swallowing, is caused by neurological, muscular, anatomical, or psychological 
 factors1–3. As dysphagia can lead to serious complications such as malnutrition, dehydration, aspiration pneu-
monia, and choking, accurate diagnosis is  crucial4–6.

Several diagnostic methods are used to diagnose dysphagia. Videofluoroscopic swallowing studies (VFSS) 
and fiberoptic endoscopic evaluation of swallowing (FEES) are the gold standards for dysphagia  evaluation7. 
Among these, VFSS is commonly used for dysphagia assessment because it provides functional as well as struc-
tural  information8,9. A VFSS is a dynamic, continuous radiological examination of swallowing. Dynamic videos 
of the relevant anatomic structures (generally lateral and frontal views of the oral cavity, pharynx, and upper 
esophagus) during swallowing with various volumes and viscosities of the contrast-mixed bolus are obtained. 
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By analyzing these videos, the examiner can not only detect the type and severity of dysphagia, but also suggest 
postural maneuvers or therapeutic  interventions10,11. However, depending on the subjective visuoperception of 
the examiner, adequate intra- and inter-rater reliability cannot always be  ensured12,13. Hence, various tools and 
sequential temporal analysis for VFSS are used for both clinical and research purposes to achieve a more objec-
tive and quantitative  evaluation14–18. Quantitative temporal measurements of swallowing events can provide 
information regarding swallowing dynamics and the coordination of swallowing events. Specific swallow event 
delays were correlated with specific disabilities or stroke lesions in patients. Patients with decreased cognitive 
function commonly show oral phase delay, and those with brainstem stroke may show prolonged upper esopha-
geal opening  duration19–21. If there is a noticeable delay in a specific swallowing event, it may be used to predict 
or suspect a specific disease.

However, manual analysis can be time consuming and complicated for  clinicians22. Hence, studies have 
been conducted using deep learning to analyze VFSS  videos22–26. For the spatial analysis, two studies used deep 
learning to automatically detect hyoid bone movement and airway  invasion22,26. Previous studies have applied 
deep learning for the temporal analysis of VFSS. Most of these studies focused on detecting one specific phase, 
such as the pharyngeal phase or pharyngeal delay  time23–25. However, all the other phases also have clinical 
significance; thus, automating the temporal analysis of the entire swallowing process would be more valuable in 
clinical aspects compared to the previous models. Moreover, as more time is consumed in manually analyzing 
entire phases than only a few phases such as the pharyngeal phase or pharyngeal delay time, invention of a deep 
learning model detecting the whole phase of the swallowing process will ultimately result in a more significant 
reduction in time and costs. If automatically detecting and quantifying the lengths of all swallowing phases are 
possible, clinicians may quickly and precisely identify the problematic phase. Moreover, clinicians may easily 
detect changes of patients swallowing function overtime.

Therefore, the purpose of this study was to develop an automatic model to measuring seven distinct temporal 
parameters of the VFSS during the overall swallowing process. Our approach of simultaneously detecting multiple 
phases differs from the previous works which primarily concentrated on detecting one specific  phase23–25,27. In 
this study, we proposed a novel deep learning model for temporal localization of swallowing phases. We evalu-
ated the performance of the proposed model on our VFSS dataset in comparison with traditional models for 
deep learning.

Methods
Subjects
Patients who complained of dysphagia or were suspected of having dysphagia underwent VFSS at Korea Uni-
versity Guro Hospital between September 2020 and September 2021 and were consecutively recruited for this 
study. Overall, 594 VFSS videos from 462 patients were retrospectively reviewed. The exclusion criteria were as 
follows: (1) age ≤ 19 years (2) inability to progress from the pharyngeal phase to the esophageal phase because full 
analysis of the temporal parameters in these patients was not possible (3) incomplete recording of videos and (4) 
insufficient or low contrast of the video precluding identification of anatomic structures. Based on the exclusion 
criteria, 47 videos from 39 patients were excluded. Consequently, 547 videos of 423 patients were included as 
ground-truth data samples. This study was approved by the Institutional Review Board of the Korea University 
Guro Hospital (IRB No. 2021GR0568) and the institutional review board waived the requirement to obtain the 
informed consent. This study was performed in accordance with the guidelines of the Declaration of Helsinki.

VFSS analysis
The VFSS was performed by a single physician. The participants were seated in an upright position and swallowed 
barium-mixed materials. A lateral view of the head and neck region was recorded at a frequency of 15 frames 
per second (FPS) using a Sonialvision G4 radio-fluoroscopy system (Shimadzu Medical Systems and Equipment, 
Japan). Various amounts and viscosities of materials were used for the VFSS examination, including thin liquid 
2 cc, thin liquid 5 cc, thin liquid with a cup, semi-liquid 2 cc, semi-liquid 5 cc, semi-solid, and solid materials. 
Each material was tested at least twice. All the materials were mixed with barium powder. Among them, the 
thin liquid was then mixed with barium powder as about 35% w/v. Only videos of swallowing 2 cc of thin liquid 
were included in this study since our hospital protocol initiates the examination with thin liquid 2 cc as the first 
material resulting in no residual barium in the oropharyngeal area at the beginning of the videos, leading to easier 
analysis, Two experienced physicians independently analyzed the VFSS video clips. One physician had  ≥ 15 years 
of experience in VFSS analysis, while the other one had  ≥ 3 years of experience. The intraclass coefficient was 
0.999 (p-value  < 0.001). If any disagreements occur between the two clinicians, a consensus was reached through 
discussion. In our hospital’s routine protocol, VFSS video analysis is conducted not only using the Penetration-
Aspiration  Scale28 but also qualitatively evaluating other several items visuoperceptually. The items included 
here are similar with the modified barium swallowing study (MBSS) tool (MBSImp)29. For this research, we 
applied the ASPEKT method, particularly from step 1 to 4, for our video preparation and  analysis14 as follows: 
(1) extraction of the first subswallow video, (2) major event labeling, and (3) temporal parameter measurement.

Extracting the first sub-swallow video
If multiple sub-swallows were present, only the first sub-swallow video was extracted. We set the first frame as 
the starting point of the oral phase, and the last frame as the point between the swallow rest and the start of the 
next sub-swallow.
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Major event labeling
As presented in Fig. 1, major event labeling was performed similar to that in the ASPEKT method devised by 
Steele et al.14. The adjusted definitions of the major events are as follows:

Start of oral phase
This was defined as the time at which the bolus first entered the oral cavity. It was also the first frame of the video 
clip used for temporal analysis.

Bolus past mandible
This is the first frame in which the leading edge of the bolus touches or crosses the ramus of the mandible. If 
the two mandibular lines did not overlap, the midpoint between the upper and lower mandibular lines was 
considered the reference point.

Burst of hyoid bone
This is the first frame in which the hyoid bone starts jumping anterosuperiorly.

Laryngeal vestibule closure (LVC)
This event is the first frame when the inferior surface of the epiglottis and arytenoid process contact. When LVC 
occurs, the air space in the laryngeal vestibule becomes invisible. When LVC occurs incompletely, the frame in 
which the arytenoid process and inferior surface of the epiglottis are most approximate is used.

Upper esophageal sphincter (UES) opening
The UES first opens as a bolus or air passes through it.

UES closure
This is the first frame in which a single point or part of the UES closes behind the tail of the bolus.

LVC offset
This is the earliest frame in which the air space in the laryngeal vestibule becomes visible.

Temporal parameter measurement
Seven temporal parameters including oral phase duration, pharyngeal delay time, pharyngeal response time, 
pharyngeal transit time, laryngeal vestibule closure reaction time, laryngeal vestibule closure duration and 
upper esophageal sphincter opening duration were measured using labeled major events, similar to the ASPEKT 
method devised by Steele et al.14. (Fig. 1) As fluoroscopy was projected at 15 FPS, using the frame number of the 
main events, the following temporal parameters could be calculated in milliseconds.

Development of automatic models
Figure 2 presents an overview of the proposed method for phase localization using deep learning.

Figure 1.  Phase description. LVC laryngeal vestibule closure, UES upper esophageal sphincte. Oral phase 
duration is the interval between oral phase start and bolus passing through the mandible. Pharyngeal delay time 
means interval between bolus passing through the mandible. Pharygeal response time is the interval between 
the burst of hyoid bone and UES closure. Pharyngeal transit time is interval between bolus passing through the 
mandible and UES closure. LVC reaction time is the interval between burst of the hyoid bone, LVC duration is 
the interval between laryngeal vestibule closure. UES opening duration is the interval between UES opening and 
UES closure.
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Three-dimensional convolutional neural network (3D-CNN)
A CNN is a type of artificial neural network based on convolution operations. The convolution operation effec-
tively extracts and combines the local image features and is applied to the input image multiple times, each of 
which is called a convolutional layer. Two-dimensional (2D) CNNs are typically used to analyze 2D images in 
deep learning. To process video data, 3D-CNNs can be applied, which add a time dimension to 2D images for 
input processing, that is, the video is processed as a temporal sequence of images. In this study, we adopted 
ResNet3D, a type of 3D-CNN30.

Models
The base architecture used was ResNet3D-1830. It has skip connections in which the input bypasses the inter-
mediate layers and is fed directly to the output. Skip connections facilitate deep neural network trainings. The 
model comprised multiple residual blocks containing several convolutional layers and one skip connection. 
The residual block is illustrated in Fig. 3. We adopted three architectural variants of ResNet3D-18, which are 
described as follows:

DEFAULT
This variant uses the default configuration of ResNet3D-18 with changes only in the number of input frames. In 
this study, we conducted experiments using input frame lengths of 7 or 13. The input label was set at the center 
of the input window. For example, the label of the input of seven frames is set to 1 if the fourth frame of the input 
is in the phase of interest, and 0 otherwise.

BIDIRECTIONAL
We proposed a new architectural variant of ResNet3D. Inspired by bidirectional recurrent neural networks, we 
introduced a bidirectional structure in ResNet3D that captures the forward and backward stream features of a 
target frame as  follows31 (Fig. 4).

The bidirectional model combines the predictions from two separate ResNet3D models. Specifically, we used 
two models, denoted by M1 and M2 , each of which takes L frames as input, aiming to predict the label of the 
center frame of 2L− 1 frames. The input for M1 is the first L successive frames, that is, from the first frame to 
the center of the loaded frames. The input for M2 is the last L successive frames, that is, from the center of the 
loaded frames to the last frame. Thus, M1 should learn forward temporal information, and  M2 should learn 
backward temporal information relative to the center frame. The outputs from M1 and M2 are combined and 
concatenated, and the combined vector was passed to a fully connected layer to yield the final prediction output.

CONV‑SA
We proposed another novel architectural variant for frame-level temporal action localization in videos (Fig. 5). 
This architecture predicts a label for each frame within a video segment by capturing inter-frame dependencies 
using self-attention layer from the  Transformer32 architecture. To achieve this, the default convolution stride 
configuration of ResNet3D-18 is fixed to 1. This makes the temporal sequence length of both the input and out-
put of ResNet3D-18 the same. To capture the serial relations among the frames, the frame number information 
is added to the outputs from ResNet3D-18 as like positional encoding implemented in the Transformer archi-
tecture. Subsequently, the incorporated features are fed into a multihead attention layer and a Fully Connected 
(FC) layer to yield the final prediction output. This architectural variant is dubbed “CONV-SA” which stands 
for convolution-self-attention.

Figure 2.  Conceptual diagram of the proposed framework. OPD: oral phase duration. PDT: pharyngeal 
delay time. PRT: pharyngeal response time. PTT: pharyngeal transit time. LVCRT: laryngeal vestibule closure 
reaction time. LVC Duration: laryngeal vestibule closure duration. UESOD: upper esophageal sphincter opening 
duration.
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Experimental settings
Datasets
The total number of VFSS videos was 547. The video dataset was split into training, validation, and test sets 
with 444, 49, and 54 videos, respectively. The model input was red, green, and blue (RGB) video frames resized 
to 224 × 224 pixels. from 1024 × 1024 pixels to reduce computational complexity while preserving information 
essential for the phase detection.

Figure 3.  ResNet3D structure. F = [64, 128, 256, 512]. Conv3d represents the 3D convolution layer and the 
numbers in parentheses denote the kernel dimensions of the convolutional filter. Batch normalization (Batch 
Norm) stabilizes the training process. ReLU (Rectified Linear Unit) is an activation operation that allows model 
to learn non-linearities to enhance the expressivity of the model. The global average pool summarizes features. 
Fully Connected (FC) layer and softmax function yield the class probability.

Figure 4.  Bidirectional variant of ResNet3D.
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Baselines
We compared our model with those of prior studies on VFSS. Lee et al. proposed a model based on VGG-16, 
a neural network with 16 weight layers that is widely used for image  recognition24,33. The I3D described by Lee 
et al. is a network that has been widely applied to action recognition and classification  tasks25,34,35. We trained 
the baseline models on our dataset and optimized the hyperparameters.

Transfer learning
We adopted the following transfer learning technique. Deep learning models must be trained using a large 
amount of data. However, collecting large-scale medical data is difficult because of privacy issues or the small 
number of participants. Transfer learning retrains a model pretrained on large datasets of generic images or 
videos. All models considered in this study used transfer learning. For example, VGG-16 was pretrained on Ima-
geNet which contains 200 categories of 14,197,122  images33,34,36. The I3D was pretrained on a Kinetics-60034,37. 
The ResNet3D variants used in this study were pretrained using Kinetics-70038. The Kinetics datasets contained 
650,000 human action video clips. Each clip was annotated with a single action class and lasted approximately 
10 s. Kinetics-600 and Kinetics-700 contain videos of 600 and 700 action classes, respectively. The pretrained 
model yielded a substantially higher performance than those that were not pretrained.

Performance evaluation
The accuracy, F1 score, and average precision (AP) were calculated to comprehensively evaluate the temporal 
localization of the phases in the test dataset.

accuracy =
TP + TN

TP + TN + FN + FP

Figure 5.  CONV-SA variant of ResNet3D.
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TP stands for the number of true-positive frames. In other words, it is the number of frames which belong to a 
phase and are classified to be that phase by our model. FP (false positive), TN (true negative), and FN (false nega-
tive) can be defined in a similar manner. AP is the area under the precision-recall graph, with an upper bound 
of 1 and higher values indicating better results. AP is a widely used metric for the temporal action localization 
task in computer vision and is particularly relevant to cases with class imbalance, that is, if only a small fraction 
of the given frames is the phase to be detected, as was in our case.

Ethics approval and consent to participate
This retrospective study was approved by the Korea University Guro Hospital Institutional Review Board (IRB 
No. 2021GR0568).

Results
Of the 594 videos from 462 participants, 47 were excluded based on the exclusion criteria. Finally, 547 subjects 
(71.8 ± 12.7 years; 331 men and 216 women) were included to develop the automatic models. Stroke is the most 
common cause of dysphagia. The causes of the dysphagia and penetration and aspiration score are described 
in Table 128.

The temporal parameters and numbers of frame corresponding to each swallowing phase are summarized 
in Table 2.

We repeated the experiments for all phases 20 times for each model, averaged the results, and rounded the 
numbers to three decimal places. For three metrics, the ResNet3D variants outperformed all the baseline models 

recall =
TP

TP + FN

precision =
TP

TP + FP

F1 score =
2

1
recall +

1
precision

=
TP

TP +
1
2 (FP + FN)

Table 1.  Causes of dysphagia and penetration and aspiration scale. Values are number of patients.

Cause of dysphagia

 Stroke 207

 Brain tumor 21

 Traumatic brain injury 20

 Parkinson’s disease 17

 Cervical myelopathy 14

 Head and neck cancer 12

 Guillain–Barre syndrome 10

 Encephalitis 9

 Epilepsy 8

 Esophageal cancer 7

 Dementia 6

 Motor neuron diseases 4

 Myopathy 4

 Cranial nerve lesion 3

 Neuromuscular junctional disorder 1

 Other medical condition 191

 Unknown 13

Penetration Aspiration Scale

 1 406

  2 31

  3 45

  4 2

  5 10

  6 11

  7 8

  8 34
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in every phase of swallowing (Table 3). We conducted  Tukey39 test to see if the outperformance of our model over 
baseline methods was statistically significant with a significance level of 0.05. The analysis revealed that it was 
statistically significant that the proposed model outperformed the VGG model in all the phases (p value was at 
most 7.6× 10−6 ). Meanwhile, it was statistically significant that the proposed model outperformed I3D model 
in the case of four phases: Oral Phase Duration (p = 9.4× 10−16 ), Pharyngeal Delay Time (p = 3.2× 10−8 ), Phar-
yngeal Transit Time (p = 3.2× 10−12 ), UES opening duration (p = 0.00191), but not for three phases: Pharyngeal 
Response Time (p = 0.03898), LVC Reaction Time (p = 0.05762), LVC Duration (p = 0.05382). The architectural 
variants with the highest performance in each swallowing phase varied, as listed in Table 4. The configuration 
of window sizes for both the DEFAULT and BIDIRECTIONAL variants was seven frames, while that for the 
CONV-SA variant was fifty-frames. In the multi-head attention layer of CONV-SA, we used four heads.

Table 2.  Swallowing phase durations and number of frames. Values are mean ± standard deviation. s Second, 
LVC Laryngeal vestibule closure; UES Upper esophageal sphincter.

Phase Phase duration (s) Number of Frames

Oral phase duration 1.844 ± 2.281 27.658 ± 34.215

Pharyngeal delay time 1.387 ± 2.857 20.809 ± 42.856

Pharyngeal response time 0.677 ± 0.137 10.148 ± 2.060

Pharyngeal transit time 1.978 ± 2.880 29.676 ± 43.195

LVC reaction time 0.302 ± 0.112 4.526 ± 1.687

LVC duration 0.676 ± 0.266 10.053 ± 3.987

UES opening duration 0.432 ± 0.116 6.483 ± 1.746

Table 3.  Performance results of models. Values are presented as means ± standard deviations. LVC Laryngeal 
vestibule closure; UES Upper esophageal sphincter. *Best result among the three models.

Model

Metric

Accuracy F1 score Average precision

Oral phase duration

 VGG 0.898 ± 0.010 0.832 ± 0.016 0.729 ± 0.022

 I3D 0.918 ± 0.014 0.866 ± 0.020 0.775 ± 0.031

 Proposed 0.966 ± 0.008* 0.941 ± 0.013* 0.899 ± 0.023*

Pharyngeal delay time

 VGG 0.837 ± 0.033 0.644 ± 0.158 0.572 ± 0.079

 I3D 0.861 ± 0.008 0.697 ± 0.025 0.633 ± 0.021

 Proposed 0.901 ± 0.024* 0.794 ± 0.062* 0.737 ± 0.062*

Pharyngeal reaction time

 VGG 0.94 ± 0.007 0.817 ± 0.015 0.687 ± 0.022

 I3D 0.976 ± 0.004 0.915 ± 0.013 0.853 ± 0.022

 Proposed 0.978 ±0.002* 0.924 ± 0.007* 0.865 ± 0.012*

Pharyngeal transit time

 VGG 0.858 ± 0.009 0.809 ± 0.017 0.766 ± 0.012

 I3D 0.866 ± 0.010 0.813 ± 0.018 0.786 ± 0.013*

 Proposed 0.905 ± 0.015* 0.873 ± 0.023* 0.846 ± 0.02*

LVC reaction time

 VGG 0.946 ± 0.013 0.668 ± 0.042 0.48 ± 0.043

 I3D 0.979 ± 0.003 0.818 ± 0.043 0.688 ± 0.052

 Proposed 0.98 ± 0.003* 0.837 ± 0.031* 0.714 ± 0.041*

LVC duration

 VGG 0.957 ± 0.005 0.859 ± 0.012 0.752 ± 0.019

 I3D 0.963 ± 0.005 0.867 ± 0.014 0.769 ± 0.023

 Proposed 0.966 ± 0.007* 0.875 ± 0.035* 0.787 ± 0.041*

UES opening duration

 VGG 0.965 ± 0.008 0.844 ± 0.028 0.727 ± 0.042

 I3D 0.976 ± 0.007 0.868 ± 0.055 0.779 ± 0.065

 Proposed 0.981 ± 0.002* 0.905 ± 0.01* 0.830 ± 0.017*
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Discussion
Our study successfully proposed an automatic model that can perform temporal analysis of the entire swallow-
ing phase using VFSS data. This is particularly valuable because it can be easily applied in clinical practice as the 
overall swallowing phase was analyzed using realistic datasets without special manipulation.

Although some studies using deep learning for the temporal analysis of VFSS have been presented, most of 
them focused on detecting a specific phase, such as the pharyngeal phase or pharyngeal delay  time23–25. To the 
best of our knowledge, this is the first study to measure various temporal parameters throughout the swallow-
ing process using deep learning. In addition, deep learning models previously used for the automated temporal 
analysis of VFSS have limitations. A study that used the VGG  model24, which is a 2D-CNN, did not consider the 
temporal relationships of the frames; thus, it may not learn the important muscle movements that determine 
the phase or event. In contrast, our study used 3D convolution operations to capture the temporal relationships 
between frames. Another study that used an I3D  model25 did not classify whether a frame belonged to the phase 
of interest, but instead it classified whether the input frames overlapped with the phase of interest. However, our 
proposed method can classify each frame by detecting the presence of a phase at the center of the input frame. 
Lee et al.23 proposed a model which used three stages for phase detection, required training over optical flow 
data in addition to RGB data. Our method uses only RGB data and consists of only one stage, which lowers the 
computational cost. Bandini et al.27 proposed to detect only pharyngeal phase using existing models, and the 
requirement was that the phase must be longer than three frames. By contrast, we proposed a novel deep learn-
ing model which yields the best performance for phase detection which works even when the phase is shorter 
than three frames.

Our study was conducted using the VFSS videos of patients examined in clinical practice. In these videos, 
the head and shoulders of the patients, as well as the oral and pharyngeal areas were included. During VFSS, the 
head and shoulders of the patients may assume various positions and sometimes move back and forth. Occa-
sionally, the hands of a clinician or patient may have appeared. Moreover, some videos had low clarity because 
of poor focus or contrast (Fig. 6). In reality, some patients may have difficulty in maintaining proper posture or 
consistently maintaining a fixed posture. In fact, the performance of the baseline models reproduced using our 
data was lower than that reported in the original  papers24–26 (Table 3). This was because the models were trained 
using different datasets. The anatomical extent recorded in the video clips used in previous studies was limited 
to the area around the neck; thus, training or evaluating the model using realistic datasets for its applicability in 
clinical practice is important.

Among these phases, the performance of the model detecting the pharyngeal delay time and LVC reaction 
times yielded relatively poor results compared to another phase. These phases are different from others as the 
terminal point of the phases sometimes precedes the initiation point. For example, in the pharyngeal delay 
time, the action of the burst of the hyoid bone event typically follows the event of a bolus passing the mandible, 
although sometimes the burst of the hyoid bone event precedes the bolus passing the mandible event. This made 
training of the model more difficult.

We conducted t-test with a significance level of 0.05 in terms of classification performance based on gender, 
age (greater than 65 or otherwise), Penetration-Aspiration Score (greater than 5 or otherwise). Across these 
variables, our findings revealed no significant differences in the performance of the proposed models in all the 
phases except for detecting LVC Reaction time. In this case, when the data was categorized based on Penetra-
tion-Aspiration Score (PAS), the two-tailed p-value was 0.04, indicating a statistically significant difference in 
classification performances. The performance for the group with a lower PAS was better than the one with PAS 
greater than 5.

This study had some limitations. First, unlike many previous studies that used 30 FPS machines, we used 
a fluoroscopy machine with 15 FPS. Although this allowed us to reduce the radiation dose to the patients, the 
results of the temporal analysis may have been less accurate. Second, the participants who could not progress 
from the pharyngeal to the esophageal phase because of severe UES dysfunction were excluded from this study; 
therefore, analyzing these cases using this model would be difficult. Third, only videos in which patients swal-
lowed 2 cc of liquid were analyzed. No residue in the videos was noted since 2 cc of the thin liquid was the first 
to be examined among the materials of various consistencies and volumes. Therefore, only videos of patients 
swallowing a 2 cc thin liquid were used to develop a more accurate model. The accuracy of the model can be 

Table 4.  ResNet3D architectural variants of the best performance for each phase. LVC Laryngeal vestibule 
closure; UES Upper esophageal sphincter.

Phase Variants

Oral phase duration CONV-SA

Pharyngeal delay time CONV-SA

Pharyngeal response time DEFAULT

Pharyngeal transit time CONV-SA

LVC reaction time BIDIRECTIONAL

LVC duration BIDIRECTIONAL

UES opening duration CONV-SA



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17522  | https://doi.org/10.1038/s41598-023-44802-3

www.nature.com/scientificreports/

improved if further studies include cases where previous residues remain, as well as using various volumes and 
viscosities of the materials.

In future work using deep learning models for VFSS, we plan to develop models for multi-labeled event 
detection instead of phase localization. Event detection indicated that the model detected important changes 
in anatomical structures that determined the phases of the swallowing process. For example, if a model could 
detect the events of a bolus past the mandible and a burst of the hyoid bone, identifying the pharyngeal delay 
time could be easier. This is because detecting individual events involving movements is easier than detecting the 
entire phase. Additionally, in order to strengthen the rationale for utilizing deep learning in VFSS video analysis, 
we are planning to conduct a future study quantitatively comparing the time-saving potential of deep learning 
techniques in comparison to manual analysis. Moreover, in the actual diagnostic process of dysphagia, there 
are various components involved not only temporal analysis but also PAS rating and the elements encompassed 
within the MBSImP, etc. Therefore, our future objective is to automate all of these components and quantify the 
extent to which deep learning can save time compared to manual analysis in the diagnosis of dysphagia in VFSS.

Conclusion
We developed an automatic model that included various temporal parameters of the VFSS. The proposed 
ResNet3D variants outperformed existing models in detecting all phases of the swallowing process. This auto-
matic model reduces clinician labor and allows faster assessment of dysphagia.

Data availability
The datasets for this study are available from the corresponding author on reasonable request.
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Figure 6.  Example of irregularities in our video data. (a) and (b) The patient is out of the screen owing to 
the inability to maintain posture. (c) The hand of a clinician, apparatus, and an obstacle over the throat were 
captured in the video, (d) the patient’s hand was captured in the video.
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